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Abstract. This paper addresses the problem of estimating the error distri-
bution in single-index regression models. We estimate the error distribution

function with a weighted nonparametric residual empirical distribution func-
tion. Our main result is a first order uniform stochastic expansion of the
estimator. This expansion makes it possible to derive asymptotically distribu-
tion free goodness-of-fit tests about the error distribution. Our approach is to

regard the single-index model as a nonparametric regression model, but with
estimated covariates (the estimated indices). However, the usual assumption
in classical nonparametric regression, that the covariate distribution is quasi-
uniform (bounded and bounded away from zero on its compact support), is

not reasonable here. We handle this by introducing weights which restrict the
estimation of the link function to intervals.

1. Introduction

We consider the single-index regression model in which the response variable
Y is linked to a p-dimensional covariate vector X via the formula

(1.1) Y = ϱ(θ⊤0 X) + ε,

where ϱ is a smooth function, θ0 is a p-dimensional unit vector, and the error
variable ε is independent of the covariate X, has mean zero and a finite variance.
In order to guarantee identifiability, we require that the matrix E[XX⊤] is positive
definite and that θ0 belongs to Θ, the set of all p-dimensional unit vectors whose
first coordinate is positive, see e.g., Cui, Härdle and Zhu (2011). Furthermore, we
assume that ε has a density f and that θ⊤X has a density gθ for each θ in Θ.

The single-index regression model was introduced to overcome the curse of
dimensionality. Numerous applications and theoretical results can be found in
Stoker (1986), Li (1991), Ichimura (1993), Xia and Li (1999), Xia, Tong and Li
(2002), Xia, Tong, Li and Zhu (2002), Xia and Härdle (2006), Xia (2008), and
references therein. The primary focus of these and related papers has been the
estimation of the parameter θ0 and of the link function ϱ. Stute and Zhu (2005)
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provide asymptotically distribution free maximin tests for fitting a single-index
model to the regression function against a large class of local alternatives.

Here we are interested in the estimation of the error distribution function F
based on independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ). Our goal is to derive
a first order uniform stochastic expansion for a suitably weighted residual empir-
ical distribution function. Such a uniform expansion has been obtained in linear,
partially linear and nonparametric regression models by Koul (1969, 1970, 2002),
Akritas and Van Keilegom (2001), Müller, Schick and Wefelmeyer (2007, 2009a),
and Neumeyer and Van Keilegom (2010). In the context of time series, expansions
of this type have been obtained in Boldin (1982, 1990, 1998), Koul (1991, 2002),
Müller, Schick and Wefelmeyer (2009b), and Neumeyer and Selk (2013). The ex-
isting literature does not cover the case of interest here.

If we denote the single-index θ⊤0 X by S, then we can write the regression model
as a nonparametric regression model

Y = ϱ(S) + ε.

A common assumption for estimating ϱ in such nonparametric regression models
is that the single covariate S has a density that is bounded and bounded away
from zero on its compact support. We call distributions of this type quasi-uniform.
Thus, if θ0 were known and if S were quasi-uniform, we could estimate ϱ by classical
nonparametric curve estimators, and the results of Müller, Schick and Wefelmeyer
(“MSW” 2007) would yield the desired expansion of the corresponding residual em-
pirical process. However, the assumption that S is quasi-uniform is not reasonable
in our case as the following two examples demonstrate.

Example 1. Suppose that X is uniformly distributed on the unit disk D =
{x ∈ R2 : ∥x∥ ≤ 1}. In this case θ⊤X has density

gθ(s) = g(s) =
2

π

√
1− s2 1[|s| < 1]

for all θ in Θ, and this density is not bounded away from zero on [−1, 1].

Example 2. Suppose thatX is uniformly distributed on the unit square [0, 1]×
[0, 1]. Let θ = (a, b)⊤ with 0 < a ≤ 1/

√
2 and b =

√
1− a2. Then the density of

θ⊤X is given by

gθ(s) =
1

ab

[
1[0 ≤ s ≤ b] min(s, a) + 1[b < s < a+ b](a+ b− s)

]
.

This density is piecewise linear, and its support depends on a.

Let θ̂ be an estimator of θ0 and set

Ŝj = θ̂⊤Xj and δ̂j = 1[Ŝj ∈ Î], j = 1, . . . , n,

where Î is the random interval [l̂, û] whose endpoints are functions of the estimated

indices Ŝ1, . . . , Ŝn and the estimator θ̂, say

(1.2) l̂ = ϕn,l(Ŝ1, . . . , Ŝn, θ̂) and û = ϕn,u(Ŝ1, . . . , Ŝn, θ̂).

Choices of such random intervals are discussed in Remark 1.1 below.
We estimate the link function ϱ by a local quadratic smoother ϱ̂ treating Ŝj

as the regressor. Our estimator F̂n of the distribution function F is based on the
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residuals Yj − ϱ̂(Ŝj) for which δ̂j = 1, i.e.,

(1.3) F̂n(t) =
1

Nn

n∑
j=1

δ̂j1[Yj − ϱ̂(Ŝj) ≤ t], t ∈ R,

with Nn =
∑n

j=1 δ̂j .

Remark 1.1. Let us briefly comment on choices of Î. The goal is to have
gθ0 bounded away from zero on Î with high probability. If gθ were known, we
could choose intervals I(θ) on which gθ is bounded away from zero, and then take

Î = I(θ̂). If gθ is known up to parameters, say gθ is a normal density with mean
θ⊤µ and variance θ⊤Σθ for some unknown vector µ and some unknown dispersion
matrix Σ, then we could take Î = [ν̂ − cσ̂, ν̂ + cσ̂], where ν̂ is the sample mean

and σ̂ the sample standard deviation of the estimated indices Ŝ1, . . . , Ŝn. Another
choice for Î is [q̂α1 , q̂α2 ] for 0 < α1 < α2 < 1, where q̂α denotes the α-th sample

quantile of the estimated indices. Using only values Ŝj that are densely distributed

in an interval Î around the mean or median, e.g., between the upper and lower five
percent quantiles, seems to be a natural choice: it ensures that the local smoother
ϱ̂ has enough ‘observations’ available to estimate the link function reasonably well.

The remainder of the paper is organized as follows. In Section 2 we describe our
main result, a first order uniform stochastic expansion of F̂n, and discuss in detail
the assumptions used. An application of the main result is described in Section 3 by
constructing asymptotically distribution free tests for fitting an error distribution
in model (1.1). Some properties of local quadratic smoothers are given in Section 4.
In Section 5 we generalize results from MSW (2007) for nonparametric regression
with quasi-uniform covariates to the case when quasi-uniformity cannot be assumed.
Sections 4 and 5 play a major role in the proof of our main result given in Section
6. Our approach is to regard the single-index model as a nonparametric regression
model with estimated covariates Ŝj . The randomness caused by the estimated

parameters θ̂ is handled using discretization and contiguity arguments, which are
standard techniques in the construction of efficient estimators in semiparametric
models.

2. Main Result

We begin by describing the local quadratic smoother. The value ϱ̂(s) of this

estimator at s ∈ R equals the first component β̂0 of the minimizer (β̂0, β̂1, β̂2) of

1

nbn

n∑
j=1

(
Yj − β0 − β1

Ŝj − s

bn
− β2

( Ŝj − s

bn

)2)2

K
( Ŝj − s

bn

)
,

whereK is a symmetric density with compact support [−1, 1] and bn is a bandwidth,
i.e., bn is a sequence of positive numbers that converges to zero.

We prove our main result, a uniform stochastic expansion of F̂n, under the
following conditions. Let I = [a, b] be a compact interval of R.

(R1) The regression function ϱ is twice continuously differentiable and satisfies

E[|ϱ(θ⊤X)− ϱ(θ⊤0 X)− (θ − θ0)
⊤Xϱ′(θ0

⊤X)|2] = o(∥θ − θ0∥2),

as ∥θ − θ0∥ → 0.
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(R2) The p× p matrix

M = E[(ϱ′(S))2(X − E[X|S])(X − E[X|S])⊤]
has rank p− 1.

(T) The estimator θ̂ satisfies n1/2(θ̂ − θ0) = Op(1) and is discretized.
(I) There are interior points l0 < u0 of I and functions ϕ̄n,l and ϕ̄n,u such

that for all θn in Θ with n1/2(θn − θ0) bounded we have

ϕn,l(S1, . . . , Sn, θn) = ϕ̄n,l(θn) + op(n
−1/4) = l0 + op(1),

ϕn,u(S1, . . . , Sn, θn) = ϕ̄n,u(θn) + op(n
−1/4) = u0 + op(1),

with ϕn,l and ϕn,u as in (1.2) and Sj = θ⊤0 Xj .
(G1) The density gθ0 is bounded and also bounded away from zero on I.
(G2) The map θ 7→ √

gθ is differentiable at θ0 in L2, i.e., there is a measurable

function ġθ0 from R into θ⊥0 = {v ∈ Rp : v⊤θ0 = 0} such that ∥ġθ0∥ is
square-integrable and∫ (√

gθ(s)−
√
gθ0(s)− (θ − θ0)

⊤ġθ0(s)
)2

ds = o(∥θ − θ0∥2)

holds as ∥θ − θ0∥ → 0.
(F1) The error variable has a finite third moment.
(F2) The error density f has finite Fisher information for location.

We shall now discuss these assumption. The first part of (R1) is used to derive
appropriate properties of the local quadratic smoother of ϱ. The bias of this esti-
mator is of order o(b2n) which needs to be of order o(n−1/2). The choice bn ∼ n−1/4

used in Theorem 2.1 is the largest bandwidth satisfying this requirement. Larger
bandwidth are allowed under additional smoothness assumptions on ϱ. For ex-
ample, if the second derivative of ϱ is Hölder with exponent α, then we can take
larger bn subject to the constraint b2+α

n = o(n−1/2). In particular, for α > 1/2,
the familiar choice bn ∼ n−2/5 works. Instead of a local quadratic smoother, we
could have worked with a local linear smoother. The bias of this estimator is of
order O(b2n). This would require a smaller bandwidth such as bn ∼ (n logn)−1/4

to guarantee that the bias is of order o(n−1/2). A local linear smoother with this
choice of bandwidth was used in MSW (2007).

The matrix M in condition (R2) cannot have full rank p as

θ⊤0 Mθ0 = E[(ϱ′(S))(θ⊤0 (X − E[X|S]))2] = E[(ϱ′(S))(S − E[S|S])2] = 0.

Condition (R2) guarantees that v⊤Mv > 0 for every unit vector v orthogonal to
θ0. This is needed to guarantee the existence of a root-n consistent estimator of θ0,
as required in condition (T).

The set θ⊥0 appearing in (G2) is the tangent space of Θ at θ0. The requirement
in (G2) that ġθ0 takes values in θ⊥0 ensures that the derivative ġθ0 is uniquely
determined (up to almost everywhere equivalence). Without this assumption, the
differentiability requirement would also hold with ġθ0 replaced by ġθ0 +hθ0 for each
square-integrable h. This follows from the fact that (θ−θ0)⊤θ0 equals −∥θ−θ0∥2/2
for all θ in Θ. On the other hand, it suffices to verify the differentiability condition
for some ġθ0 that is not θ⊥0 -valued, because it then holds with ġθ0 replaced by
(Ip − θ0θ

⊤
0 )ġθ0 , where Ip is the p × p identity matrix, and this replacement is θ⊥0 -

valued in view of θ⊤0 (Ip − θ0θ
⊤
0 ) = 0.
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By the same token, we can replace in (R1) the derivative Xϱ′(θ⊤0 X) by the
θ⊥0 -valued derivative (Ip − θ0θ

⊤
0 )Xϱ

′(θ⊤0 X). This and (F2) show that the score
function for θ0 is given by

ℓ(ε)ϱ′(S)(Ip − θ0θ
⊤
0 )X,

with ℓ = −f ′/f , the score function for location. The tangent space T for the
nuisance parameter (ϱ, F,G), with G the distribution of X, consists of the function

ℓ(ε)a(S) + c(ε) + b(X)

with E[a2(S)] finite, E[b(X)] = 0 and E[b2(X)] finite, E[c(ε)] = E[εc(ε)] = 0 and
E[c2(ε)] finite. The projection of the score function onto T p is given by

ℓ(ε)ϱ′(S)(Ip − θ0θ
⊤
0 )E[X|S].

Thus the efficient score for estimating θ0 is

ℓ(ε)ϱ′(S)(Ip − θ0θ
⊤
0 )(X − E[X|S])

and the efficient information matrix is

J∗ = E[ℓ2(ε)](Ip − θ0θ
⊤
0 )M(Ip − θ0θ

⊤
0 ) = E[ℓ2(ε)]M.

While the information matrix is not invertible, the map ϕ from θ0
⊥ to θ0

⊥ defined
by it, i.e. ϕ(v) = J∗v, v ∈ θ0

⊥, is invertible. Finally, the efficient influence function
for estimation F (t) is given by

1[ε ≤ t]− F (t) + f(t)ε.

This can be deduced from the results in Müller and Schick (2016) and the form of
the present tangent space.

For the construction of root-n consistent estimators of θ0 we refer to Carroll,
Fan, Gijbels and Wand (1997), Wang, Xue, Zhu, and Chong (2010), and Xia and
Härdle (2006), who develop n1/2-consistent estimators of the underlying Euclidean
parameters in a class of partially linear single-index models. Cui, Härdle and Zhu
(2011) use a method of estimating functions to develop estimators of θ0 that satisfy
condition (T) for a large class of single-index model. Their estimator of θ0 is found
to have smaller or equal limiting variance than that of Carroll et al. (1997). See
also the correction note by Li et al. (2011) pertaining to the reference Wang et
al. (2010). The method of Hall and Yao (2005) provides yet another approach to
obtain a root-n consistent estimator.

Condition (T) also requires that the root-n consistent estimator of θ0 is dis-
cretized. Such an estimator can be obtained by discretizing any preliminary root-n

consistent estimator θ̂ on grids with mesh width n−1/2, e.g., by replacing it by
the closest point on the grid, so the change is at most n−1/2 and consistency is

preserved. This trick simplifies the proofs since we can replace θ̂n by a nonrandom
sequence θn = θ0 +O(n−1/2), see, e.g., Le Cam (1985) or van der Vaart (1998).

We use condition (G2) to establish that the distributions of (θ⊤nX1, . . . , θ
⊤
nXn)

and (θ⊤0 X1, . . . , θ
⊤
0 Xn) are mutually contiguous whenever θn = θ0+O(n−1/2). This

implies that (I) holds with each Sj = θ⊤0 Xj replaced by θ⊤nXj . This and (T) then

allow us to conclude that l̂ is a consistent estimator of l0, more precisely, we have

l̂ = ϕ̄n,l(θ̂) + op(n
−1/4) = l0 + op(1).
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An analogous statement holds for û. Similar arguments yield

(2.1)
Nn

n
=

1

n

n∑
j=1

δ̂j = P (l0 ≤ θ⊤0 X ≤ u0) + op(1).

Let q̂α denote the α-th sample quantile constructed from the estimated indices
Ŝ1, . . . , Ŝn. Recall that the sample quantile based on independent observations from
a density is a root-n consistent estimator of the quantile whenever the density is
positive and continuous at this quantile. Thus condition (I) is met by

Î = [l̂, û] = [q̂α1 , q̂α2 ],

with 0 < α1 < α2 < 1, if gθ0 is continuous and positive on an open interval
containing the α1 and α2-quantiles of gθ0 . In particular, condition (I) holds for any
such α1 and α2 if gθ0 is continuous and the set {gθ0 > 0} is an interval.

The moment assumption (F1) is used to derive properties of the local quadratic
smoothers. The assumption (F2) together with (R1) is used to obtain contiguity.
It also guarantees that the density f is Hölder with exponent 1/2, which meets
one of the requirements in MSW (2007), namely, the density f to be Hölder with
exponent greater than 1/3.

We now state our main result, the uniform stochastic expansion of the estimator
F̂n introduced in (1.3). This expansion is similar to the expansions obtained in
MSW (2007, 2009a) in semiparametric and nonparametric regression models. The
difference is the presence of weights w(θ⊤0 Xj), where

w(s) =
1[l0 ≤ s ≤ u0]

P (l0 ≤ θ⊤0 X ≤ u0)
, s ∈ R.

Theorem 2.1. Suppose the model (1.1) and the conditions (R1), (R2), (T),
(I), (G1), (G2), (F1) and (F2) hold. In addition, assume that the kernel K has
a Hölder continuous second derivative, and the bandwidth bn satisfies bn ∼ n−1/4.
Then we have the uniform stochastic expansion

(2.2) sup
t∈R

∣∣∣F̂n(t)− F (t)−Wn(t)
∣∣∣ = op(n

−1/2)

with

Wn(t) =
1

n

n∑
j=1

w(θ⊤0 Xj)
[
1[εj ≤ t]− F (t) + f(t)εj)

]
, t ∈ R.

Remark 2.1. The above result shows that the influence function of the esti-
mator F̂n(t) is

ϕt(Y,X) = w(θ⊤0 X)
[
1[ε ≤ t]− F (t) + f(t)ε

]
,

which is the efficient influence function for estimating F (t) multiplied by w(θ⊤0 X).
The asymptotic variance of our estimator thus equals the efficient variance multi-
plied by E[w2(θ⊤0 X)]. This factor equals 1/p0 with

p0 = P (l0 ≤ θ⊤0 X ≤ u0).

Thus our estimator is nearly efficient if p0 is close to one.
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3. An application

We shall now discuss an application of (2.2) for deriving an asymptotically
distribution free (ADF) test for fitting a known error distribution in the model
(1.1). For this we introduce the process

Zn(t) =
1

n

n∑
j=1

[
1[εj ≤ t]− F (t) + f(t)εj

]
, t ∈ R.

Note that nCov(Zn(s),Zn(t)) = C(s, t) and nCov(Wn(s),Wn(t)) = (1/p0)C(s, t)
with

C(s, t) = Cov(1[ε ≤ s] + f(s)ε,1[ε ≤ t] + f(t)ε), s, t ∈ R.

Recall, say from Koul (2002), that n1/2Zn converges weakly to a continuous Gauss-
ian process Z with mean zero and covariance function C. Thus Theorem 2.1 implies

n1/2(F̂n − F ) →D p
−1/2
0 Z,

where →D denotes weak convergence in the Skorokhod space D[−∞,∞] and uni-
form metric. By (2.1), p̂n = Nn/n is a consistent estimator of p0 and we conclude

(3.1) N1/2
n (F̂n − F ) →D Z.

An analog of Theorem 2.1 is obtained in MSW (2009a) for the ordinary non-

parametric residual empirical process F̂n in a class of nonparametric regression
models. They established, under some conditions on the regression function and
F , the expansion

(3.2) n1/2 sup
t∈R

|F̂n(t)− F (t)− Zn(t)| = op(1).

Let F0 be a known distribution function having zero mean, a finite third mo-
ment and finite Fisher information for location. Consider the problem of testing
H0 : F = F0 versus the alternative that H0 is not true. In the context of non-
parametric regression models, Khmaladze and Koul (2009) (KK) used the expan-

sion (3.2) to show that under H0 a certain transform of F̂n converges weakly in
D[−∞,∞] and uniform metric to B ◦F0, where B is standard Brownian motion on
[0,∞). The results (2.2) and (3.1) used with F = F0 enable one to conclude that
the analog of this transform will also converge weakly, under H0, to B ◦ F0. For
the sake of completeness we describe this transform here.

Let f0 be density of F0 and f ′0 be its a.e. derivative. Define

h(x) =
(
1,−f ′0(x)/f0(x)

)⊤
, σ2(x) =

∫ ∞

x

(f ′0(y)
f0(y)

)2

dF0(y),

ΓF0(x) =

∫ ∞

x

h(x)h⊤(x)dF0(x) =

(
1− F0(x) f0(x)
f0(x) σ2(x)

)
, x ∈ R.

Let

Kn(t) =

∫ t

−∞
h⊤(s)Γ−1

F0(s)

∫ ∞

s

h(z) dF̂n(z) dF0(s), t ∈ R.

The transformed process is

Un(t) = n1/2
(
F̂n(t)−Kn(t)

)
, t ∈ R.
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See the discussion in KK for the existence of this transform. Arguing as in KK,
one can show with the help of (2.2) and (3.1) that under appropriate conditions

p̂
1/2
n Un →D B ◦ F0. As a consequence, under H0,

Dn = sup
t∈R

|p̂1/2n Un(t)| = sup
t∈R

|N1/2
n (F̂n(t)−Kn(t))| →D sup

0≤s≤1
|B(s)|,

and the test based on Dn is ADF for testing H0 in the single-index model (1.1).
Perhaps it is worth pointing out that this test differs from its analog used for fitting
an error distribution in the one sample location model only in that the scale factor

n1/2 is replaced by N
1/2
n and the ordinary residual empirical distribution function

of the one sample location model is replaced by F̂n.

4. Properties of Local Quadratic Smoothers

In this section we describe some large sample properties of a local quadratic
smoother of the regression function r on a closed interval I = [a, b] with a < b for
the nonparametric regression model

Y = r(Z) + ε,

where ε and Z are independent random variables, ε has mean zero and a finite third
moment, Z has a bounded density g, and r is twice continuously differentiable. Let
(Y1, Z1), . . . , (Yn, Zn) denote independent copies of the pair (Y, Z) from the above
regression model.

The local quadratic smoother r̂ associated with a kernel K and a bandwidth
cn is defined as follows. The value r̂(z) of this estimator at z is given by the first

component of the minimizer β̂(z) = (β̂0(z), β̂1(z), β̂2(z))
⊤ of

L(β) =
1

ncn

n∑
j=1

(
Yj − β0 − β1

Zj − z

cn
− β2

(Zj − z

cn

)2)2

K
(Zj − z

cn

)
.

We assume throughout that K is a symmetric density with support [−1, 1] and
make additional assumption as needed.

In what follows we use the following notation. For a k ×m matrix A, we let
∥A∥ denote its Euclidean norm

∥A∥ =

 k∑
i=1

m∑
j=1

A2
ij

1/2

.

For a function M from the interval I to the set of k ×m matrices we set

∥M∥∗ = sup
x∈I

∥M(x)∥.

If this function is differentiable with derivative M ′, then we set

∥M∥1,γ = ∥M∥∗ + ∥M ′∥∗ + sup
x,y∈I,x<y

∥M ′(x)−M ′(y)∥
|x− y|γ

, 0 < γ < 1.

These norms apply to vectors (m = 1) and scalars (k = m = 1).
Set ψ(x) = (1, x, x2)⊤ for x ∈ R. Then the above criterion function becomes

L(β) =
1

ncn

n∑
j=1

(
Yj − β⊤ψ

(Zj − z

cn

))2

K
(Zj − z

cn

)
.
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Routine calculations show that the minimizer β̂(z) of L(β) solves the normal equa-
tions

Ŵ (z)β̂(z) = Â(z) + B̂(z),

where

Ŵ (z) =
1

ncn

n∑
j=1

ψ
(Zj − z

cn

)
ψ⊤

(Zj − z

cn

)
K
(Zj − z

cn

)
,

Â(z) =
1

ncn

n∑
j=1

εjψ
(Zj − z

cn

)
K
(Zj − z

cn

)
,

B̂(z) =
1

ncn

n∑
j=1

r(Zj)ψ
(Zj − z

cn

)
K
(Zj − z

cn

)
.

Since K has support [−1, 1] and r′′ is uniformly continuous on compact sets, a
Taylor expansion yields

∥B̂ − Ŵ ṙcn∥∗ = sup
z∈I

|B̂(z)− Ŵ (z)ṙcn(z)| = o(c2n)

with ṙcn(z) = (r′(z), cnr
′(z), c2nr

′′(z)/2)⊤. Direct calculations show that

W̄ (z) = E[Ŵ (z)] =

∫
ψ(u)ψ⊤(u)K(u)g(z + cnu) du.

In order to prove Theorem 4.1 below, which lists some important properties of the
smoother, we need the following two lemmas. The first lemma is an immediate
consequence of the definition of W̄ and the fact that the matrix∫

A

ψ(u)ψ⊤(u)K(u) du

is positive definite for any subinterval A of [−1, 1] of positive length. Recall that g
is bounded.

Lemma 4.1. Suppose g is also bounded away from zero on I. Then there is an
α, 0 < α < 1, such that the eigenvalues of W̄ (z) fall into the interval [α, 1/α] for
all z in I and all cn satisfying cn ≤ l/2, where l is the length of the interval I.

The next lemma is a consequence of Corollary 4.2 in MSW (2007) with their δ
equal to zero. Note that Z has a bounded density as required there. We also use
the fact that ε has finite third moment.

Lemma 4.2. Suppose w is an integrable and Hölder continuous function and
log n/(ncn) is bounded. Then the rate

sup
z∈I

∣∣∣ 1

ncn

n∑
j=1

w
(Zj − z

cn

)
− E[w

(Zj − z

cn

)
]
∣∣∣ = Op

(( logn
ncn

)1/2)
holds. Moreover, if E|ε|3 <∞ and log n/(cnn

1/3) is bounded, then the rate

sup
z∈I

∣∣∣ 1

ncn

n∑
j=1

εjw
(Zj − z

cn

)∣∣∣ = Op

(( log n
ncn

)1/2)
holds.
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In view of Lemma 4.2, from now on we assume that log n/(cnn
1/3) is bounded.

It then follows from Lemma 4.1 that

∥W̄∥∗ = O(1) and ∥W̄−1∥∗ = O(1).

Furthermore, Lemma 4.2 applied to the entries of the matrices implies that

∥Ŵ − W̄∥∗ = Op

(( log n
ncn

)1/2)
and

∥Â∥∗ = Op

(( log n
ncn

)1/2)
,

provided K is Hölder. It follows that the matrices Ŵ (z), z ∈ I, are invertible on

the event {∥Ŵ − W̄∥∗ < α}, whose probability converges to one. On this event we
have

∥Ŵ∥∗ = O(1), ∥Ŵ−1∥∗ = O(1),

and

∥Ŵ−1 − W̄−1∥∗ = Op

(( log n
ncn

)1/2)
.

Moreover, on this event we have the identity

β̂(z)− ṙcn(z)− W̄ (z)−1Â(z)

= (Ŵ (z)−1 − W̄ (z)−1)Â(z) + Ŵ (z)−1(B̂(z)− Ŵ (z)ṙcn(z)), z ∈ I.

Using the above properties we obtain the following result. Recall that we assumed
that g is bounded, that ε has a finite third moment and that K is a symmetric
density with support [−1, 1].

Proposition 4.1. Suppose g is also bounded away from zero on I and the
kernel K is also Hölder. Then the uniform stochastic expansion

∥β̂ − ṙcn − W̄−1Â∥∗ = Op

( log n
nc

)
+ op(c

2
n)

holds.

Thus, under the assumptions of the proposition and cn ∼ n−1/4, we have the
expansion

sup
z∈I

|r̂(z)− r(z)− [1, 0, 0]W̄ (z)−1Â(z)| = op(n
−1/2).

Next, we investigate the magnitude of the process

Ĉ(z) = W̄−1(z)Â(z), z ∈ I.

Proposition 4.2. Suppose g is bounded away from zero on I and K has a
Hölder continuous second derivative. Then the map z 7→ Ĉ(z) is twice differentiable
and the following rates hold.

∥Ĉ∥∗ = Op

(( logn
ncn

)1/2)
,

∥cnĈ ′∥∗ = Op

(( logn
ncn

)1/2)
,

∥c2nĈ ′′∥∗ = Op

(( logn
ncn

)1/2)
.
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Proof. Note that

∥Ĉ∥∗ ≤ ∥W̄−1∥∗∥Â∥∗ = Op

(( log n
ncn

)1/2)
.

By the properties of the kernel K, the function z 7→ Ĉ(z) is twice continuously
differentiable with the first derivative given by

Ĉ ′(z) = W̄−1(z)Â′(z)− W̄−1(z)W̄ ′(z)W̄−1(z)Â(z)

and the second derivative given by

Ĉ ′′(z) = W̄−1(z)Â′′(z)− 2W̄−1(z)W̄ ′(z)W̄−1(z)Â′(z)

+ 2W̄−1(z)W̄ ′(z)W̄−1(z)W̄ ′(z)W̄−1(z)Â(z)− W̄−1(z)W̄ ′′(z)W̄−1(z)Â(z).

We write the matrix [cnÂ
′(z), c2nÂ

′′(z)] as

1

ncn

n∑
j=1

εjΨ
(Zj − z

cn

)
with Ψ = [(Kψ)′, (Kψ)′′]. By the assumption on K, the entries of Ψ are integrable
and Hölder. Thus we obtain from Lemma 4.2 that

∥cnÂ′∥∗ + ∥c2nÂ′′∥∗ = Op

(( logn
ncn

)1/2)
.

Rewrite the matrix [cnW̄
′(z), c2nW̄

′′(z)] as∫
g(u+ cnx)[V

′(x), V ′′(x)] dx

with V = Kψψ⊤. From this we conclude that ∥cnW̄ ′∥∗ + ∥c2nW̄ ′′∥∗ = O(1).
Combining the above we obtain

∥cnĈ ′∥∗ ≤ ∥W̄−1∥∗∥cnÂ′∥∗ + ∥W̄−1∥2∗∥cnW̄ ′∥∗∥Â∥∗
and

∥c2nĈ ′′∥∗ ≤ ∥W̄−1∥∗∥c2nÂ′′∥∗ + 2∥W̄−1∥2∗∥cnW̄ ′∥∗∥cnÂ′∥∗
+ 2∥W̄−1∥3∗∥cnW̄ ′∥2∗∥Â∥∗ + ∥W̄−1∥2∗∥c2nW̄ ′′∥∗∥Â∥∗.

This immediately yields the desired rates. �

We use Proposition 4.2 to obtain rates on the Hölder norms ∥Ĉ∥1,γ , 0 < γ < 1.

Since we can bound ∥Ĉ ′(s)− Ĉ ′(t)∥|s− t|−γ by ∥Ĉ ′′∥∗c1−γ
n for 0 < |s− t| ≤ cn and

by 2∥Ĉ ′∥∗c−γ
n for |t− s| > cn, we have the following result.

Proposition 4.3. Suppose the assumptions of Proposition 4.2 hold and 0 <
γ < 1. Then the rate

∥Ĉ∥1,γ = Op

(( log n

nc3+2γ
n

)1/2)
holds. In particular, for cn ∼ n−1/4 and γ < 1/2, one has

∥Ĉ∥1,γ = op(1).

The next result summarizes properties of the local quadratic smoother r̂ if the
bandwidth is proportional to n−1/4.
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Theorem 4.1. Suppose g is bounded away from zero on I, K has a Hölder
continuous second derivative and the bandwidth satisfies cn ∼ n−1/4. Then the
following hold with ĉ = [1, 0, 0]Ĉ the first coordinate of Ĉ.

(4.1) sup
z∈I

|r̂(z)− r(z)− ĉ(z)| = op(n
−1/2),

(4.2)

∫
I

ĉ2(z)g(z) dz = Op(n
−3/4),

and, for 0 < γ < 1/2,

(4.3) sup
z∈I

|ĉ(z)|+ sup
z∈I

|ĉ′(z)|+ sup
s,t∈I,s<t

|ĉ′(t)− ĉ′(s)|
|t− s|γ

= op(1).

Moreover, for any square-integrable functions v, v1, v2, . . . satisfying∫
I

(vn(z)− v(z))2 dz = o(1),

we have the expansion

(4.4)

∫
I

ĉ(z)vn(z)g(z) dz =
1

n

n∑
j=1

εj1[Zj ∈ I]v(Zj) + op(n
−1/2).

Proof. Claim (4.1) is a consequence of Proposition 4.1 and (4.3) of Proposi-
tion 4.3. Statement (4.2) follows from the bounds ∥W̄−1∥∗ = O(1) and

ncnE[∥Â(z)∥2] ≤ E[ε2]E
[ 3

cn
K2

(Z − z

cn

)]
≤ 3E[ε2]

∫
g(z + cnu)K

2(u) du

and the boundedness of g. Here we used ∥ψK∥2 ≤ 3K2.
In order to prove (4.4) we set

ṽn(z) = 1[z ∈ I]vn(z)g(z)[1, 0, 0]W̄
−1(z),

and

Vn(z) =

∫
ṽn(z − cnu)ψ(u)K(u) du and V (z) = 1[z ∈ I]v(z).

Then rewrite the left-hand side of (4.4) as

1

ncn

n∑
j=1

εj

∫
ṽn(z)ψ

(Zj − z

cn

)
K
(Zj − z

cn

)
dz =

1

n

n∑
j=1

εjVn(Zj).

Let Ψ =
∫
ψ(u)ψ⊤(u)K(u) du. Since the density g is bounded, it is square-

integrable. This and the translation continuity in L2 yield the convergence∫ ∥∥∥ ∫ g(z + cnu)ψ(u)ψ
⊤(u)K(u) du− g(z)Ψ

∥∥∥2 dz → 0.

Since g is bounded away from zero on I, we conclude from this that the map
z 7→ 1[z ∈ I]W̄−1(z) converges to the map z 7→ 1[z ∈ I](g(z)Ψ)−1 in Lebesgue
measure. An application of Lebesgue’s dominated convergence theorem now yields
that ṽn converges in L2 to ṽ, where

ṽ(z) = 1[z ∈ I]v(z)[1, 0, 0]Ψ−1.
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Using this, the identity ṽ(z)
∫
ψ(u)K(u) du = ṽ(z)Ψ[1, 0, 0]⊤ = 1[z ∈ I]v(z) =

V (z), and the translation continuity in L2, we derive

∆n =

∫
(Vn(z)− V (z))2 dz

=

∫
|
∫
ṽn(z − cnu)ψ(u)K(u) du− 1[z ∈ I]v(z)|2 dz

≤ 2

∫
∥ṽn(z)− ṽ(z)∥2 dz

∫
∥ψ(u)K(u)∥2 du

+ 2

∫
|
∫

(ṽ(z − cnu)− ṽ(z))ψ(u)K(u) du|2 dz = o(1).

From the above we conclude that n times the second moment of the difference∫
I

ĉ(z)vn(z)g(z) dz −
1

n

n∑
j=1

εjv(Zj) =
1

n

n∑
j=1

εj(Vn(Zj)− V (Zj))

equals E[ε2]E[(Vn(Z) − V (Z))2], which is bounded by a constant times ∆n. This
implies the desired (4.4). �

Remark 4.1. Let v̂ be an estimator of some square-integrable function v0.
Suppose there is a sequence of square-integrable functions vn such that∫

I

(v̂(z)− vn(z))
2 dz = o(n−1/4) and

∫
I

(vn(z)− v0(z))
2 dz = o(1).

Then under the assumption of the previous theorem the expansion∫
I

ĉ(z)v̂(z)g(z) dz =
1

n

n∑
j=1

εj1[Zj ∈ I]v0(Zj) + op(n
−1/2)

holds. This follows from (4.2), (4.4), the inequality∣∣∣ ∫
I

ĉ(z)(v̂(z)− vn(z))g(z) dz
∣∣∣2 ≤

∫
I

ĉ2(z)g(z) dz

∫
(v̂(z)− vn(z))

2g(z) dz

and the fact that g is bounded.

5. Estimating the error distribution in nonparametric regression

In this section we modify results from MSW (2007) to the case when the re-
gressor is not quasi-uniform. We begin by extending their Theorems 2.1 and 2.2.

Let ε be a random variable with distribution function F , and let Z be a k-
dimensional random vector with distribution Q, independent of ε. Let D be a
non-negative function in L2(Q), and D be a set of measurable functions a such
that |a| ≤ D and 0 ∈ D . Let V be a class of measurable functions from Rk into
[0, 1]. We now give conditions on the classes D and V that imply that the class

H = {ha,v,t : a ∈ D , v ∈ V , t ∈ R}
is F ⊗Q-Donsker, where

ha,v,t(ε, Z) = v(Z)1[ε− a(Z) ≤ t], a ∈ D , v ∈ V , t ∈ R.

For this we endow D with the L1(Q)-pseudo-norm. By an η-bracket for (D , L1(Q))
we mean a set [a, a] = [a ∈ D : a ≤ a ≤ a} where a and a belong to L1(Q) and
satisfy

∫
|a − a| dQ ≤ η. Recall that the bracketing number N[ ](η,D , L1(Q)) is
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the smallest integer m for which there are m η-brackets [a1, a1], . . . , [am, am] which
cover D in the sense that the union of the brackets contains D .

Proposition 5.1. Suppose that V is Q-Donsker. Assume that F has a finite
second moment and a bounded density and that the bracketing numbers satisfy

(5.1)

∫ 1

0

√
logN[ ](η2,D , L1(Q)) dη <∞.

Then H is F ⊗Q-Donsker.

Proof. Let ϕ be the projection map from R×Rk into Rk so that ϕ(ε, Z) = Z.

Since V is Q-Donsker, the class Ṽ = {v ◦ ϕ : v ∈ V } is F ⊗ Q-Donsker. Let
H1 = {ha,1,t : a ∈ D , t ∈ R} with ha,1,t(ε, Z) = 1[ε − a(Z) ≤ t]. It follows from

Theorem 2.1 of MSW (2007) that the class H1 is F ⊗Q is Donsker. Since Ṽ and
H1 are uniformly bounded (by 1) F ⊗ Q-Donsker classes, their pairwise product

Ṽ ·H1 = {ṽh : ṽ ∈ Ṽ , h ∈ H1} forms a F ⊗Q-Donsker class by Example 2.10.8 in

van der Vaart and Wellner (1996). This is the desired result as H equals Ṽ ·H1. �
Now consider a regression model

Y = r(Z) + ε

and independent copies (Yj , Zj) of (Y, Z). For an estimator r̂ of r define the resid-
uals ε̂j = Yj − r̂(Zj). Define the processes

Ŵ (t, v) =
1

n

n∑
j=1

v(Zj)1[ε̂j ≤ t], W (t, v) =
1

n

n∑
j=1

v(Zj)1[εj ≤ t], t ∈ R, v ∈ V .

Proposition 5.2. Let D and V be as in Proposition 5.1. Let V have envelope
1I for some compact convex set I with nonempty interior. Let F have a finite second
moment and a density f that is Hölder with exponent ξ ∈ (0, 1]. Additionally,
assume that there is an â such that

(5.2) P (â ∈ D) → 1,

(5.3)

∫
1I |â|1+ξ dQ = op(n

−1/2),

(5.4) sup
z∈I

|r̂(z)− r(z)− â(z)| = op(n
−1/2).

Then the uniform expansion

sup
t∈R,v∈V

∣∣∣Ŵ (t, v)−W (t, v)− f(t)

∫
â v dQ

∣∣∣ = op(n
−1/2)

holds.

Proof. Without loss of generality we may assume â is D-valued; otherwise
replace â by â1[â ∈ D ]. Let

W̃ (t, v) =
1

n

n∑
j=1

v(Zj)1[εj − â(Zj) ≤ t] and Wa(t, v) =

∫
F (t+a(z))v(z) dQ(z).

Then we can write

Ŵ (t, v)−W (t, v)− f(t)

∫
â v dQ = T1(t, v) + T2(t, v) + T3(t, v),
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where
T1(t, v) = Ŵ (t, v)− W̃ (t, v),

T2(t, v) = W̃ (t, v)−Wâ(t, v)−W (t, v) +W0(t, v),

T3(t, v) =Wâ(t, v)−W0(t, v)− f(t)

∫
â v dQ.

Since f is Hölder, say with constant Λ, we obtain that

|T3(t, v)| ≤
∫

1I |F (t+ â(z))− F (t)− f(t)â(z)| dQ(z)

≤ Λ

∫
1I(z)|â|1+ξ dQ = op(n

−1/2).

To deal with T1 and T2, we introduce the empirical process

νn(a, v, t) =
1√
n

n∑
j=1

v(Zj)
{
1[εj − a(Zj) ≤ t]−Wa(t, v)

}
=

1√
n

n∑
j=1

(
ha,v,t(εj , Zj)− E[ha,v,t(ε, Z)]

)
, a ∈ D , v ∈ V , t ∈ R,

associated with the Donsker class H . Then we have the identity

n1/2T2(t, v) = νn(â, v, t)− νn(0, v, t)

and the bound

|n1/2T1(t, v)| ≤ n1/2(W̃ (t+Rn, v)− W̃ (t−Rn, v))

≤ |νn(â, t+Rn, v)− νn(â, t−Rn, v)|

+ n1/2(Wâ(t+Rn, v)− Fâ(t−Rn, v)),

where Rn denotes the left-hand side of (5.4). Since f is Hölder, f is bounded and
F is Lipschitz with Lipschitz constant ∥f∥∞. Thus we obtain

(5.5) n1/2(Wâ(t+Rn, v)−Wâ(t−Rn, v)) ≤ 2∥f∥∞n1/2Rn = op(1).

Moreover, for s, t ∈ R and a, b ∈ D , we have the bound

E[(ha,v,s(ε, Z)− hb,v,t(ε, Z))
2] ≤ E[v2(Z)|F (s+ a(Z))− F (t+ b(Z))|]

≤ ∥f∥∞
(
|s− t|+ E[|a(Z)− b(Z)|]

)
.

In view of this and the stochastic equi-continuity of the empirical process, for every
η > 0 there is a δ > 0 such that, with P ∗ denoting outer measure,

sup
n
P ∗

(
sup

t∈R,a∈D,v∈V ,
∫
|a| dQ<δ

|νn(a, v, t)− νn(0, v, t)| > η
)
< η,

sup
n
P ∗

(
sup

a∈D,v∈V ,s,t∈R,|s−t|<δ

|νn(a, v, s)− νn(a, v, t)| > η
)
< η.

The first of these statements and (5.3) imply

sup
t∈R,v∈V

|T2(t, v)| = op(n
−1/2),

while the second, (5.4) and (5.5) imply

sup
t∈R,v∈V

|T1(t, v)| = op(n
−1/2).
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This completes the proof. �

Now fix a v0 in V and let v̂ denote an estimator of v0. Suppose this estimator
satisfies

(5.6) P (v̂ ∈ V ) → 1

and

(5.7)

∫
(v̂(z))− v0(z))

2 dQ(z) = op(1).

It follows that

(5.8) v̂∗ =
1

n

n∑
j=1

v̂(Zj) =

∫
v0 dQ+ op(1).

Moreover, under the assumptions of Proposition 5.2, the uniform expansion

sup
t∈R

∣∣∣Ŵ (t, v̂)−W (t, v̂)− f(t)

∫
â v̂ dQ

∣∣∣ = op(n
−1/2)

holds. We write W (t, v̂) = v̂∗F (t) + U(t, v̂), where

U(t, v) =
1

n

n∑
j=1

v(Zj)(1[εj ≤ t]− F (t)).

Note that the functions (y, z) 7→ v(z)(1[ε ≤ t]− F (t)) with v ∈ V and t ∈ R form
an F ⊗Q-Donsker class. Thus we find

sup
t∈R

∣∣∣W (t, v̂)− v̂∗F (t)− U(t, v0)
∣∣∣ = op(n

−1/2).

Combining the above yields the uniform expansion

sup
t∈R

∣∣∣Ŵ (t, v̂)− v̂∗F (t)−W0(t, v0)− f(t)

∫
â v̂ dQ

∣∣∣ = op(n
−1/2).

This finding is summarized in the following theorem.

Proposition 5.3. Suppose the assumptions of Proposition 5.2 are met and v̂
is an estimator which satisfies (5.6) and (5.7) for some v0 ∈ V with v̄0 =

∫
v0 dQ

positive. Then the uniform expansion

sup
t∈R

∣∣∣Ŵ (t, v̂)/v̂∗ − F (t)− U(t, v0)/v̄0 − f(t)

∫
âv̂ dQ/v̂∗

∣∣∣ = op(n
−1/2)

holds with v̂∗ as in (5.8).

Now assume that Z has dimension 1 with a density g that is bounded and
bounded away on the interval I = [a, b] with −∞ < a < b < ∞. We take D to be
the set of all functions h that vanish off I and satisfy

∥h∥1,1/4 = sup
z∈I

|h(z)|+ sup
z∈I

|h′(z)|+ sup
a≤s<t≤b

|h′(s)− h(t)|
|t− s|1/4

≤ 1.

Here we have to understand h′ as the derivative of the restriction of h to I so that
h′(a) is the right-hand derivative of h at a and h′(b) is the left-hand derivative at b.
It follows from Theorem 2.7.1 in van der Vaart and Wellner (1996) that the entropy
condition (5.1) holds as logN[ ](η

2,D , L1(Q)) is bounded by C(b − a)(1/η)8/5, for
some positive constant C. It follows from the results in the previous section that
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a local quadratic smoother with bandwidth cn ∼ n−1/4 and appropriate kernel K
satisfies the conditions (5.2) to (5.4) with â = ĉ and ξ > 1/3. Let V be the set of
indicator functions of intervals [l, u] with a ≤ l < u ≤ b. This is clearly a Donsker
class. Now take

v̂ = 1[l̂,û], vn = 1[ln,un] and v0 = 1[l0,u0]

with l0 < u0 interior points of I. Note that∫
(1[s,t](z)− 1[l,u](z))

2 dz ≤ |s− l|+ |t− u|.

We have the following result for the regression problem with a one-dimensional Z.

Theorem 5.1. Suppose Z has a bounded density that is bounded away from zero
on the interval I = [a, b], ε has mean zero, a finite third moment and a density f
that is Hölder with exponent greater than 1/3, the kernel K has a Hölder continuous
second derivative, the bandwidth satisfies cn ∼ n−1/4. the lower endpoints of the

above intervals satisfy l̂ = ln + op(n
−1/4) and ln → l0 and the upper endpoints

satisfy û = un + op(n
−1/4) and un → u0. Then the estimator

F̂ (t) =
1

N̂

n∑
j=1

1[l̂ ≤ Zj ≤ û]1[ε̂j ≤ t], t ∈ R,

with N̂ =
∑n

j=1 1[l̂ ≤ Zj ≤ û], satisfies the uniform expansion

sup
t∈R

∣∣∣F̂ (t)− F (t)− 1

n

n∑
j=1

1[l0 ≤ Zj ≤ u0]

P (l0 ≤ Z ≤ u0)

[
1[εj ≤ t]− F (t)) + f(t)εj

]∣∣∣ = op(n
−1/2).

6. Proof of Theorem 2.1

A key technical tool for proving Theorem 2.1 will be the use of two contiguity
results. For the sake of self-containment, we shall briefly review the notion of
contiguity of Le Cam (1960) and give the needed contiguity results that will be
used in the proof; see also Le Cam (1986) and Hájek and Šidák (1967).

Let (Ωn,An, {Pn, Qn}) be a sequence of binary experiments. Then Qn is con-
tiguous to Pn if for every sequence An, An ∈ An, Pn(An) → 0 implies Qn(An) → 0.
We say Pn and Qn are mutually contiguous if Qn is contiguous to Pn and Pn is
contiguous to Qn.

We now state a sufficient condition for contiguity of product measures. For
this we assume that (Ω,A , µ) is a measure space and {Γθ : θ ∈ Θ} is a family of
probability measures dominated by µ. Denote by γθ a density of Γθ with respect
to µ. Suppose there is a measurable function γ̇θ0 from Ω into θ0

⊥ such that ∥γ̇θ0∥
belongs to L2(µ) and

(6.1)

∫
(γ

1/2
θ − γ

1/2
θ0

− (θ − θ0)
⊤γ̇θ0)

2 dµ = o(∥θ − θ0∥2)

holds. Then the product measures Γn
θn

and Γn
θ0

are mutually contiguous whenever

n1/2(θn − θ0) is bounded. See, e.g., van der Vaart (1998).
We shall use this result first with

γθ(x.y) = γ1,θ(x, y) = f(y − ρ(θ⊤x)), x ∈ Rp, y ∈ R,
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and µ = G⊗ λ where G is the distribution of X and λ is the Lebesgue measure. It
follows from (R1), (R2) and (F2) that (6.1) holds with

γ̇θ0(x, y) =
−f ′(y − ρ(θ0

⊤x)

2f1/2(y − ρ(θ0
⊤x)

ρ′(θ0
⊤x)(Ip − θ0θ

⊤
0 )x.

Then we shall apply the result with

γθ(x, y) = γ2,θ(x, y) = f(y)gθ(x), x ∈ R, y ∈ R,

and µ = λ⊗λ. It follows from (G2) that (6.1) holds with γ̇θ0(x, y) = f1/2(y)ġθ0(x).

By the properties of θ̂ specified in (T), it suffices to prove the result with

θ̂ replaced by non-stochastic sequences θn such that n1/2(θn − θ0) is bounded.
This is a standard argument used in the construction of efficient estimators in
semiparametric models, see, e.g., Schick (1986) and references therein.

Now fix such a sequence θn and set

Sn,j = θ⊤nXj , δn,j = 1[Sn,j ∈ I(θn)] and εn,j = Yj − ϱ(Sn,j)

for j = 1, . . . , n. Let ϱ̃ denote the local linear smoother associated with minimizing

1

nbn

n∑
j=1

(
Yj − β0 − β1

Sn,j − s

bn
− β2

(Sn,j − s

bn

)2)2

K
(Sn,j − s

bn

)
.

Moreover, we introduce

F̃ (t) =

∑n
j=1 1[l̃n ≤ Snj ≤ ũn]1[Yj − ϱ̃(Snj) ≤ t]∑n

j=1 1[l̃n ≤ Snj ≤ un]
,

with l̃n = ϕn,l(Sn,1, . . . , Sn,n, θn) and ũn = ϕn,u(Sn,1, . . . , Sn,n, θn) and set

W̃n(t) =
1

n

n∑
j=1

w(Sn,j)
[
1[εn,j ≤ t]− F (t))− f(t)εn,j

]
, t ∈ R.

We achieve our goal by verifying the uniform stochastic expansions

(6.2) sup
t∈R

∣∣∣F̃ (t)− F (t)− W̃n(t)
∣∣∣ = op(n

−1/2)

and

(6.3) sup
t∈R

|W̃n(t)−Wn(t)| = op(n
−1/2).

To stress dependence on the parameter θ0 we now write Pθ for the underlying
probability measure when θ0 = θ and write Pn,θ for the joint distribution of the
data X1, Y1, . . . , Xn, Yn under Pθ, for each θ ∈ Θ. It follows from the above that
the sequences of distributions Pn,θn and Pn,θ0 are mutually contiguous. Thus it
suffices to prove (6.2) under the measure Pθn . Under the measure Pθn , we have

Yj = ϱ(Sn,j) + εn,j , j = 1, . . . , n,

and derive that that the left-hand side of (6.2) is a function of the random vectors
(εn,1, Sn,1)

⊤, . . . , (εn,n, Sn,n)
⊤. Under Pθn these variables are independent with

common density γ2,θn . By another contiguity argument is thus suffices to prove (6.2)
under the assumption that the random vectors (εn,1, Sn,1)

⊤, . . . , (εn,n, Sn,n)
⊤ are

independent with density γ2,θ0 . The desired (6.2) then follows from Theorem 5.1.
Note that the distribution of the process defined by the first average in (6.3)

under the measure Pθn equals the distribution of the process defined by the second
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average in (6.3) under Pθ0 . Thus, by contiguity, the difference of these two processes
is tight under Pθ0 . It suffices to prove (6.3) without the supremum, but for all t in
R. Fix such a t. We are left to verify

(6.4)
1

n

n∑
j=1

hθn(Xj , Yj)−
1

n

n∑
j=1

hθ0(Xj , Yj) = op(n
−1/2)

with

hθ(X,Y ) = w(θ⊤X)
{
1[Y − ρ(θ⊤X) ≤ t]− F (t) + f(t)(Y − ρ(θ⊤X)).

Using the translation continuity in L2, we verify∫∫ ∣∣∣hθ(x, y)√γ1,θ(x, y)− hθ0(x, y)
√
γ1,θ0(x, y)

∣∣∣2 dG(x)dy → 0

as θ → θ0. With ℓ = −f ′/f the score function for location, we verify

Dθ0 = −
∫∫

hθ0(x, y)ℓ(y − ϱ(θ0
⊤x))ϱ′(θ0

⊤x)(Ip − θ0θ
⊤
0 )xγ1,θ0(x, y) dG(x)dy

= −E
[
(1[ε ≤ t]− F (t) + f(t)ε)ℓ(ε)

]
E
[
w(θ⊤0 X)ϱ′(θ⊤0 X)(Ip − θ0θ

⊤
0 )X

]
= 0,

because the first expectation in the product equals −f(t)− 0+ f(t) = 0. Since the
densities γ1,θ are Hellinger differentiable at θ0 with Hellinger derivative

κθ0(x, y) = ℓ(y − ϱ(θ0
⊤x))ϱ′(θ0

⊤x)(Ip − θ0θ
⊤
0 )x,

as shown above, the claim (6.4) follows from Theorem 2.3 in Schick (2001), which
extends to the present parameter set Θ. His result is stated for open subsets of Rp.
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