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Abstract We discuss efficient estimation in quantile regression models where the
quantile regression function is modeled parametrically. Additionally we assume that
auxiliary information is available in the form of a conditional constraint. This is, for
example, the case if the mean regression function or the variance function can be
modeled parametrically, e.g. by a line or a polynomial. In this paper we describe
efficient estimators of parameters of the quantile regression function for general
conditional constraints and for examples of more specific constraints. We do this
more generally for a model with responses missing at random, for which an efficient
estimator is provided by a complete case statistic. This covers the usual model as a
special case. We discuss several examples and illustrate the results with simulations.

1 Introduction

Completely observed data. The quantile regression model (Koenker and Bassett
[2], Koenker [1]) for a random sample (Xi,Yi), i = 1, . . . ,n, assumes that the condi-
tional quantile of a response variable Y given a covariate vector X can be modeled
parametrically, i.e. it can be written as a parametric quantile regression function
qθ (X), θ ∈ Rd . In this article we consider, more generally, a class of regression
models that can be written in the form

E{aϑ (X ,Y )|X}= 0, aθ = (a1θ , ã>θ )
>, (1)
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where the true parameter ϑ belongs to the interior of some compact parameter space
Θ ⊂ Rd . The first component of the k-dimensional vector aθ is

a1θ (X ,Y ) = p−1{Y −qθ (X)< 0}, p ∈ (0,1).

This specifies the familiar quantile regression model since

0 = E{a1ϑ (X ,Y )|X}= E[p−1{Y −qϑ (X)< 0}|X ] (2)
⇐⇒ P{Y < qϑ (X)|X}= p.

The vector ãθ represents auxiliary information in the form of k−1 conditional para-
metric constraints. This is the case, for example, if there are reliable parametric
models for certain moments of the conditional distribution of Y given X , including
the conditional mean and the conditional variance.

Note that the number of parameters, d, and the number of equations, k, are un-
related. Later on we will transform the equations so as to obtain as many equations
as parameters. Also note that the vector θ contains the parameters that determine
the model for the p-th quantile, as well as the parameters on which the auxiliary
information depends. Usually when we have auxiliary information the latter set is
part of (or equal to) the former, but this is not necessarily the case.

We are interested in finding an efficient estimator for ϑ . Efficient estimation of
ϑ in model (1), with an arbitrary vector aθ of constraints, has been addressed by
Müller and Van Keilegom [5]. There we also briefly discuss the quantile regres-
sion model (2) as an example of a one-dimensional constraint, without assuming
the presence of the additional vector ãθ . Let us discuss this model first. The usual
estimator under model (2) is based on the check function approach, and solves the
quantile regression estimating equation

n

∑
i=1

q̇θ (Xi)[p−1{Yi−qθ (Xi)< 0}] = 0

with respect to θ (see e.g. [1]) or more precisely, it minimizes∥∥∥ n

∑
i=1

q̇θ (Xi)[p−1{Yi−qθ (Xi)< 0}]
∥∥∥ (3)

with respect to θ , where ‖ ·‖ denotes the Euclidean norm, since an exact solution of
the above equation might not exist. Here, q̇θ (X) denotes the (d× 1)-vector of par-
tial derivatives ∂/(∂θ j)qθ (X), j = 1, . . . ,d. This is indeed an unbiased estimating
equation since

E
(
q̇ϑ (X)[p−1{Y −qϑ (X)< 0}]

)
= E

(
q̇ϑ (X)E[p−1{Y −qϑ (X)< 0}|X ]

)
= 0.

This calculation shows that one could, more generally, obtain a consistent estimator
ϑ̂ by minimizing the norm of a weighted sum
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∑
i=1

Wθ (Xi)[p−1{Yi−qθ (Xi)< 0}]
∥∥∥,

where Wθ is a d-dimensional vector of weights. Müller and Van Keilegom [5] proved
that an asymptotically efficient estimator of ϑ is obtained for the weight vector

Wθ (X) =−
fY |X{qθ (X)}q̇θ (X)

p2 +(1−2p)FY |X{qθ (X)},
(4)

with fY |X (y) =
d
dy FY |X (y) (provided it exists) and FY |X (y) = P{Y ≤ y|X}. A simpler

(but asymptotically equivalent) version of this estimator is based on weights

fY |X{qθ (X)}q̇θ (X), (5)

since the denominator in (4) equals p− p2 for θ =ϑ and hence it does not need to be
estimated. The weight vector is undetermined in both cases: it involves the unknown
conditional density fY |X{qθ (X)} (and FY |X in the first case) and must therefore be
replaced by a suitable consistent estimator. Using these estimated weight vectors
in the estimating equation above will yield two asymptotically efficient estimators
of ϑ .

Note that if we use the simpler weights (5), then an asymptotically efficient esti-
mator of ϑ is obtained by minimizing∥∥∥ n

∑
i=1

fY |X{qθ (Xi)}q̇θ (Xi)[p−1{Yi−qθ (Xi)< 0}]
∥∥∥, (6)

which is different from the widely used and commonly accepted estimator given in
(3), that corresponds to the check function approach, and that is in fact not efficient.

In this paper we consider model (1) which, aside from (2), assumes that auxil-
iary information in the form of a constraint E{ãϑ (X ,Y )|X} = 0 is available. This
is related to Tang and Leng [9] who consider the linear quantile regression model
with qβ (X) = X>β , where β is a parameter vector. They assume additional infor-
mation in the form of an unconditional constraint, E{ãϑ (X ,Y )} = 0, and suggest
an empirical likelihood approach. Such a constraint applies if, for example, there
is knowledge about unconditional moments of the joint distribution of (X ,Y ). This
is conceptually different from our model, since models for moments of the condi-
tional distribution are not included, e.g. models for the conditional mean E(Y |X)
or the variance function mentioned above. Another related paper that does consider
a conditional constraint is [7] by Qin and Wu, who estimate conditional quantiles.
However, neither the quantiles nor the constraint are modeled parametrically. There
is more literature dating back several years on estimating unconditional quantiles
when auxiliary information is available; see e.g. [4, 8, 10].

Missing data. As in [5] we now assume further that some responses Y are al-
lowed to be missing at random (MAR). This means that one has i.i.d. observations
(Xi,δiYi,δi), i = 1, . . . ,n, having the same distribution as (X ,δY,δ ), with indicator
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δ = 1 if Y is observed and δ = 0 if Y is missing. In particular one assumes that the
missingness mechanism depends only on X ,

P(δ = 1|X ,Y ) = P(δ = 1|X) = π(X),

where π(·) is the propensity score. This implies that Y and δ are conditionally in-
dependent given X . One reason for considering the MAR model is that it contains
the “full model”, where no data are missing, as a special case with π(·) = 1 (and
all indicators δ = 1), so both models can be treated together. Of course, this does
not always apply since the construction of reasonable estimators can be quite differ-
ent, depending on the model. Here we are specifically interested in estimating the
parameter ϑ . In this case we can work with a simple complete case estimator (an es-
timator for the full model that ignores observations that are only partially observed).
One possibility is to estimate ϑ by a minimizer of∥∥∥ n

∑
i=1

δiWθ (Xi)aθ (Xi,Yi)
∥∥∥

with respect to θ , where Wθ is a d×k weight matrix. In this way we obtain a system
of d equations with d unknown parameters, although we started off with k con-
straints. That the weighted sum above leads to an unbiased estimator is easy to see
using the fact that δ and Y are conditionally independent given X under the MAR
assumption. Beyond that, one can show that a complete case version of any consis-
tent estimator of ϑ is again consistent. This can be seen by applying the transfer
principle for complete case statistics, introduced by Koul et al. [3], which makes it
possible to adapt results for the full model to the MAR model. The transfer princi-
ple provides the limiting distribution of a complete case version of a statistic as the
limiting distribution of that statistic conditional on δ = 1. To verify consistency, one
only has to show that the functional of interest, i.e. in our case the parameter vector
ϑ , is the same in the unconditional and in the conditional model. This is indeed true,
since ϑ is in both models defined as a solution of the same conditional constraint:

0 = E{aϑ (X ,Y )|X}= E(δ |X)E{aϑ (X ,Y )|X}
E(δ |X)

=
E{δaϑ (X ,Y )|X}

E(δ |X)

= E{aϑ (X ,Y )|X ,δ = 1}.

So far we know that an efficient estimator of ϑ in the (unextended) quantile regres-
sion model with MAR responses is given as a minimizer of∥∥∥ n

∑
i=1

δiŴθ (Xi)[p−1{Yi−qθ (Xi)< 0}]
∥∥∥

with respect to θ , where Ŵθ is a suitable estimator of the weight vector Wθ given in
(4) or (5) (see Section 3.4 in [5].)

In the next section we will provide the formulas for an efficient estimator of ϑ in
the general quantile regression model (1) with auxiliary information in the form of
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a general conditional constraint. In Section 3 we discuss three examples of auxiliary
information, namely when we have a parametric model for the mean and for the
median, respectively, and when we have two responses that share the same p-th
quantile. Section 4 shows the results of a small simulation study, and we end this
paper in Section 5 with some general conclusions.

2 The estimator

As in [5] we write

`θ (X ,Y ) =−Wθ (X)aθ (X ,Y ), I = E{δ`ϑ (X ,Y )`ϑ (X ,Y )>},

Wθ (X) =
[ ∂

∂θ
E{aθ (X ,Y )|X}

]>Aθ (X)−1,
(7)

now with

aθ (X ,Y ) =
(

a1θ (X ,Y )
ãθ (X ,Y )

)
=

(
p−1{Y −qθ (X)< 0}

ãθ (X ,Y )

)
, (8)

where for θ = ϑ the k× k matrix Aϑ (X) is given by

Aϑ (X) = E
{

aϑ (X ,Y )aϑ (X ,Y )>|X
}
,

and where for θ 6= ϑ , the matrix Aθ (X) is obtained by replacing ϑ by θ in the ex-
pression of Aϑ (X). Note that in general Aθ (X) and E

{
aθ (X ,Y )aθ (X ,Y )>|X

}
are

different, since in certain entries of the matrix Aϑ (X) the parameter ϑ will disap-
pear when using the underlying model assumptions. For example, the first entry is
E([p− 1{Y − qϑ (X) < 0}]2|X) = p2 + (1− 2p)FY |X{qϑ (X)} = p− p2, which is
independent of ϑ .

The estimator in model (1) can then be written ϑ̂ = argminθ‖∑n
i=1δi`θ (Xi,Yi)‖.

In the full model we simply set δi = 1 for i = 1, . . . ,n, i.e. the indicators δ can be
ignored. Under the assumptions stated in [5], ϑ̂ is asymptotically linear,

n1/2(ϑ̂ −ϑ) = I−1n−1/2
n

∑
i=1

δi`ϑ (Xi,Yi)+op(1),

and efficient in the sense of Hájek and Le Cam.
Let us take a closer look at the formula of the weight matrix. The estimating

equation for model (1) involves Wθ and aθ given in equations (7) and (8). Using the
specific form of aθ , the matrix Wθ (X) computes to

Wθ (X) =

(
− fY |X{qθ (X)}q̇θ (X)

∂

∂θ
E{ãθ (X ,Y )>|X}

)
Aθ (X)−1, (9)

where Aϑ (X) is the matrix
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p− p2 E([p−1{Y < qϑ (X)}]ãϑ (X ,Y )>|X)

E([p−1{Y < qϑ (X)}]ãϑ (X ,Y )|X) E{ãϑ (X ,Y )ãϑ (X ,Y )>|X}

)
,

and where the matrix Aθ (X) is obtained by replacing in the formula of Aϑ (X) every
ϑ that does not disappear after using the model assumptions, by θ .

In Section 3.1 of [5] it is shown that if we replace the weight matrix Wθ (X)
given in (9) by an estimator Ŵθ (X) that is uniformly consistent in θ and x, i.e.
supθ∈Θ supx ‖Ŵθ (x)−Wθ (x)‖ = op(1), then the resulting estimator (that depends
now on Ŵθ instead of Wθ ) remains asymptotically efficient.

Note that the weight matrix Wθ (X) involves, among others, the conditional den-
sity fY |X . The density can be estimated by using e.g. a kernel smoother of the form

f̂Y |X=x(y) =
n

∑
i=1

δikb(x−Xi)kh(y−Yi)

∑
n
i=1δikb(x−Xi)

,

with kernel k and smoothing parameters b and h, and where kb(·) = k(·/b)/b for any
bandwidth b. The estimation of the other components of the weight matrix Wθ (X)
depends on the specific form of the auxiliary information. We will consider three
examples in the next section.

3 Examples

Example 1. We start with a situation in which we have some auxiliary information
concerning the conditional mean r(X) =E(Y |X). Suppose that r(X) can be modeled
parametrically r(X) = rϑ (X). The function ãθ (X ,Y ) is given by

ãθ (X ,Y ) = Y − rθ (X),

i.e. k = 2 and, for example, rθ (X) = θ>X . Some straightforward algebra shows that
the optimal weight matrix is then given by

Wθ (X) =
(
− fY |X{qθ (X)}q̇θ (X) − ṙθ (X)

)
Aθ (X)−1,

where Aθ (X) is the 2×2 matrix(
p− p2 p rθ (X)−E(1{Y < qθ (X)}]Y |X)

p rθ (X)−E(1{Y < qθ (X)}]Y |X) Var(Y |X)

)
.

The conditional variance Var(Y |X) can be estimated by standard kernel smoothers,
whereas a consistent estimator of the term E(1{Y < qθ (X)}]Y |X) in the off-diagonal
element of the matrix Aθ (X) is given by

n

∑
i=1

δikb(x−Xi)1{Yi < qθ (Xi)}Yi

∑
n
i=1δikb(x−Xi)

,
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with kernel k and smoothing parameter b.

Example 2. Let us now consider the case when p 6= 1/2, i.e. we want to estimate
quantiles other than the median, and we have some auxiliary information regarding
the median. For instance we know that the p-th quantile and the median are parallel
functions (of X). Let us denote the parametric model for the median by vθ , and so

ãθ (X ,Y ) = 1/2−1{Y − vθ (X)< 0}.

In this case, it is easily seen that

Wθ (X) =
(
− fY |X{qθ (X)}q̇θ (X) − fY |X{vθ (X)}v̇θ (X)

)
Aθ (X)−1,

where

Aθ (X) =

(
p− p2 p∧ (1/2)− p/2

p∧ (1/2)− p/2 1/4

)
,

since for θ = ϑ the off-diagonal element is given by

p/2− pFY |X{vϑ (X)}− (1/2)FY |X{qϑ (X)}+FY |X{qϑ (X)∧ vϑ (X)}
=−p/2+{p∧ (1/2)}.

The estimation of this weight matrix only involves the estimation of the conditional
density fY |X , which was discussed in the previous section.

Example 3. The model considered in this paper can be extended to the case
where we have a multivariate response Y = (Y1, . . . ,YdY )

>. For simplicity we con-
sider the bivariate case. Let (Xi,δiYi,Yi), i = 1, . . . ,n, be an i.i.d. sample, where
Yi = (Y1i,Y2i)

>, Xi = (X1i, . . . ,XdX i)
> and δi = (δ1i,δ2i)

>. We could then consider
the case where the two responses have the same conditional p-th quantile, which
means that we should take

a1θ (X ,Y ) = p− I{Y1−qθ (X)< 0},

and
ãθ (X ,Y ) = p− I{Y2−qθ (X)< 0},

and the true parameter vector ϑ satisfies FY1|X{qϑ (X)}= p = FY2|X{qϑ (X)}. As in
the previous two examples, it can be seen that the weight matrix that leads to an
asymptotically efficient estimator of ϑ is given by

Wθ (X) =
(
− fY1|X{qθ (X)} − fY2|X{qθ (X)}

)
q̇θ (X)Aθ (X)−1

with

Aθ (X) =

(
p− p2 FY1,Y2|X{qθ (X),qθ (X)}− p2

FY1,Y2|X{qθ (X),qθ (X)}− p2) p− p2

)
,
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where FY1,Y2|X (y1,y2) = P(Y1 ≤ y1,Y2 ≤ y2|X). To verify the formula for the off-
diagonal element of Aθ (X) consider the corresponding entry in Aϑ (X), which com-
putes to

p2− p[FY1|X{qϑ (X)}+FY2|X{qϑ (X)}]+FY1,Y2|X{qϑ (X),qϑ (X)}
=−p2 +FY1,Y2|X{qϑ (X),qϑ (X)}.

4 Simulations

In order to gain some insight into the performance of our proposed method if n is
finite, we conducted a small simulation study based on 50,000 simulated samples
of size n = 100. In this study we consider only the case where all responses are
observed. Since our estimator for missing data is a complete case statistic, this es-
sentially means that we use all n = 100 data pairs (X ,Y ), and not just a proportion.
The comparisons are equally meaningful.

We considered the scenario from Example 1 in the previous section, with a linear
quantile regression function qϑ (X) = ϑ1 +ϑ2X , and with the auxiliary information
that the mean regression function is linear as well, E(Y |X) = rϑ (X) = ϑ3X . The pa-
rameters of interest are ϑ1 and ϑ2, whereas ϑ3 can be regarded a nuisance parameter.
In order to create this scenario we generated responses Y given X = x from a normal
distribution with mean rϑ (x) = ϑ3x (with ϑ3 = 1) and standard deviation σ(x) =
a+ bx. Modeling rϑ and σ linearly suffices to ensure that the quantile function is
also linear: we have p = Φ [{qϑ (x)−rϑ (x)}/σ(x)] (see (2)), with Φ the distribution
function of the standard normal distribution. Solving this with respect to qϑ (x) gives
qϑ (x) = ϑ1 +ϑ2x with ϑ1 = ϑ1(p) = aΦ−1(p), and ϑ2 = ϑ2(p) = ϑ3 +bΦ−1(p).
The covariates X were generated from a uniform(−1,1) distribution.

The results are in Table 1. For simplicity we used the true (3×2) weight matrix
Wθ to implement our efficient estimator. We compared it with the two estimators
discussed in the introduction that use only the quantile regression structure, namely
the check function approach (3) and the estimator that minimizes (6) (based on
weights (5)). To compute the latter estimator we also used the true weights. Com-
paring the estimators that employ the true weights with the check function approach
(which does not require estimation of weights) may not be quite fair, we neverthe-
less find it interesting since the results make us feel confident that our estimator will
outperform the usual approach even if an estimated weight matrix Ŵθ is used.

Let us briefly discuss these results. We considered two different slopes for σ(x)=
0.6+ bx, namely b = −0.5 and b = 0.5. The first case yields a variance reduction
and the second case a variance gain as x increases from −1 to 1. In most cases the
efficient estimator (EFF) is clearly better than the two approaches that do not exploit
the auxiliary information. This is remarkable, in particular when one considers that
the optimization algorithm involves an additional parameter. The efficient estimator
performs best in the case of a conditional median (p = 0.5), which is not surprising
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Table 1 Simulated MSEs of parameter estimators of qϑ (X) = ϑ1 +ϑ2X

Estimators of ϑ1 Estimators of ϑ2
σ(x) p QR1 QR2 EFF QR1 QR2 EFF

0.6−0.5x 0.25 0.00632 0.00637 0.00143 0.01083 0.00805 0.00271
0.5 0.00546 0.00513 0.00095 0.00902 0.00601 0.00190
0.75 0.00523 0.00502 0.00177 0.00610 0.00438 0.00358

0.6+0.5x 0.25 0.00248 0.00151 0.00111 0.00294 0.00158 0.00169
0.5 0.00287 0.00177 0.00088 0.00495 0.00250 0.00110
0.75 0.00311 0.00209 0.00169 0.00579 0.00365 0.00149

The table entries give the simulated mean squared errors (MSE) for three estimators of ϑ1
and ϑ2. The estimator “QR1” is based on the check function approach (3), the estimator
“QR2” is the minimizer of (6), and “EFF” is the efficient estimator that uses the auxiliary
information that rϑ is linear, rϑ (X) = ϑ3X .

since we use a normal density fY |X in our simulations. The conditional median qϑ

and the conditional mean rϑ are the same in this setting.
The proposed estimator lacks performance only in the case p = 0.25 with an

increasing variance (b = 0.5). Here the estimator QR2 is slightly better for ϑ2. Sim-
ulations with larger sample sizes confirm, however, that our estimator indeed out-
performs QR2 asymptotically. (For example, for n = 500 our simulated MSEs for
QR2 and EFF were 0.00097 and 0.00048, respectively.)

Comparing the two estimators QR1 and QR2 that use only the quantile regression
structure, we notice that both estimate the intercept similarly well in the case of a
decreasing variance function. In all other cases the weighted estimator QR2 is better
than the check function approach QR1. Since QR2 is efficient in the original quantile
regression model that does not assume auxiliary information, this corresponds to the
theoretical findings.

5 Concluding remarks

In this paper we studied a parametric quantile regression model in which the re-
sponses are allowed to be missing at random (but do not have to be), and in which
the covariates are always observed. We were interested in the estimation of a par-
ticular conditional quantile when auxiliary information regarding that quantile is
available. We constructed an asymptotically efficient estimator of the model param-
eters based on weighted estimating equations, and studied three examples in more
detail. One of these examples was further examined via a small simulation study,
which confirmed the effectiveness of the proposed estimation procedure.

There are numerous other situations where auxiliary information is available.
We could, for example, have information regarding the variance, the interquartile
range, or the quantile of order 1− p. It would also be interesting to study a model
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where responses are subject to censoring, or the case with missing covariates. Such
extensions definitely seem feasible, but will be somewhat more challenging from
a technical point of view. Finally, an interesting project for future work would be
to develop an efficient empirical likelihood based method to estimate conditional
quantiles, in a similar spirit as [6] or [9]. This would provide an alternative (asymp-
totically equivalent) approach to exploit information in the form of (conditional)
constraints. Although our estimator cannot be outperformed asymptotically, it is
nevertheless possible that there are situations where the empirical likelihood ap-
proach performs better for moderate sample sizes, or where it has computational
advantages.
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