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Abstract. We consider semiparametric additive regression models with a linear para-
metric part and a nonparametric part, both involving multivariate covariates. For the
nonparametric part we assume two models. In the first, the regression function is unspeci-
fied and smooth; in the second, the regression function is additive with smooth components.
Depending on the model, the regression curve is estimated by suitable least squares meth-
ods. The resulting residual-based empirical distribution function is shown to differ from
the error-based empirical distribution function by an additive expression, up to a uniformly
negligible remainder term. This result implies a functional central limit theorem for the
residual-based empirical distribution function. It is used to test for normal errors.
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1. Introduction and Main Results

This article considers the partly linear regression model

Y = ϑ>U + ρ(X) + ε,

where the error ε has mean zero, finite variance and a density f , and is independent of
the covariate pair (U,X), with U a p-dimensional random vector and X a q-dimensional
random vector. We assume two different models for the nonlinear part ρ of the regression
function.

Model 1: The function ρ is smooth.

Model 2: The function ρ is additive, ρ(x) = ρ1(x1)+ · · ·+ρq(xq), with smooth components
ρ1, . . . , ρq.

We are interested in estimating the error distribution function F (t) by a residual-based
empirical distribution function F̂(t) = (1/n)

∑n
j=1 1[ε̂j ≤ t] based on n independent copies

(U1, X1, Y1), . . . , (Un, Xn, Yn) of (U,X, Y ). The residuals are of the form

ε̂j = Yj − ϑ̂>Uj − ρ̂(Xj), j = 1, . . . , n,
1
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where ϑ̂ is some
√
n-consistent estimator of ϑ and ρ̂ is an appropriate estimator based

on the covariates Xj and the “observations” Yj − ϑ̂>Uj . In Model 1 we estimate ρ by
local polynomial smoothers, and in Model 2 we estimate ρ1, . . . , ρq by orthogonal series
estimators. We show that, in both models, the residual-based empirical distribution function
F̂(t) differs from the error-based empirical distribution function F(t) = (1/n)

∑n
j=1 1[εj ≤ t]

by an additive expression, up to a uniformly negligible remainder term,

(1.1) sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)
1
n

n∑
j=1

εj

∣∣∣ = op(n−1/2).

This immediately implies a functional central limit theorem for the residual-based empirical
distribution function.

Most of the literature on this problem is concerned with cases in which the regression
function is parametric, in particular with linear regression, and in which ρ is not there. We
refer to Koul (1969, 1970, 2002), Durbin (1973), Loynes (1980), Shorack (1984), and, for
increasing dimension of ϑ, to Portnoy (1986) and Mammen (1996). Parametric regression
functions are easier to handle since the finite-dimensional regression parameter ϑ can be
estimated at the root-n rate. If a nonparametric regression function ρ is involved, different
arguments are needed to obtain a stochastic expansion, and hence the root-n rate, and
asymptotic normality for the residual-based empirical distribution function.

For heteroscedastic nonparametric regression and one-dimensional covariate, Akritas
and Van Keilegom (2001) give a functional central limit theorem for a residual-based em-
pirical distribution function. Neumeyer and Van Keilegom (2010) treat multivariate covari-
ates. A related result for the homoscedastic case is given by Cheng (2005) who uses separate
parts of the sample for estimating the regression function and the error distribution func-
tion, and also estimates the error density. Kiwitt et al. (2008) assume linear constraints on
the error distribution and obtain an improved residual-based empirical distribution func-
tion. Müller et al. (2009b) consider multivariate covariates and estimate the regression
function by local polynomial smoothers. A related result for nonparametric autoregression
and one-dimensional covariate is in Müller et al. (2009a).

Müller et al. (2007) consider the partly linear regression model above, but only for one-
dimensional X. They use a local linear smoother for the regression function. Here we
follow the approach from that paper, but, in order to handle the more complex case when
X is a random vector, we use local polynomial smoothers as in Müller et al. (2009b). In
the one-dimensional case both methods can be used. Which one to choose will depend on
the smoothness assumptions about the regression function and the error distribution one
is willing to make. For more explanations we refer to Müller et al. (2009b), in particular
to their Remark 5. In the following we will refer to the above two papers as MSW1 and
MSW2.

We make the following standard assumptions on U and X.

(G) The distribution G of X is quasi-uniform on C = [0, 1]q in the sense that G(C ) = 1
and has a density g that is bounded and bounded away from zero on C .
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(H) The covariate vector U satisfies E[|U |2] < ∞ and the matrix E[(U − µ(X))(U −
µ(X))>] is positive definite, where µ(X) = E(U |X).

In Theorem 2.1 we prove expansion (1.1) for Model 1, using a local polynomial smoother
whose degree depends on the dimension of the covariate. This generalizes Theorem 1 of
MSW2 from the nonparametric regression model to the partly linear regression model; the
proof follows in part that of MSW2. Also note that our Theorem 2.1 yields Theorem 1.1
in MSW1 where we study the partly linear regression model with ρ = ρ1. An alternative
approach could be based on orthogonal series estimators. We demonstrate this approach
in Theorem 4.1 for the additive Model 2, where we use orthogonal series estimators for the
components ρ1, . . . , ρq of ρ; this requires a different proof.

In the case of a one-dimensional covariate X the two models coincide and we have an
alternative estimator for Model 1. Theorem 2.1 allows weaker smoothness assumptions
on ρ at the expense of stronger moment assumptions on the error variable. In turn, for
a twice continuously differentiable ρ, Theorem 4.1 improves on Theorem 2.1 by relaxing
the moment assumptions on the error variable and removing the extra conditions on the
conditional moments of U given X.

There are two reasons why we chose to estimate ρ in Model 2 by a series estimator.
First of all, we wanted to demonstrate an approach that is not only new in this context but
also rather convenient: we can work with an orthonormal basis for the space of (square-
integrable) additive functions to approximate the additive function ρ (which is straightfor-
ward using least squares estimators for the coefficients). Secondly, we are interested in an
accurate estimator of the error distribution function, that is, in a (residual-based) estimator
F̂ that has the asymptotic expansion (1.1). The series estimator accomplishes this under
weak assumptions.

The components of the regression function in additive regression models can be esti-
mated in several other ways. Stone (1985) uses an additive spline estimator. The backfitting
method of Breiman and Friedman (1985), and Buja et al. (1987), estimates the additive
components one by one and iterates this procedure. The marginal integration method of
Newey (1994), Tjøstheim and Auestad (1994), and Linton and Nielsen (1995) starts with
an estimator for a multivariate nonparametric regression function and obtains estimators
for the additive components by integrating out all but one of the variables, usually with
empirical estimators based on the remaining components of the covariates. Linton (1997)
uses marginal integration to provide an initial estimator, and then a single backfitting step.
See also Fan et al. (1998), and Mammen et al. (1999). The estimators are compared by
Sperlich et al. (1999), Delecroix and Protopopescu (2000), and Dette et al. (2005).

Residual-based empirical distribution functions can be used for a number of different
purposes. Using a result of Gill (1989) on compact differentiability of quantile functions,
we obtain an approximation for the residual-based empirical quantile function, uniformly
over bounded intervals: For 0 < α < β < 1,

sup
α≤u≤β

∣∣∣ F̂−1(u)− F−1(u) +
1
n

n∑
j=1

(1[εj ≤ F−1(u)]− u

f(F−1(u))
+ εj

)∣∣∣ = op(n−1/2).
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Residual-based empirical distribution functions can also be used to test various hypothe-
ses about regression models. Tests for parametric hypotheses about the regression function
are considered in nonparametric regression by Stute (1997) and Khmaladze and Koul (2004,
2009). Tests for a parametric regression function and for additivity in heteroscedastic non-
parametric regression are studied in Van Keilegom et al. (2008), and in Neumeyer and Van
Keilegom (2010), respectively. In Section 3 we use Theorem 2.1 to test for normality of the
errors.

It is straightforward to adapt our results to the heteroscedastic model Y = ϑ>U +
ρ(X) + σ(U,X)η, with a standardized error variable η and a conditional variance function
σ2(U,X), and work with residuals that involve an estimator of the conditional variance,
ε̂j = [Yj − ϑ̂>Uj − ρ̂(Xj)]/σ̂(U,X). For the proofs it would be convenient to make the usual
assumption that the conditional variance function is bounded and bounded away from zero.

Our paper is organized as follows. In Section 2 we treat Model 1. The key result is The-
orem 2.1, which gives the uniform stochastic expansion (1.1) of the residual-based empirical
distribution function F̂ when the nonlinear part of the regression function is estimated by a
local polynomial smoother. A test for normality of errors is discussed in Section 3. In Sec-
tion 4 we treat Model 2. As explained there, this covers the purely nonparametric additive
regression model. In contrast to Section 2 we now use orthogonal series estimators for the
additive components of the regression function, based on the trigonometric basis. The main
result is Theorem 4.1. The assertion is the same as in Theorem 2.1, i.e. expansion (1.1) for
the corresponding residual-based empirical distribution function. We also address testing
for normality of errors, which can be done analogously to Section 3. The performance of
the test is investigated with a small simulation study. Theorem 4.1 is based on a technical
result of independent interest, Proposition 4.1. The proofs of Theorems 2.1 and 4.1 and of
Proposition 4.1 are in Sections 5–7.

2. Estimating the error distribution in Model 1

In this section we treat the model

Y = ϑ>U + ρ(X) + ε,

where the error ε has mean zero and finite variance σ2, and is independent of the covariate
pair (U,X), with U a p-dimensional random vector, ϑ ∈ Rp an unknown parameter vector,
ρ an unknown smooth function, and X a q-dimensional random vector.

For a non-negative integer m and a γ ∈ (0, 1] we introduce the Hölder space H(m, γ) as
follows. A function h from C to R belongs to H(m, γ) if it has continuous partial derivatives
up to order m and the partial derivatives of order m are Hölder with exponent γ.

Let ϑ̂ denote a
√
n-consistent estimator of ϑ. Such estimators exist, as shown in Schick

(1996). We assume that the function ρ belongs to H(m, γ), and estimate it by a local
polynomial smoother of degree m; see Stone (1980, 1982), and Ruppert and Wand (1994)
for general results on multivariate local polynomial smoothers. Such estimators were used
in MSW2 in the case ϑ = 0, i.e., for the nonparametric regression model. Since ϑ is not zero
here, we need to work with the difference Yj − ϑ̂>Uj instead of the response variable Yj .
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In order to define the local polynomial smoother we introduce some notation. By a
multi-index we mean a q-dimensional vector i = (i1, . . . , iq) whose components are non-
negative integers. For a multi-index i let ψi denote the function on Rq defined by

ψi(x) =
xi1

1

i1!
· · · x

iq
q

iq!
, x = (x1, . . . , xq) ∈ Rq.

Set i• = i1 + · · ·+ iq. Let I(m) denote the set of multi-indices i with i• ≤ m, and J(m) the
set of multi-indices i with i• = m. Now fix densities w1, . . . , wq and set

w(x) = w1(x1) · · ·wq(xq), x = (x1, . . . , xq) ∈ Rq.

Let cn be a bandwidth. Then the local polynomial smoother ρ̂ (of degree m) is defined as
follows. For a fixed x in C , the estimator ρ̂(x) is the component β̂0(x) corresponding to the
multi-index 0 = (0, . . . , 0) of a minimizer

β̂(x) = arg min
β=(βi)i∈I(m)

n∑
j=1

w
(Xj − x

cn

)(
Yj − ϑ̂>Uj −

∑
i∈I(m)

βiψi

(Xj − x

cn

))2

.

For j = 1, . . . , n we estimate the error εj by the residual

ε̂j = Yj − ϑ̂>Uj − ρ̂(Xj).

We prove Theorem 2.1 under the assumption that the function ρ is smooth in the sense
that it belongs to the Hölder space H(m, γ) with smoothness parameter s = m+ γ greater
than 3q/2. This means that if the dimension q of the covariate vector X is high then we
need more partial derivatives for ρ than in the low-dimensional case. The reason for the
smoothness assumption is a technical one. Our proof relies on arguments from empirical
process theory: the class 1(ε ≤ t), t ∈ R, is Donsker, but typically not anymore if ε is
replaced by a residual ε̂. Smoothness of ρ is necessary to cope with the random shift
ε̂ − ε (which is done by verifying equation (5.1) in Section 5). This is more difficult if
the dimension of the covariate vector is high. Here we handle the shift by working with
polynomial smoothers of degree m. This requires that the aforementioned smoothness
condition on ρ is satisfied. Further details are given in Remark 2.2 below. The proof of
Theorem 2.1 is in Section 5.

Theorem 2.1. Suppose (G) and (H) hold, ‖U‖ has a moment greater than 2, µ is
continuous and τg is bounded, where µ(X) = E(U |X) and τ(X) = E(|U |2|X). Suppose
that ρ belongs to H(m, γ) with s = m+ γ > 3q/2. Let the error density f have mean zero,
a finite moment of order greater than 4s/(2s − q), and be Hölder with exponent greater
than q/(2s − q). Let ϑ̂ be a

√
n-consistent estimator of ϑ. Let the densities w1, . . . , wq be

(q + 2) times continuously differentiable with compact support [−1, 1]. Choose a bandwidth
cn ∼ (n log n)−1/(2s). Then the uniform stochastic expansion

sup
t∈R

∣∣∣ 1
n

n∑
j=1

1[ε̂j ≤ t]− 1
n

n∑
j=1

1[εj ≤ t]− f(t)
1
n

n∑
j=1

εj

∣∣∣ = op(n−1/2)

holds.
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Remark 2.1. We should point out that 4s/(2s−q) < 3 and q/(2s−q) < 1/2 if s > 3q/2.
Thus the assumptions on the error density f are satisfied if f has mean zero, a finite third
moment, and is Hölder with exponent 1/2. The Hölder condition is met by all densities
with finite Fisher information for location.

Remark 2.2. The use of local polynomial smoothers allows us to construct estimators
of ρ that possess a sufficiently fast rate of uniform convergence, are sufficiently smooth, and
have a bias that is uniformly of order o(n−1/2). To obtain these properties we need sufficient
smoothness of the regression function to control the bias, and a sufficiently large bandwidth
for good uniform accuracy. The rate of this accuracy is of order an = (log n/(ncq))−1/2

and needs to satisfy a1+ξ
n = o(n−1/2) with ξ the Hölder exponent of f . To control the bias

we need cs = o(n−1/2). We were able to meet these goals with the smoothness condition
s > 3q/2 on the regression function ρ and the bandwidth choice in the theorem under a
mild moment assumption on f and a fairly small ξ.

Our smoothness requirements are less stringent than those of Neumeyer and Van Keile-
gom (2010) in the nonparametric heteroscedastic regression model. They require the regres-
sion function to have uniformly continuous partial derivatives of order ν with ν− 1 > 3q/2,
see their (C4) and the comment after their (C5). In addition, they require the density of
X to have continuous partial derivatives of order 2q, see their (C3), and impose stronger
smoothness assumptions on f in their (C5).

In Section 3 we introduce a test for normality of the errors. The test requires a uniform
expansion of the empirical distribution function based on normalized residuals, which now
involve estimators of σ. The expansion is a result of separate interest and derived in the
following Remark 2.3, using Theorem 2.1.

Remark 2.3. Let us now assume that ε = σZ, where Z has mean zero, variance one,
and a finite fourth moment. Let f∗ and F∗ denote the density and distribution function of
Z. Then f(x) = f∗(x/σ)/σ and F (x) = F∗(x/σ). We want to estimate F∗. The obvious
estimator is the empirical distribution function based on the normalized residuals Ẑj = ε̂j/σ̂,
where σ̂ is the square root of (1/n)

∑n
j=1 ε̂

2
j . The resulting estimator of F∗ is

F̂∗(t) =
1
n

n∑
j=1

1[Ẑj ≤ t] = F̂(σ̂t), t ∈ R,

with F̂(t) = (1/n)
∑n

j=1 1[ε̂j ≤ t] as in Theorem 2.1. Under the above moment conditions,
and the conditions of Theorem 2.1 (other than those on f), we have

σ̂2 =
1
n

n∑
j=1

ε2j + op(n−1/2) = σ2
(
1 +

1
n

n∑
j=1

(Z2
j − 1)

)
+ op(n−1/2).

From this we conclude

S =
σ̂ − σ

σ
=

σ̂2 − σ2

(σ̂ + σ)σ
=

1
n

n∑
j=1

Z2
j − 1
2

+ op(n−1/2).
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Set ε̄ = (1/n)
∑n

j=1 εj . We can write

F̂∗(t) = F(σt) + f∗(t)
1
n

n∑
j=1

(
Zj + t

Z2
j − 1
2

)
+
(
F̂(σ̂t)− F(σ̂t)− f(σ̂t)ε̄

)
+
(
F(σ̂t)− F (σ̂t)− F(σt) + F (σt)

)
+
(
F∗((1 + S)t)− F∗(t)− Stf∗(t)

)
+
(
f∗((1 + S)t)− f∗(t)

) 1
n

n∑
j=1

Zj + tf∗(t)
(
S − 1

n

n∑
j=1

Z2
j − 1
2

)
.

Thus we obtain the uniform expansion

sup
t∈R

∣∣∣ 1
n

n∑
j=1

1[Ẑj ≤ t]− 1
n

n∑
j=1

1[Zj ≤ t]− f∗(t)
1
n

n∑
j=1

(
Zj + t

Z2
j − 1
2

)∣∣∣ = op(n−1/2)

under the assumptions of Theorem 2.1, with the assumptions on f replaced by the assump-
tions that the density f∗ has mean zero, variance one, a finite fourth moment, is Hölder with
exponent greater than q/(2s− q), and the function t 7→ tf∗(t) is uniformly continuous. The
expansion agrees with that of Theorem 2.1 in Neumeyer and Van Keilegom (2010) obtained
for the model Y = ρ(X) + σ(X)Z in the case of a constant σ.

3. Testing for normality of the errors

Let us keep the notation from Remark 2.3 and write φ and Φ for the standard normal
density and distribution function, respectively. The result in Remark 2.3 can be used to test
whether the errors have a normal distribution: the expansion for F̂∗(t) implies a functional
central limit theorem, and therefore yields the null limit distribution for statistics based on
it. In terms of the density f∗, the null hypothesis is

H0 : f∗(x) = φ(x) = exp(−x2/2)/
√

2π, x ∈ R.

Possible test statistics are the Kolmogorov–Smirnov statistic

TKS = sup
t∈R

n1/2|F̂∗(t)− Φ(t)|

and the Cramér–von Mises statistic

TCM = n

∫ (
F̂∗(t)− Φ(t)

)2
φ(t) dt.

We prefer to work with a martingale transform test statistic. This has the advantage that
the limiting distribution does not depend on features of the unknown distribution F , which
otherwise would have to be estimated. Our proposed statistic is

TMT = sup
t∈R

n1/2
∣∣∣F̂∗(t)− ∫ t

−∞
h>(x)Γ−1(x)

∫ ∞

x
h(y) dF̂∗(y) φ(x) dx

∣∣∣,
where

h(x) = (1, x, x2 − 1)> =
(
1,−φ′(x)/φ(x),−(xφ(x))′/φ(x)

)>
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and
Γ(x) =

∫ ∞

x
h(z)h>(z)φ(z) dz.

This is a version of the test statistic studied in Khmaladze and Koul (2009) for nonpara-
metric regression, adapted to testing for normality. One calculates that

Γ(x) =

1− Φ(x) φ(x) xφ(x)
φ(x) 1− Φ(x) + xφ(x) (x2 + 1)φ(x)
xφ(x) (x2 + 1)φ(x) 2(1− Φ(x)) + (x3 + x)φ(x)

 .
Since the last two coordinates of h are the score function for location and scale at the param-
eter value (0, 1) in the normal location-scale model, respectively, it follows from Khmaladze
and Koul (2009, Remark 4.2) that, under the null hypothesis, TMT converges in distribution
to B∗ = sup0≤t≤1 |B(t)|, where B is a standard Brownian motion. Our test for normality
of errors rejects the null hypothesis if TMT exceeds the (1− α)-quantile of the distribution
of B∗. The asymptotic size of the test is therefore α.

If we set

H(t) =
∫ t

−∞
h>(x)Γ−1(x)φ(x) dx,

then we can write

TMT = sup
t∈R

n1/2
∣∣∣F̂∗(t)− 1

n

n∑
j=1

H(t ∧ Ẑj)h(Ẑj)
∣∣∣.

Remark 3.1. The above test can easily be extended to testing the null hypothesis
H0 : F∗ = F0 for some fixed distribution F0 with finite Fisher information for location and
scale. In this case one has to work with h(x) =

(
1,−f ′0(x)/f0(x),−(xf0(x))′/f0(x)

)>.
Martingale transform tests for a parametric form of the error distribution in het-

eroscedastic regression are considered by Mora and Pérez-Alonso (2009). Bootstrap tests
for parametric models of the error distribution in nonparametric regression are studied by
Neumeyer et al. (2006) and by Heuchenne and Van Keilegom (2010).

4. Estimating the error distribution in Model 2

Now consider the model
Y = ϑ>U + ρ(X) + ε,

where ρ is an additive regression function,

ρ(x) = ρ1(x1) + · · ·+ ρq(xq), x = (x1, . . . , xq) ∈ C ,

with twice continuously differentiable components ρ1, . . . , ρq. Again we assume that the
error variable ε has mean zero and finite variance, and that it is independent of the covariate
pair (U,X), with U a p-dimensional random vector and X a q-dimensional random vector.
We estimate ρ1, . . . , ρq by orthogonal series estimators. Properties of such series estimators
for semiparametric regression models are studied by Eubank et al. (1990), Andrews (1991),
Donald and Newey (1994), Eubank (1999), Li (2000), and Delecroix and Protopopescu
(2001).
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Write r for the regression function,

r(u, x) = ϑ>u+ ρ(x), u ∈ Rp, x ∈ C .

For i = 1, . . . , q and j = 1, 2, . . . , let ψij denote the function defined by

ψij(x) =
√

2 cos(jπxi), x = (x1, . . . , xq)> ∈ C .

Note that the functions 1 and ψij for i = 1, . . . , q and j = 1, 2, . . . form an orthonormal basis
of the space of additive and square-integrable functions on C . It follows from assumption
(G) that

(4.1) g∗

∫
C
h2(x) dx ≤

∫
h2(x) dG(x) ≤ g∗

∫
C
h2(x) dx

where g∗ > 0 and g∗ < ∞ are the infimum and supremum of g on C . This shows that
the functions 1 and ψij for i = 1, . . . , q and j = 1, 2, . . . form a Hilbert space basis of the
additive G-square-integrable functions. Let Q denote the joint distribution of U and X,
and set

ψm = (1, ψ11, . . . , ψ1m, . . . , ψq1, . . . , ψqm)>.
For large m, the regression function r is well approximated by rm, its projection in L2(Q)
onto the linear space Lm that consists of the functions

(u, x) → c>u+ a>ψm(x)

with c ∈ Rp and a ∈ R1+qm. Indeed, we have

(4.2) E[(r(U,X)− rm(U,X))2] = O(m−3).

This follows from the calculations

E[(r(U,X)− rm(U,X))2] = inf
c,a
E[(r(U,X)− c>U − a>ψm(X))2]

≤ E[(ρ(X)− α>ψm(X))2]

≤ g∗
∫

C

(
ρ(x)− α>ψm(x)

)2
dx

= g∗
q∑

i=1

∫ 1

0

(
ρi(t)− ρ̄i −

m∑
j=1

αijψij(t)
)2
dt,

where α = (ρ̄1+· · ·+ρ̄q, α11, . . . , α1m, . . . , αq1, . . . , αqm)> is the vector of Fourier coefficients

ρ̄i =
∫ 1

0
ρi(t) dt and αij =

∫
C
ρ(x)ψij(x) dx =

∫
ρi(t)

√
2 cos(jπt) dt.

Twice integrating by parts yields the formula

(jπ)2
∫ 1

0
h(t) cos(jπt) dt = (−1)jh′(1)− h′(0)−

∫ 1

0
h′′(t) cos(jπt) dt, j = 1, 2, . . . ,

for every twice continuously differentiable function h defined on [0, 1]. The desired result is
now immediately apparent.
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We can write Lm = {b>hm : b ∈ Rp+1+qm}, where

hm(u, x) = (u>, ψ>m(x))>.

The projection rm is of the form β>mhm. We estimate βm by the least squares estimator

β̂m = arg min
β

n∑
j=1

(
Yj − β>hm(Uj , Xj)

)2
.

The resulting estimator of r is then r̂ = β̂>mhm, yielding the residuals

ε̂j = Yj − β̂>mhm(Uj , Xj), j = 1, . . . , n.

In our asymptotics we assume that m = mn increases with the sample size. The proof of
the next theorem is in Section 6.

Theorem 4.1. Suppose that (G) and (H) hold, that ε has mean zero and finite variance,
and that its density f is Hölder with exponent ξ greater than 1/3. Assume ρ is additive with
twice continuously differentiable components ρ1, . . . , ρq. Let m be of the form m = mn ∼
n1/4. Then the uniform stochastic expansion

sup
t∈R

∣∣∣ 1
n

n∑
j=1

1[ε̂j ≤ t]− 1
n

n∑
j=1

1[εj ≤ t]− f(t)
1
n

n∑
j=1

εj

∣∣∣ = op(n−1/2)

holds.

Remark 4.1. The above approach is easily modified to cover the nonparametric additive
regression model, which corresponds to Model 2 with ϑ = 0. One now works with the
residuals ε̂j = Yj − β̂>mψm(Xj) where β̂m minimizes

n∑
j=1

(Yj − β>ψm(Xj))2.

Since the covariate U is not present, we no longer need to impose condition (H). We obtain
the conclusion of Theorem 4.1 under the other assumptions of this theorem.

Remark 4.2. As in Remark 2.3 let us now assume that ε = σZ, where Z has mean zero,
variance one, and a finite fourth moment. Let f∗ and F∗ denote the density and distribution
function of Z. The obvious estimator of F∗ is the empirical distribution function

F̂∗(t) =
1
n

n∑
j=1

1[Ẑj ≤ t], t ∈ R,

based on the normalized residuals Ẑj = ε̂j/σ̂, where σ̂ is the square root of (1/n)
∑n

j=1 ε̂
2
j .

Proceeding as in Remark 2.3 we derive the uniform expansion

sup
t∈R

∣∣∣ 1
n

n∑
j=1

1[Ẑj ≤ t]− 1
n

n∑
j=1

1[Zj ≤ t]− f∗(t)
1
n

n∑
j=1

(
Zj + t

Z2
j − 1
2

)∣∣∣ = op(n−1/2)
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under the assumptions of Theorem 4.1, with the assumptions on f replaced by the assump-
tions that the density f∗ has mean zero, variance one, a finite fourth moment, and is Hölder
with exponent greater than 1/3, and that the function t 7→ tf∗(t) is uniformly continuous.

Remark 4.3. The result from the previous remark can be used as in Section 3 to derive
a test of normality. In terms of the density f∗ the null hypothesis is H0 : f∗ = φ, where φ
is the standard normal density. The martingale transform test statistic for normality again
has the form

TMT = sup
t∈R

n1/2
∣∣∣ 1
n

n∑
j=1

1[Ẑj ≤ t]− 1
n

n∑
j=1

H(t ∧ Ẑj)h(Ẑj)
∣∣∣.

where h and H are defined in Section 3. Its limiting distribution under the null hypothesis
is that of sup0≤t≤1 |B(t)|, where B is a standard Brownian motion.

We performed a small simulation study for the model Y = ρ(X1, X2) + ε, where ρ has
two additive terms, ρ(x1, x2) = ρ1(x1)+ρ2(x2), which we estimate with our proposed series
estimator. For the simulations we chose ρ(X1, X2) = X1 +X2 (Table 1) and ρ(X1, X2) =
e−X1+

√
1 +X2

2 (Table 2), with independent uniformly distributed covariatesX1 andX2. In
order to test for normality of the errors we consider, firstly, the case when the errors indeed
come from a normal distribution. Secondly, we studied four scenarios under the alternative
hypothesis, a t-distribution with 5 degress of freedom; a centered chi-square distribution
with five degrees of freedom; a double-exponential distribution with scale parameter 1; and
a mixture of two normal distributions, where the first has mean -5 and standard deviation 1
and is given weight 1/3 and the second has mean 2.5 and standard deviation 2 and is given
weight 2/3. We considered samples of size n = 50 and 100, for which the choice of m = 2, 3
or 4 basis functions seems to be reasonable, and a 5% significance level α. The quantiles
are evaluated numerically, using the formula provided in Shorack and Wellner (2009; page
34, equation (7)). The (upper) 5% quantile is 2.2414, i.e. the null hypothesis is rejected if
TMT > 2.2414. (The quantiles for α = 0.01 and α = 0.1 are 2.807 and 1.960, respectively.)

In Tables 1 and 2 we give the proportion of tests (based on 1000 replications) that
reject the null hypothesis. The test appears to be slightly conservative: the rejection rate
under the null hypothesis, which is given in row (a) in both tables, is always below α =

Table 1. Tests for normal errors: Simulation results for ρ(X1, X2) = X1 +X2

n = 50 n = 100
F m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
(a) standard normal 0.027 0.032 0.030 0.030 0.040 0.026
(b) standard t(5) 0.214 0.208 0.173 0.359 0.355 0.320
(c) centered chi-square(5) 0.493 0.464 0.426 0.784 0.771 0.739
(d) double-exponential 0.290 0.244 0.198 0.505 0.467 0.425
(e) normal mixture 0.052 0.043 0.020 0.707 0.596 0.525

The figures are the proportions of tests that reject the null hypothesis in 1000
trials.
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Table 2. Tests for normal errors: Simulation results for ρ(X1, X2) = e−X1 +
√

1 +X2
2 .

n = 50 n = 100
F m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
(a) standard normal 0.034 0.037 0.034 0.044 0.041 0.035
(b) standard t(5) 0.205 0.193 0.165 0.365 0.356 0.335
(c) centered chi-square(5) 0.488 0.448 0.408 0.779 0.774 0.730
(d) double-exponential 0.282 0.256 0.213 0.495 0.502 0.484
(e) normal mixture 0.063 0.029 0.028 0.748 0.639 0.538

The figures are the proportions of tests that reject the null hypothesis in 1000
trials.

0.05. Nevertheless, the results indicate that the proposed test is quite powerful. The only
exception is the mixture of normals, where the test has no power if the sample size is
relatively small (n = 50). However, already for n = 100 it performs quite well. Also it turns
out that in all but one of our examples (Table 2 (d), n=100) the choice m = 2 works best.

The proof of Theorem 4.1 relies on the following technical result which is of independent
interest. Its proof is given in the Section 7.

Proposition 4.1. For n ≥ 1, let εn1, . . . , εnn be independent random variables with
common distribution function F with mean zero and finite variance, let Zn1, . . . , Znn be
independent kn-dimensional random vectors independent of (εn1, . . . , εnn), and let ∆̂n be a
kn-dimensional random vector. Suppose that F has a density f that is Hölder with exponent
ξ for some 0 < ξ ≤ 1, that

(4.3) kn →∞ and n−1/2k3/2
n log n→ 0,

(4.4) ‖∆̂n‖ = Op(1),

(4.5)
1
n

n∑
j=1

|∆̂>
nZnj |1+ξ = op(n−1/2),

(4.6)
n∑

j=1

‖Znj‖ = Op(
√
nkn),

and there is a constant B such that for all finite C,

(4.7) sup
|δ|≤C

n∑
j=1

E[|∆̂>
nZnj |] ≤ BC

√
nkn.

Then the following uniform stochastic expansion holds,

sup
t∈R

∣∣∣ 1
n

n∑
j=1

(
1[εnj ≤ t+ ∆̂>

nZnj ]− 1[εnj ≤ t]− f(t)∆̂>
nZnj

)∣∣∣ = op(n−1/2).
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5. Proof of Theorem 2.1

Order the multi-indices i ∈ I(m) lexicographically. Let ψ be the vector with components
ψi, i ∈ I(m). Note that β̂ is a solution of the normal equation

R(x) = W (x)β̂(x),

where

R(x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
(Yj − U>

j ϑ̂)ψ
(Xj − x

cn

)
and

W (x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
ψ
(Xj − x

cn

)
ψ>
(Xj − x

cn

)
.

We can write R(x) = A(x)−
(
B(x) + C(x) +D(x)µ>(x)

)
(ϑ̂− ϑ), where

A(x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
(Yj − U>

j ϑ)ψ
(Xj − x

cn

)
,

B(x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
ψ
(Xj − x

cn

)
(Uj − µ(Xj))>,

C(x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
ψ
(Xj − x

cn

)
(µ(Xj)− µ(x))>,

D(x) =
1
ncqn

n∑
j=1

w
(Xj − x

cn

)
ψ
(Xj − x

cn

)
.

Note that D(x) is the first column of W (x). We can write this as D(x) = W (x)e, where e
is the vector (ei)i∈I(m) with e0 = 1 and ei = 0 for i 6= 0. Applying Corollary 1 of MSW2 to
the entries of the matrices B(x) and C(x) we obtain

sup
x∈C

‖B(x)‖ = op(1) and sup
x∈C

‖C(x)‖ = op(1).

It follows from the proof of Lemma 1 in MSW2 that W (x) is invertible for all x ∈ C

on an event whose probability tends to one. On this event we have ρ̂(x) = e>β̂(x) =
e>W−1(x)R(x) and therefore

ϑ̂>u+ ρ̂(x)− ϑ>u− ρ(x)

= (ϑ̂− ϑ)>(u− µ(x)) + e>W−1(x)A(x)− ρ(x)− e>W−1(x)(B(x) + C(x))(ϑ̂− ϑ).

The norm of a function h in the Hölder space H(m, γ) is defined by

‖h‖m,γ = max
i∈I(m)

sup
x∈C

|Dih(x)|+ max
i∈J(m)

sup
x,y∈C ,x 6=y

|Dih(y)−Dih(x)|
‖x− y‖γ
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with

Dih(x) =
∂i1+···+iq

∂xi1
1 · · · ∂x

iq
q

h(x), x = (x1, . . . , xq) ∈ C .

Let H1(m, γ) denote the unit ball of H(m, γ) for this norm.
Since Y − ϑ>U = ρ(X) + ε, we obtain from the results in MSW2 that there exists a

random function ĉ based on Y1−ϑ>U1, X1, . . . , Yn−ϑ>Un, Xn such that the following four
properties hold:

(5.1) P
(
ĉ ∈ H1(q, α)

)
→ 1

for some α > 0;

(5.2)
∫
|ĉ(x)|1+ξg(x) dx = op(n−1/2)

for ξ > q/(2s− q); ∫
ĉ(x)g(x) dx =

1
n

n∑
j=1

εj + op(n−1/2);

and
sup
x∈C

∣∣e>W−1(x)A(x)− ρ(x)− ĉ(x)
∣∣ = op(n−1/2).

Actually, we can take

ĉ(x) = e>(E[W (x)])−1 1
ncqn

n∑
j=1

w
(Xj − x

cn

)
εjψ
(Xj − x

cn

)
.

Set r(u, x) = ϑ>u+ ρ(x) and r̂(u, x) = ϑ̂>u+ ρ̂(x). Let D be the class of functions

a(u, x) = b>(u− µ(x)) + c(x)

with b ∈ [−1, 1]p and c ∈ H1(q, α). Set

â(u, x) = (ϑ̂− ϑ)>(u− µ(x)) + ĉ(x).

Write Q for the joint distribution of (U,X). Then

P
(
â ∈ D

)
→ 1;∫

|â|1+ξdQ = op(n−1/2);

(5.3)
∫
â dQ =

1
n

n∑
j=1

εj + op(n−1/2);

(5.4) sup
u∈Rp,x∈C

∣∣r̂(u, x)− r(u, x)− â(u, x)
∣∣ = op(n−1/2).

The assertion follows from Theorem 2.2 in MSW1, the fact that f is bounded, and (5.3).
Requirement (2.1) of MSW1 on the bracketing numbers of our class D is verified as in that
paper, but now using (1.5) of MSW2, replacing (3.1) of MSW1.
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6. Proof of Theorem 4.1

We use ‖A‖o and ‖A‖2 to denote the spectral and Euclidean norms of a matrix A.
Recall that these are defined by

‖A‖o = sup
‖v‖=1

‖Av‖ = sup
‖v‖=1,‖w‖=1

w>Av and ‖A‖2
2 =

∑
A2

ij = trace(A>A).

It is easy to see that ‖A‖2
o equals the maximal eigenvalue of A>A and that ‖A‖o ≤ ‖A‖2.

For a nonnegative definite matrix, ‖A‖o equals the largest eigenvalue of A.
Since ‖U‖ has a finite second moment, an = E[‖U‖21[‖U‖ > n1/4]] converges to zero.

Now set ān = max(n−1/4, a
1/3
n ). Then we have

P
(

max
1≤j≤n

‖Uj‖ > ān

√
n
)
≤ nP (‖U1‖ > ān

√
n) ≤ E[‖U‖21[‖U‖ > ān

√
n]]

ā2
n

≤ a1/3
n .

Let us now set Unj = Uj1[‖Uj‖ ≤ ān
√
n] and Ynj = ϑ>Unj + ρ(Xj) + εj . Since the original

data (Y1, U1, X1), . . . , (Yn, Un, Xn) and the modified data (Yn1, Un1, X1), . . . , (Ynn, Unn, Xn)
differ only on the event {max1≤j≤n ‖Uj‖ > ānn

1/2}, whose probability tends to zero, it
suffices to prove the result with the modified data in place of the original data. We still use
β̂m to denote the modified least squares estimator which is defined as

β̂m = arg min
b

n∑
j=1

(
Ynj − b>hm(Unj , Xj)

)2
and also write rm(Unj , Xj) = β>mhm(Unj , Xj) for the projection of r(Unj , Xj) onto the linear
space {b>hm(Unj , Xj) : b ∈ Rν} with ν = p+ 1 + qm.

The modified residuals are ε̂nj = Ynj − β̂>mhm(Unj , Xj) and can be expressed as

ε̂nj = εj + r(Unj , Xj)− rm(Unj , Xj)− (β̂m − βm)>hm(Unj , Xj) = εj − ∆̂>
nZn,j ,

where

∆̂n =
(

1√
n/m (β̂ − β)

)
and Zn,j =

(
rm(Unj , Xj)− r(Unj , Xj)√

m/nhm(Unj , Xj)

)
.

Because we work with a column space that contains 1, the sum of the residuals is zero.
Since ∆̂>

nZn,j equals εj − ε̂nj , we have

1
n

n∑
j=1

f(t)∆̂>
nZn,j = f(t)

1
n

n∑
j=1

εj .

Thus Theorem 4.1 follows from Proposition 4.1 if (4.3)–(4.6) hold for the present choices of
∆̂n and Zn,j , and with ξ > 1/3. Since kn = 1 + ν = 2 + p + qm and m ∼ n1/4, we obtain
(4.3). Note also that (4.4) is equivalent to

(6.1) β̂m − βm = Op(
√
m/n).

The argument used to derive (4.2) also yields

(6.2) E[(rm(Un1, X1)− r(Un1, X1))2] = O(m−3).
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This implies

(6.3)
1
n

n∑
j=1

(
rm(Unj , Xj)− r(Unj , Xj)

)2 = Op(m−3) = Op(n−3/4)

and also (4.6) in view of E[‖hm(Un1, X1)‖2] ≤ E[‖U1‖2] + 1 + 2qm. It follows from the
moment inequality that

1
n

n∑
j=1

|∆̂>
nZn,j |1+ξ ≤

( 1
n

n∑
j=1

(∆̂>
nZn,j)2

)(1+ξ)/2
.

As ξ is assumed to be greater than 1/3, condition (4.5) follows from (6.3) and

(6.4)
1
n

n∑
j=1

(
(β̂m − βm)>hm(Unj , Xj)

)2 = Op(m/n) = Op(n−3/4).

To prove (4.7), we note that(
E[|v>hm(Un1, X1)|]

)2 ≤ E[(v>hm(Un1, X1))2] = v>Mnv

with
Mn = E[hm(Un1, X1)h>m(Un1, X1)].

We shall show that

(6.5) λ = lim inf
m→∞

inf
‖v‖=1

v>Mmv > 0 and Λ = lim sup
m→∞

sup
‖v‖=1

v>Mmv <∞.

Thus (4.7) follows from (6.2) and the second part of (6.5).
To prove (6.4), we write its left-hand side as (β̂m − βm)>M̂m(β̂m − βm), where

M̂m =
1
n

n∑
j=1

hm(Unj , Xj)hm(Unj , Xj)>.

We shall show that

(6.6) ‖M̂m −Mm‖o = op(1).

Let λ̂m and Λ̂m denote the smallest and largest eigenvalue of M̂m, so that

λ̂m = inf
‖v‖=1

v>M̂mv and Λ̂ = sup
‖v‖=1

v>M̂mv.

It follows from (6.5) and (6.6) that

(6.7) P (λ/2 < λ̂m ≤ Λ̂m < 2Λ) → 1.

Since the left-hand side of (6.4) is bounded by Λ̂‖β̂m−βm‖2, (6.4) is a consequence of (6.7)
and (6.1).
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To prove (6.1), we note that the least squares estimator β̂m satisfies the normal equations
M̂mβ̂m = V̂m, where

V̂m =
1
n

n∑
j=1

Yjhm(Unj , Xj) =
1
n

n∑
j=1

(
εj + r(Unj , Xj)− rm(Unj , Xj)

)
hm(Unj , Xj) + M̂mβm.

In view of (6.7), the desired (6.1) follows if we show that

T1 =
1
n

n∑
j=1

εjhm(Unj , Xj) = Op

(√m

n

)
and

T2 =
1
n

n∑
j=1

(
r(Unj , Xj)− rm(Unj , Xj)

)
hm(Unj , Xj) = Op(m−3/2) = Op

(√m

n

)
.

Since the summands in T1 and T2 are independent and centered, we have

nE[‖T1‖2] = E[ε21‖hm(Un1, X1)‖2] = E[ε2]
(
E[‖U‖2] + 1 + 2qm

)
= O(m)

and, with the help of (6.2),

nE[‖T2‖2] = E[|r(Un1, X1)− rm(Un1, X1)|2‖hm(Un1, X1)‖2]

≤ (ā2
nn+ 1 + 2qm)E[|r(Un1, X1)− rm(Un1, X1)|2] = o(n)m−3.

We are left to verify (6.5) and (6.6). Equation (6.6) follows from the fact that

nE[‖M̂m −Mm‖2
2] =

ν∑
i=1

ν∑
j=1

nVar
( 1
n

n∑
l=1

hmi(Unl, Xl)hmj(Unl, Xl)
)

≤
ν∑

i=1

ν∑
j=1

E[h2
mi(Un1, X1)h2

mj(Un1, X1)] = n−1E[‖hm(U,X)‖4]

≤ 2E[‖U‖41[‖U‖ ≤ ān

√
n]] + 2(1 + 2qm)2 = o(n).

Next we show (6.5). Note that the matrix Ψm = E[ψm(X)ψ>m(X)] is invertible. Indeed,
its eigenvalues are between g∗ and g∗, see (4.1). Set U∗

n1 = Un1 − C>
n ψm(X1) where Cn =

Ψ−1
m E[ψm(X1)U>

n1]. Then E[U∗
n1ψ

>
m(X1)] = 0. For a unit vector v = (v>1 , v

>
2 )>, with

v1 ∈ Rp and v2 ∈ R1+qm, we thus find

v>Mmv = E[(v>hm(Un1, X1))2]

= E[(v>1 U
∗
n1 + (v2 + Cnv1)>ψm(X1))2]

= E[(v>1 U
∗
n1)

2] + E[((v2 + Cnv1)>ψm(X1))2].

It is now easy to see that

E[v1(Un1 − E(Un1|X1))2] + g∗‖v2 + Cnv1‖2 ≤ v>Mmv ≤ E[(v>1 Un1)2] + g∗‖v2 + Cnv1‖2.

With the help of the Cauchy–Schwarz inequality we derive the bound

‖Cn‖o ≤ B = (E[‖U‖2]g∗)1/2/g∗.
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This shows that Λ ≤ E[‖U‖2] + g∗(1 +B)2. Since E[‖Un1 − U1‖2] → 0, it follows from (H)
that, for large m, v>Mmv ≥ η‖v1‖2+g∗(‖v2‖−‖Cnv1‖)2, where 2η is the smallest eigenvalue
of E[(U−µ(X))(U−µ(X))>]. Now if ‖v1‖ > 1/(2+B), we have v>Mmv ≥ η/(2+B)2, while
for ‖v1‖ ≤ 1/(2 +B), we have v>Mv ≥ g∗(

√
1− 1/(2 +B)2 −B/(2 +B))2 ≥ g∗/(2 +B)2.

This shows that λ > min{η, g∗}/(2 +B)2.

7. Proof of Proposition 4.1

To simplify notation we abbreviate εnj by εj , Znj by Zj , and set Sn =
∑n

j=1 ‖Zj‖. Let

H(s, t,∆) =
1
n

n∑
j=1

(
1[εj ≤ t+ ∆>Zj + s‖Zj‖]− F (t+ ∆>Zj + s‖Zj‖)

)
for s, t ∈ R and ∆ ∈ Rkn . It follows from the properties of f and (4.5) that

sup
t∈R

1
n

n∑
j=1

∣∣F (t+ ∆̂>
nZj)− F (t)− f(t)∆̂>

nZj

∣∣ = Op

( 1
n

n∑
j=1

|∆̂>
nZj |1+ξ

)
= op(n−1/2).

In view of this and (4.4), it suffices to show that

sup
t∈R, ‖∆‖≤C

∣∣H(0, t,∆)−H(0, t, 0)
∣∣ = op(n−1/2)

for each finite positive constant C. Fix such a C. It follows from (4.6) and kn = o(n1/2),
that the probability of the event An = {max1≤j≤n ‖Zj‖ ≤ n} tends to one. Since F has
a finite second moment, the probability of the event Bn = {max1≤j≤n |εj | ≤

√
n} tends to

one and t2(F (−t) + (1− F (t)) → 0 as t→∞. On the intersection An ∩Bn of these events
we have

sup
|t|>Cn+

√
n, ‖∆‖≤C

∣∣H(0, t,∆)−H(0, t, 0)
∣∣ ≤ F (−n1/2) + (1− F (n1/2)) = o(n−1).

Thus we are left to show that Rn = op(n−1/2), where

Rn = sup
|t|≤Cn+

√
n, ‖∆‖≤C

∣∣H(0, t,∆)−H(0, t, 0)
∣∣.

Now let δ and η be small positive numbers. Let t1, . . . , tM be real numbers in [−Cn −√
n,Cn +

√
n] such that the intervals [ti − δ, ti + δ] cover [−Cn −

√
n,Cn +

√
n], and let

∆1, . . . ,∆N be vectors in {x ∈ Rkn : ‖x‖ ≤ C} such that the balls {∆ : ‖∆−∆i‖ ≤ η} cover
the ball {x ∈ Rkn : ‖x‖ ≤ C}. We can choose these points such that M ≤ 1 + (Cn+

√
n)/δ

and N ≤ (1 + C
√
kn/η)kn .

Then we have the bound

Rn ≤ max
i,l

(∣∣H(0, ti,∆l)−H(0, ti, 0)
∣∣+ sup

|t−ti|≤δ, ‖∆−∆l‖≤η

∣∣H(0, t,∆)−H(0, ti,∆l)
∣∣).
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Using monotonicity of F and of the maps x 7→ 1[εj ≤ x], the supremum term can be further
bounded by

H(η, ti + δ,∆l)−H(−η, ti − δ,∆l) +
2
n

n∑
j=1

∣∣F (ti + ∆>
l Zj + Tj)− F (ti + ∆>

l Zj − Tj)
∣∣,

where Tj = δ + η‖Zj‖. Since F is Lipschitz with constant L = supt∈R f(t), we see that

Rn ≤ Rn,1 +Rn,2 + 4L(δ + ηSn/n)

with
Rn,1 = max

i,l

∣∣H(0, ti,∆l)−H(0, ti, 0)
∣∣

and
Rn,2 = max

i,l

∣∣H(η, ti + δ,∆l)−H(−η, ti − δ,∆l)
∣∣.

Thus for positive K and y we have the inequality

P
(√
nRn > 3y

)
≤ P

(
Sn > K

√
nkn

)
+ P

(√
nRn,1 > y

)
+ P

(√
nRn,2 > y, Sn ≤ K

√
nkn

)
+ P

(
4L(

√
nδ + ηKkn) > y

)
.

We use the Bernstein inequality of Hoeffding (1963): If ξ1, . . . , ξn are independent random
variables that have zero means and are bounded by a constant M , then

P
(∣∣∣ n∑

j=1

ξj

∣∣∣ ≥ x
)
≤ 2 exp

(
− x2

2
∑n

j=1E[ξ2j ] + (2/3)Mx

)
, x > 0.

The summands ξj = 1[εj ≤ ti + ∆>
l Zj ]− 1[εj ≤ ti]− F (ti + ∆>

l Zj) + F (ti) in the average
H(0, ti,∆l)−H(0, ti, 0) are independent, centered, bounded by 2, and satisfy

n∑
j=1

E[ξ2j ] ≤
n∑

j=1

E[|F (ti + ∆>
l Zj)− F (ti)|] ≤

n∑
j=1

LE[|∆>
l Zj |] ≤ LBC

√
nkn,

so that

P
(√
n|H(0, ti,∆l)−H(0, ti, 0)| > y

)
≤ 2 exp

(
− ny2

2LBC
√
nkn + 2y

√
n

)
, y > 0.

Now write PZ and EZ for the conditional probability measure and expectation given Z =
(Z1, . . . , Zn). Conditionally given Z, the summands

ξj = 1[εj ≤ ti + δ + ∆>
l Zj + η‖Zj‖]− 1[εj ≤ ti − δ + ∆>

l Zj − η‖Zj‖]

− F (ti + δ + ∆>
l Zj + η‖Zj‖) + F (ti − δ + ∆>

l Zj − η‖Zj‖)
in the average H(η, ti + δ,∆l)−H(−η, ti + δ,∆l) are independent, centered, bounded by 2
and satisfy

n∑
j=1

EZ(ξ2j ) ≤
n∑

j=1

(
F (ti + δ + ∆>

l Zj + η‖Zj‖)− F (ti − δ + ∆>
l Zj − η‖Zj‖)

)
≤ 2L(nδ + ηSn).
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This yields

PZ

(√
n|H(η, ti + δ,∆l)−H(−η, ti − δ,∆l)| > y

)
≤ 2 exp

(
− ny2

4L(nδ + ηSn) + 2y
√
n

)
for y > 0. Thus we have

P
(√
nRn,1 > y

)
≤
∑
i,l

P
(√
n|H(0, ti,∆l)−H(0, ti, 0)| > y

)
≤ 2MN exp

(
− ny2

2LBC
√
nkn + 2y

√
n

)
, y > 0,

and

P
(√
nRn,2 > y, Sn ≤ K

√
nkn

)
≤ 2MN exp

(
− ny2

4L(nδ + ηK
√
nkn) + 2y

√
n

)
, y > 0.

Taking δ = η = 1/n, we can choose M = O(n2) and logN = O(kn log n) = o(
√
n/kn) and

obtain

lim sup
n→∞

P
(√
nRn > 3y

)
≤ lim sup

n→∞
P
(
Sn > K

√
nkn

)
≤ 1
K

for all finite K. This is the desired result in view of (4.6).
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