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Abstract. Heteroskedastic errors can lead to inaccurate statistical conclusions if they are
not properly handled. We introduce a test for heteroskedasticity for the nonparametric re-
gression model with multiple covariates. It is based on a suitable residual-based empirical
distribution function. The residuals are constructed using local polynomial smoothing. Our
test statistic involves a “detection function” that can verify heteroskedasticity by exploit-
ing just the independence-dependence structure between the detection function and model
errors, i.e. we do not require a specific model of the variance function. The procedure is
asymptotically distribution free: inferences made from it do not depend on unknown pa-
rameters. It is consistent at the parametric (root-n) rate of convergence. Our results are
extended to the case of missing responses and illustrated with simulations.
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1. Introduction

When analysing data, it is common practice to first explore available options using vari-
ous plotting techniques. For regression models, a key tool is to construct a plot of the model
residuals in absolute value against fitted values. If there is only one covariate, we can use
a plot of the residuals in absolute value against that covariate. This technique helps deter-
mine if theoretical requirements for certain statistical procedures are satisfied, in particular
whether or not the variation in the errors remain constant across values of the covariate.
This is an important assumption that we want to examine more closely. We will therefore
consider the model with constant error variance σ2

0, the homoskedastic model, which we can
write in the form

Y = r(X) + ε, ε = σ0e.

The function r is the regression function and σ0 a positive constant. We consider a re-
sponse variable Y , a covariate vector X and assume that X and the random variable e are
independent, where e has mean equal to zero and variance equal to one.
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When the variation in the data is not constant across the covariate values, the het-
eroskedastic model is adequate:

(1.1) Y = r(X) + ε, ε = σ(X)e.

Here σ(·) is a scale function with E[σ2(X)] = σ2
0. Model (1.1) contains the homoskedastic

regression model as a (degenerate) special case with σ ≡ σ0, a constant function. In order to
discriminate between both models we assume that σ(·) is non-constant in the heteroskedastic
case, i.e. it varies with the values of the covariates X.

Testing for heteroskedasticity is of great importance: many procedures lead to incon-
sistent and inaccurate results if the heteroskedastic model is appropriate but not properly
handled. Consider model (1.1) with a parametric regression function, e.g. linear regression

with r(X) = ϑ>X. The ordinary least squares estimator ϑ̂ of the parameter vector ϑ, which
is constructed for the homoskedastic model, will still be consistent under heteroskedasticity.
However it will be less accurate than an estimator that puts more weight on observations
(X, Y ) with small variance σ2(X) (and less weight when the variance is large). The estimated

variance of ϑ̂ will be biased if the model is in fact heteroskedastic, so testing hypotheses based
on ϑ̂ may lead to invalid conclusions.

The relationship between the homoskedastic and heteroskedastic models can be expressed
in terms of statistical hypotheses:

H0 : ∃ σ0 > 0, σ(·) = σ0 a.e. (G) vs. Ha : σ(·) ∈ Σ.

Here G is the distribution function of the covariates X and Σ = {σ ∈ L2(G) : σ(·) >
0 and non-constant a.e.(G)} is a space of scale functions. The null hypothesis corresponds
to the homoskedastic model and the alternative hypothesis to the heteroskedastic model.

The tests introduced in this article are inspired by Stute, Xu and Zhu (2008), who
propose tests for a parametric regression model with high-dimensional covariates against
nonparametric alternatives, and by Koul, Müller and Schick (2012), who develop tests for
linearity of a semiparametric regression function for fully observed data and for a missing
data model. These approaches are in the spirit of Stute (1997), who introduces marked
empirical processes to test parametric models for the regression function in nonparametric
regression with univariate covariates.

Our test statistics are based on weighted empirical distribution functions of residuals. The
form of these statistics is strikingly simple and their associated limiting behaviour is obtained
by considering the related weighted empirical process. We will show that our test statistic
converges with root-n rate to a Brownian bridge. Hence it is asymptotically distribution free
and quantiles are available. We consider detecting heteroskedasticity (represented by the
non-constant scale function σ(·)) by using some (non-constant) “detection function” ω(·) in
the space Σ. To explain the idea, we consider the weighted error distribution function

E
[
ω(X)1[ε ≤ t]

]
= E

[
ω(X)1[σ(X)e ≤ t]

]
, t ∈ R.

If the null hypothesis is true ε = σ0e and we can write

E
[
ω(X)1[ε ≤ t]

]
= E

[
ω(X)1[σ0e ≤ t]

]
= E

[
E
[
ω(X)

]
1[σ0e ≤ t]

]
= E

[
E
[
ω(X)

]
1[ε ≤ t]

]
,

t ∈ R. Here we have used that under the null hypothesis the covariates X and the errors
ε = σ0e are independent. This motivates a test based on the difference between the two
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quantities, i.e. on

(1.2) E
[{
ω(X)− E

[
ω(X)

]}
1[ε ≤ t]

]
, t ∈ R,

which is zero under H0, but typically not under Ha (see Remark 1 in Section 2 for further
details). We can estimate the outer expectation by its empirical version, which yields a test
based on

Un(t) = n−1/2

n∑
j=1

{
ω(Xj)− E

[
ω(Xj)

]}
1[εj ≤ t], t ∈ R.

This is a process in the Skorohod space D(−∞,∞). To move this process to the more
convenient space D[−∞,∞], we define the familiar limit Un(−∞) = 0 and the limit

Un(∞) = n−1/2

n∑
j=1

{
ω(Xj)− E

[
ω(Xj)

]}
.

Since the variance of Un(∞) equals the variance of ω(X) it is clear the asymptotic distribution
of supt∈R |Un(t)| will depend on Var{ω(X)}, which is not desirable for obtaining a standard
distribution useful for statistical inference. We therefore standardise Un(t) and obtain the
weighted empirical process

Sn(t) = n−1/2

n∑
j=1

Wj1[εj ≤ t], t ∈ R,

with weights

(1.3) Wj =
ω(Xj)− E

[
ω(Xj)

]
Var[ω(Xj)]1/2

=
ω(Xj)− E

[
ω(Xj)

]
E
[{
ω(Xj)− E

[
ω(Xj)

]}2]1/2 , j = 1, . . . , n.

The weights Wj are centred to guarantee that the tests are asymptotically distribution free.
Related research on (unweighted) residual-based empirical distribution functions typically
provides uniform expansions involving a non-negligible stochastic drift parameter that in-
cludes the error density as a parameter of the underlying distribution, i.e. the statistics
are not distribution free (see e.g. Akritas and Van Keilegom, 2001; Müller, Schick and We-
felmeyer, 2007, 2009). This is in contrast to our case where the mean zero weights ensure
that no drift emerges (see the discussion before Lemma 2 in Section 5 for more details).

The process Sn cannot be used for testing because it depends on unknown quantities.
Our final test statistic Tn will therefore be based on an estimated version of Sn with the
errors estimated by residuals ε̂j = Yj − r̂(Xj), j = 1, . . . , n, from a sample of n i.i.d. random
variables (X1, Y1), . . . , (Xn, Yn). Here r̂ is a suitable estimator of the regression function. In
this article we assume a nonparametric regression model and estimate the unknown smooth
regression function r using a nonparametric function estimator; see Section 2 for details.

When σ(·) ≡ σ0 is a constant function (the null hypothesis is true), we expect the
estimated process to behave like Sn(t) and exhibit a standard limiting behaviour. However,
if σ(·) is non-constant (the alternative hypothesis is true), the residuals ε̂j will estimate εj =
σ(Xj)ej 6= σ0ej (and the weights Wj and the errors εj = σ(Xj)ej will not be independent).
We expect the estimated process will show a different limiting behaviour in this case. Note
that our test exploits just the independence–dependence structure between the covariates
and the errors. For this reason it is also clear that it will only work in our model, which
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specifically assumes ε = σ(X)e, to test H0 “Var[Y |X] is constant”, and not in models
Y = r(X) + ε, where ε may depend on X in a more general way.

The choice of the weights, i.e. of the detection function ω, is important to guarantee that
the tests are powerful: it is clear that ω must be non-constant to detect heteroskedasticity.
If the alternative hypothesis is true, it will be advantageous to have weights that are highly
correlated with the scale function σ to increase the power of the test. We explain this at the
end of Section 2, where we also construct weights based on an estimate σ̂(·) of σ(·).

Tests for heteroskedasticity are well studied for various regression models. Glejser (1969)
forms a test using the absolute values of the residuals of a linear regression fitted by ordinary
least-squares. White (1980) constructs an estimator of the covariance matrix of the ordinary
least-squares estimator in linear regression and proposes a test based on this estimator. Cook
and Weisberg (1983) derive a score test for a parametric form of the scale function of the
errors in a linear regression. Eubank and Thomas (1993) study a test for heteroskedastic-
ity, which is related to the score test, for the nonparametric regression model with normal
errors. Although the last article studies a nonparametric regression function, all these tests
are parametric tests since the heteroskedacticity is modelled parametrically. It is therefore
possible that the tests have no power if those models are misspecified.

More recent papers that test for a parametric scale function σθ are Dette, Neumeyer and
Van Keilegom (2007) and Dette and Hetzler (2009). Dette et al. (2007) construct a test for
nonparametric regression with univariate covariates based on the Kolomogorov–Smirnov and
the Cramer–von–Mises statistic. They recommend a bootstrap approach to implement the
tests. Dette and Hetzler (2009) construct a test for a (univariate) fixed design nonparametric
regression model using an empirical process. The tests proposed in both papers converge at
the root-n rate.

Our approach is completely nonparametric (and thus more robust than parametric ap-
proaches). Let us therefore look more closely at some competing nonparametric approaches.
Dette and Munk (1998) and Dette (2002) both consider nonparametric regression with fixed
design (i.e. random univariate or multivariate covariates are not treated). Dette and Munk
create tests based on the L2 distance between an approximation of the variance function
and σ0; in the 2002 paper Dette proposes a residual-based test using kernel estimators. In
both papers the test statistics are asymptotically normal with variance to be estimated. The
convergence rate is slower than the parametric root-n rate (which is the rate of our test),

and local alternatives of order n−1/4 (Dette and Munk, 1998) or of order n−1/2h
−1/4
n (with

bandwidth hn → 0) can be detected (Dette, 2002).
The approach in Dette (2002) is extended to the case of a partially linear regression by

You and Chen (2005) and Lin and Qu (2012). The same idea is also used in Zheng (2009),
who proposes a local smoothing test for nonparametric regression, now with multivariate
covariates, which is also our scenario. The test statistic is again asymptotically normally
distributed and requires a consistent estimator of the variance. The test is able to detect

local alternatives of order n−1/2h
−m/4
n , where m is the dimension of the covariate vector,

which is in agreement with the order in Dette (2002) for the case of a univariate X, m = 1.
The test statistic is quite involved, using multivariate Nadaraya–Watson estimators. A wild
bootstrap approach is used to implement the test since the normal approximation “may not
be accurate (...) in finite samples” (Zheng, 2009, Section 5). Zheng’s approach was used by
Zhu et al. (2016). These authors use single-index type models (involving linear combinations
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of covariates) for the mean and the variance functions in order to handle high-dimensional
covariates. Again, these tests converge with a rate slower than root-n and can only detect

local alternatives of order n−1/2h
−q/4
n , where now q is the number of linear combinations.

Let us finally have a closer look at two articles which, like our paper, use weighted
empirical processes, namely Zhu et al. (2001) and Koul and Song (2010). Zhu et al. use a
Cramer–von–Mises type statistic of a marked empirical process of (multivariate) covariates
X instead of univariate residuals ε̂, i.e. involving 1(X ≤ x) instead of 1(ε̂ ≤ t). Their test can
detect local alternatives “up to” order n−1/2 and, for the case of univariate covariates, may be
asymptotically distribution free (“under some condition”). The authors point directly to the
bootstrap to obtain suitable quantiles since the limiting distribution of their statistic has a
complicated covariance structure. However, the approach using marked empirical processes
of covariates seems to be problematic when the covariateX is multivariate because of possible
dependencies between the components of X, as pointed out in Stute et al. (2008, p. 454).
Koul and Song (2010) check parametric models for the variance function and therefore are
not directly comparable with our approach, but their tests have some desirable properties
as well: they are distribution free (converging to a Brownian motion), and able to detect
alternatives of order n−1/2. Koul and Song’s tests are based on a Khmaladze type transform
of a marked empirical process of univariate covariates. Therefore a generalisation to the case
of a multivariate X does not seem to be advisable.

Summing up, our approach is new in that we are the first to use a completely nonpara-
metric approach based on weighted “marked” empirical process of (univariate) residuals to
test for heteroskedasticity. Our tests achieve the parametric rate root-n, which, so far, could
only be achieved in Zhu et al. (2001), or if the tests involve some parametric component,
e.g. a parametric model for the variance function. Another advantage of our method is that
the proposed tests are asymptotically distribution free (and quantiles are readily available),
while most of the competing approaches require bootstrap to implement the test.

In this article we are also interested in the case when responses Y are missing at random
(MAR), which we call the “MAR model”, in order to distinguish it from the “full model”,
when all data are completely observed. In the MAR model the observations can be written as
independent copies (X1, δ1Y1, δ1), . . . , (Xn, δnYn, δn) of a base observation (X, δY, δ), where δ
is an indicator which equals one if Y is observed and zero otherwise. Assuming that responses
are missing at random means the distribution of δ given the pair (X, Y ) depends only on
the covariates X (which are always observed), i.e.

P (δ = 1|X, Y ) = P (δ = 1|X) = π(X).

This implies that Y and δ are conditionally independent given X. Assuming that responses
are missing at random is often reasonable; see Little and Rubin (2002, Chapter 1). Working
with this missing data model is advantageous because the missingness mechanism is ignor-
able, i.e. π(·) can be estimated. It is therefore possible to draw valid statistical conclusions
without auxiliary information, in contrast to the model with data that are “not missing at
random” (NMAR). Note how the MAR model covers the full model as a special case with
all indicators δ equal to 1, hence π(·) ≡ 1.

We will show that our test statistics Tn, defined in (2.2) for the full model, and Tn,c,
defined in (3.1) for the MAR model, may be used to test for the presence of heteroskedasticity.
The subscript “c” indicates that our test statistic Tn,c uses only the completely observed
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data; i.e. we use only observations (X, Y ) where δ equals one, called the complete cases.
In particular, we use only the available residuals ε̂j,c = Yj − r̂c(Xj), where r̂c is a suitable
complete case estimator of the regression function r. Demonstrating this will require two
steps. First, we study the full model and provide the limiting distribution of the test statistic
Tn under the null hypothesis in Theorem 1. Then we apply the transfer principle for complete
case statistics (Koul et al., 2012) to adapt the results of Theorem 1 to the MAR model.

Since residuals can only be computed for data (X, Y ) that are completely observed,
the transfer principle is useful for developing residual-based statistical procedures in MAR
regression models. Our proposed (residual-based) tests are asymptotically distribution free.
The transfer principle guarantees, in this case, that the test statistic and its complete case
version have the same limiting distribution (under a mild condition). This means that one
can simply omit the incomplete cases and work with the same quantiles as in the full model,
which is desirable due to its simplicity.

This article is structured as follows. Section 2 contains the statement of the test statistic
and the asymptotic results for the full model. Section 3 extends the results of the full model
to the MAR model. Simulations in Section 4 investigate the performance of these tests.
Technical arguments supporting the results in Section 2 are given in Section 5. Section 6
concludes the article with a discussion of possible extensions of the proposed methodology.

2. Completely observed data

We begin with the full model and require the following standard condition (which guar-
antees good performance of nonparametric function estimators):

Assumption 1. The covariate vector X is quasi-uniform on the cube [0, 1]m; i.e. X has
a density that is bounded and bounded away from zero on [0, 1]m.

As in Müller, Schick and Wefelmeyer (2009), we require the regression function to be in
the Hölder space H(d, γ), i.e. it has continuous partial derivatives of order d (or higher) and
the partial d-th derivatives are Hölder with exponent γ ∈ (0, 1]. We estimate the regression
function r by a local polynomial smoother r̂ of degree d. The choice of d will not only depend
on the number of derivatives of r, but also on the dimension m of the covariate vector. (We
will need more smoothness if m is large.) We write F and f for the distribution function
and the density of the errors σ0e which will have to satisfy certain smoothness and moment
conditions.

In order to describe the local polynomial smoother, let i = (i1, . . . , im) be a multi-index
and I(d) be the set of multi-indices that satisfy i1 + . . . + im ≤ d. Then r̂ is defined as the

component β̂0 corresponding to the multi-index 0 = (0, . . . , 0) of a minimiser

(2.1) β̂ = arg min
β=(βi)i∈I(d)

n∑
j=1

{
Yj −

∑
i∈I(d)

βiψi

(Xj − x
cn

)}2

w
(Xj − x

cn

)
,

where

ψi(x) =
xi11
i1!
· · · x

im
m

im!
, x = (x1, . . . , xm) ∈ [0, 1]m,

w(x) = w1(x1) · · ·wm(xm) is a product of probability densities with compact support, and
cn is a bandwidth. A typical choice for wi would be the Epanechnikov or the tricube kernel.
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The estimator r̂ was studied in Müller et al. (2009), who provide a uniform expansion of an
empirical distribution function based on residuals

ε̂j = Yj − r̂(Xj), j = 1, . . . , n.

The proof uses results from a crucial technical lemma, Lemma 1 in that article (written here
as Lemma 1 in Section 5), which gives important asymptotic properties of r̂. We will use
these properties in Section 5 to derive the limiting distribution of our test statistic, which is
based on a weighted version of the empirical distribution function proposed by Müller et al.
(2009).

For the full model, the test statistic is given as

(2.2) Tn = sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣
with

(2.3) Ŵj =
{
ω(Xj)−

1

n

n∑
k=1

ω(Xk)
}/[ 1

n

n∑
m=1

{
ω(Xm)− 1

n

n∑
k=1

ω(Xk)
}2]1/2

, ω ∈ Σ,

for j = 1, . . . , n. The term in absolute brackets of (2.2) is an approximation (under H0) of
the process Sn(t) from the Introduction, now with the standardised weights Wj from (1.3)

replaced by empirically estimated weights Ŵj. Recall that ω must be a non-constant function,
i.e. ω ∈ Σ, which is crucial to guarantee that the test is able to detect heteroskedasticity.

We arrive at our main result, the limiting distribution for the test statistic Tn in the fully
observed model. The proof is given in Section 5.

Theorem 1. Let the distribution G of the covariates X satisfy Assumption 1. Suppose
the regression function r belongs to the Hölder space H(d, γ) with s = d + γ > 3m/2;
the distribution F of the error variable σ0e has mean zero, a finite moment of order ζ >
4s/(2s − m) and a Lebesgue density f that is both uniformly continuous and bounded; the
kernel functions w1, . . . , wm used in the local polynomial smoother (2.1) are (m + 2)−times
continuously differentiable and have compact support [−1, 1]. Let cn ∼ {n log(n)}−1/(2s). Let
the null hypothesis hold. Then

Tn = sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣
with Ŵj specified in (2.3) above, converges in distribution to supt∈[0,1] |B0(t)|, where B0 de-
notes the standard Brownian bridge.

The distribution of supt∈[0,1] |B0(t)| is a standard distribution, whose upper α-quantiles
bα can be approximately calculated using formula (12) on page 34 of Shorack and Wellner
(1986), i.e.

P
(

sup
t∈[0,1]

∣∣B0(t)
∣∣ ≤ b

)
=

√
2π

b

∞∑
k=1

exp
(
− (2k − 1)2π2

8b2

)
, b > 0.

We calculate that b0.05 = 1.1779 is an appropriate quantile for a 5% level test.
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Remark 1 (power under fixed alternatives). It is possible that the test has no
power if the detection function ω is not properly chosen. To see this consider the difference

E
[{
ω(X)− E

[
ω(X)

]}
1[ε ≤ t]

]
from equation (1.2) in the introduction, which is zero under H0. The test has no power if
the difference is also zero under Ha, i.e. if

E
[
ω(X)1[ε ≤ t]

]
= E

[
ω(X)F

( t

σ(X)

)]
= E{ω(X)}E

[
F
( t

σ(X)

)]
= E{ω(X)}E

[
1[ε ≤ t]

]
,

which means that ω(X) and F (t/σ(X)) are uncorrelated. This happens, for example, if X
and ε are both uniformly distributed on [0, 1] and if σ(X) = [1 + sin(2πX)]−1 and ω(X) =
1 + cos(2πX). Then E[ω(X)F (t/σ(X))] = tE[ω(X)/σ(X)]. It is easy to check that this
indeed equals tE[ω(X)]E[1/σ(X)] since E[ω(X)/σ(X)] = E[ω(X)] = E[1/σ(X)] = 1.

Remark 2 (power under local alternatives). To derive the power of the test
under local alternatives of the form σ = σn∆ = σ0 + n−1/2∆ with σn∆ ∈ Σ, we use Le
Cam’s third lemma. This result states that a local shift ∆ away from the null hypothesis
results in an additive shift of the asymptotic distribution of Tn; see e.g. page 90 of van der
Vaart (1998). The shift is calculated as the covariance between Tn and log(dFn∆/dF ) under
H0 where ε = σ0e. Here Fn∆(t) = P ({σ0 + n−1/2∆(X)}e ≤ t |X). A brief sketch shows
E[Tn log(dFn∆/dF )] is equal to

E
[{
n−1/2

n∑
j=1

Wj1
[
σ0ej ≤ t

]}{
n−1/2

n∑
j=1

∆(Xj) + n−1/2

n∑
j=1

∆(Xj)σ0ej
f ′(σ0ej)

f(σ0ej)

}]
+ o(1)

= E[W∆]F (t) + E[W∆]

∫ t

−∞
s
f ′(s)

f(s)
F (ds) + o(1)

= t f(t)E[W∆] + o(1).

Here we have, for simplicity, assumed that F is differentiable with finite Fisher information
for location and scale. Hence, under a contiguous alternative Ha, the distribution of the
test statistic Tn limits to supt∈[0,1] |B0(t) + F−1(t){f ◦ F−1(t)}E[W∆]|, writing F−1 for the
quantile function of F .

Since the weights in our test statistic are standardised, only the shape of ω may have
an effect on the behaviour of the statistic – location and scale have no influence. From
Remark 2 we know that the test has no power under local alternatives if E[W∆] = 0, i.e. by
definition of W , if the detection function ω(X) and the scale function σ(X) = σ0+n−1/2∆(X)
are uncorrelated. This happens, for example, if X has a standard uniform distribution, if
∆(X) = 1 + sin(2πX) and if we choose ω(X) = 1 + cos(2πX); cf. Remark 1.

From Remark 2 it is also clear that the power of the test increases with E(W∆), i.e.
if ω(X) and ∆(X) are highly correlated. So it can be expected that the test will perform
best when ω is a linear transformation of the scale function σ. This suggests choosing ω
similar in shape to σ, in order to obtain a powerful test. We propose using ω = σ̂, where σ̂
is a consistent estimator of σ. Assume for simplicity that the regression function r and the
second conditional moment r2(·) = E[Y 2 |X = (·)] of Y given X belong to the same Hölder
class H(d, γ) with s = d+ γ. Then r2 can be estimated by a local polynomial smoother r̂2,
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which is defined as r̂ in (2.1) but now with Y 2
j in place of Yj, j = 1, . . . , n. This leads to an

estimator of σ using σ̂ = {r̂2 − r̂2}1/2. The estimated weights are then given by

(2.4) W̃j =
{
σ̂(Xj)−

1

n

n∑
k=1

σ̂(Xk)
}/[ 1

n

n∑
m=1

{
σ̂(Xm)− 1

n

n∑
k=1

σ̂(Xk)
}2]1/2

for j = 1, . . . , n.
The formal result for this choice of weights is given in Theorem 2 below.
Note that the weights in (2.4) are non-degenerate under the null hypothesis because the

terms in the numerator and in the denominator have the same asymptotic order. Since
the statistic converges weakly to a Gaussian process, which is determined by its mean and
covariance functions, and since our weights are scaled and centred, they do not affect the
asymptotic distribution.

Theorem 2. Suppose the assumptions of Theorem 1 are satisfied with the error variable
σ0e having a finite moment of order larger than 8. Assume that r and r2 belong to the Hölder
space H(d, γ) with s = d+ γ > 3m/2. Then under the null hypothesis

T̃n = sup
t∈R

∣∣∣n−1/2

n∑
j=1

W̃j1
[
ε̂j ≤ t

]∣∣∣
with W̃j specified in (2.4) above, converges in distribution to supt∈R |B0(t)|, where B0 denotes

the standard Brownian bridge. In addition, T̃n consistently detects alternative hypotheses
σ ∈ H(d, γ), and T̃n is asymptotically most powerful for detecting local alternative hypotheses
of the form σ0 + n−1/2∆(·), where ∆ ∈ H(d, γ).

The first part of Theorem 2 is verified in the supplementary online materials. The
last statement concerning the power of the test follows from Remark 2 and the discussion
afterwards, combined with the fact that we can consistently estimate the scale provided
∆ ∈ H(d, γ).

3. Responses missing at random

We now consider the MAR model. The complete case test statistic is given by

Tn,c = sup
t∈R

∣∣∣N−1/2

n∑
j=1

δjŴj,c1
[
ε̂j,c ≤ t

]∣∣∣, with ε̂j,c = Yj − r̂c(Xj).(3.1)

Here N =
∑n

j=1 δj is the number of complete cases and Ŵj,c denotes the weights from equa-

tion (2.3) in the previous section, which are now constructed using only the complete cases.

The estimator r̂c is the complete case version of r̂; i.e. the component β̂c,0 corresponding to
the multi-index 0 = (0, . . . , 0) of a minimiser

β̂c = arg min
β=(βi)i∈I(d)

n∑
j=1

δj

{
Yj −

∑
i∈I(d)

βiψi

(Xj − x
cn

)}2

w
(Xj − x

cn

)
,

which is defined as in the previous section, but now also involves the indicator δj.
The transfer principle for complete case statistics (Koul et al., 2012) states that if the

limiting distribution of a statistic in the full model is L(Q), with Q the joint distribution
of (X, Y ), then the distribution of its complete case version in the MAR model will be
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L(Q1), where Q1 is the conditional distribution of (X, Y ) given δ = 1. The implication holds
provided Q1 satisfies the same model assumptions as Q. For our problem this means that Q1

must meet the assumptions imposed on Q by Theorem 1. It is easy to see how this affects
only the covariate distribution G. Due to the independence of X and e, the distribution Q
of (X, Y ) factors into the marginal distribution G of X and the conditional distribution of
Y given X, i.e. the distribution F of the errors σ0e. This means we can write Q = G ⊗ F .
The MAR assumption implies that e and δ are independent. Hence the distribution F of
the errors remains unaffected when we move from Q to the conditional distribution Q1 given
δ = 1, and we have Q1 = G1 ⊗ F , where G1 is the distribution of X given δ = 1. Thus,
Assumption 1 about G must be restated; we also have to assume the detection function ω is
square-integrable with respect to G1.

Assumption 2. The conditional distribution G1 of the covariate vector X given δ = 1
is quasi-uniform on the cube [0, 1]m; i.e. it has a density that is bounded and bounded away
from zero on [0, 1]m.

The limiting distribution L(Q) of the test statistic in the full model in Theorem 1 is given
by supt∈[0,1] |B0(t)|. Hence it does not depend on the joint distribution Q of (X, Y ) (or on
unknown parameters). This makes the test particularly interesting for the MAR model, since
the limiting distribution of the complete case statistic L(Q1) is the same as the distribution
of the full model statistic, L(Q1) = L(Q), i.e. it is also given by supt∈[0,1] |B0(t)|. Combining
these arguments already provides proof for the main result for the MAR model.

Theorem 3. Let the null hypothesis hold. Suppose the assumptions of Theorem 1 are
satisfied, with Assumption 2 in place of Assumption 1, and let ω ∈ L2(G1) be positive and
non-constant. Write

Ŵj,c =
{
δjω(Xj)−

1

N

n∑
k=1

δkω(Xk)
}/[ 1

N

n∑
m=1

{
δmω(Xm)− 1

N

n∑
k=1

δkω(Xk)
}2]1/2

and ε̂j,c = Yj − r̂c(Xj). Then

Tn,c = sup
t∈R

∣∣∣N−1/2

n∑
j=1

δjŴj,c1
[
ε̂j,c ≤ t

]∣∣∣
converges in distribution to supt∈[0,1] |B0(t)|, where B0 denotes the standard Brownian bridge.

This result is very useful: if the assumptions of the MAR model are satisfied it allows us
to simply delete the incomplete cases and implement the test for the full model; i.e. we may
use the same quantiles.

Remark 3. Following the discussions above and those preceding Theorem 2 in the previ-
ous section we can construct estimated weights based on complete cases as follows. The first
and second conditional moments of Y given X can be estimated by complete case versions
r̂c and r̂2,c of the local polynomial smoothers r̂ and r̂2. Hence, σ̂c(·) = {r̂2,c(·) − r̂2

c (·)}1/2 is
a consistent complete case estimator of ω(·) = σ(·) (which optimises the power of the test).
The complete case version of the test statistic T̃n is

T̃n,c = sup
t∈R

∣∣∣N−1/2

n∑
j=1

δjW̃j,c1
[
ε̂j,c ≤ t

]∣∣∣,
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where the weights W̃j,c are complete case versions of W̃j; see (2.4). The transfer principle

then implies that the results of Theorem 2 continue to hold for T̃n,c, i.e. T̃n,c tends under
the null hypothesis in distribution to supt∈[0,1] |B0(t)| and is asymptotically most powerful
for detecting smooth local alternatives.

4. Simulation results

A brief simulation study demonstrates the effectiveness of a hypothesis test using the
test statistics given above for the full model and the MAR model.

The test statistics for the full model and the MAR model are based on the nonparametric
estimator r̂ (see (2.1)), which involves a bandwidth cn = c {n log(n)}−1/(2s), with proportion-
ality constant c that has to be suitably chosen. We recommend selecting cn (and thus c)
by cross-validation, i.e. cn is the bandwidth that minimises the leave-one-out cross-validated
estimate of the mean squared prediction error (see e.g. Härdle and Marron, 1985). This
procedure is easy to implement, is fully data-driven and performed well in our study. It can
also be used in the scale function estimator σ̂ for a test based on T̃n, which is what we did
in the examples below.

The test level is α = 5% in the following and the asymptotic quantile (introduced after
Theorem 1) is therefore b0.05 ≈ 1.1779. For small to moderate sample sizes we recommend
the smooth residual bootstrap approach by Neumeyer (2009) for estimating the quantiles,
which worked well in our simulation study. In particular, when the sample sizes were small
(50 or less) the results using the asymptotic quantile b0.05 were not satisfactory in general and
the results using the bootstrap quantile were more plausible. At moderate and larger sample
sizes the bootstrap quantiles and the asymptotic quantile b0.05 produced similar results.

The bootstrap method is suitable for our setting as it makes it possible to produce a
smooth bootstrap distribution that satisfies our model assumptions. Note that the smooth
bootstrap approach is based on residuals ε̂ = Y − r̂(X) and the estimated weights W̃j from
(2.4), i.e. it also involves the bandwidths selected by cross-validation that were introduced
above.

Example 1: testing for heteroskedasticity with one covariate. For the simulations
we chose the regression function as

r(x) = 2x+ 3 cos(πx)

to preserve the nonparametric nature of the model. The covariates were generated from a
uniform distribution and errors from a standard normal distribution: Xj ∼ U(−1, 1) and
ej ∼ N(0, 1) for j = 1, . . . , n. Finally, the indicators δj have a Bernoulli(π(x)) distribution,
with π(x) = P (δ = 1|X = x). In this study we use a logistic distribution function for π(x)
with a mean of 0 and a scale parameter of 1. As a consequence the average amount of missing
data is around 50%, ranging between 27% and 73%. We work with d = 1, the locally linear
smoother and sample sizes 50, 100, 200 and 300.

In order to investigate the level and power of the test in the full model and in the MAR
model we consider the following scale functions:

σ0(x) = 1, σ1(x) = 0.4 + 4x2,

σ2(x) = 2ex − 0.5, σ3(x) = 1 + 15n−1/2x2.



12 J. CHOWN AND U.U. MÜLLER
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Alternative Model 3 (σ3)

Figure 1. Scatter plots of absolute valued residuals. Each plot also shows the
underlying scale function in black (solid line) and a kernel smoothed estimate
of the scale function in red (dashed line).

The constant scale function σ0 allows for the (5%) level of the test to be checked. As an
illustration, we generated a random dataset of size 100 for each scenario. A scatter plot of
the residuals (in absolute value) from the nonparametric regression is given for each dataset
(Figure 1).

The simulations based on (non-constant) scale functions σ1, σ2 and σ3 give an indication
of the power of the test in different scenarios. In particular, we consider the power of the
test against the local alternative σ3. The power is maximised if ω equals the scale function
σ (or is a linear transformation of σ); see Remark 2 in Section 2 and the discussion following
it. The formula for the weights based on an estimator σ̂(x) = {r̂2(x)− r̂2(x)}1/2 of σ is given
in (2.4).
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HHH
HHHσ
n

50 100 200 300

σ0 0.016 (0.058) 0.019 (0.056) 0.033 (0.039) 0.039
σ1 0.426 (0.477) 0.939 (0.945) 1.000 (1.000) 1.000
σ2 0.487 (0.631) 0.971 (0.957) 1.000 (0.996) 1.000
σ3 0.127 (0.176) 0.299 (0.387) 0.500 (0.576) 0.668

Table 1. Example 1: Simulated level (σ0 figures) and power for fully observed
data (T̃n). Figures in parentheses are obtained from bootstrap quantiles.

HHH
HHHσ
n

50 100 200 300

σ0 0.009 (0.054) 0.015 (0.051) 0.029 (0.048) 0.037
σ1 0.097 (0.173) 0.482 (0.573) 0.957 (0.953) 0.998
σ2 0.112 (0.223) 0.443 (0.550) 0.945 (0.913) 1.000
σ3 0.032 (0.080) 0.097 (0.148) 0.197 (0.283) 0.304

Table 2. Example 1: Simulated level (σ0 figures) and power for missing data
(T̃n,c). Figures in parentheses are obtained from bootstrap quantiles.

To check the performance of our test we conducted simulations of 1000 runs. Table 1
shows the test results for fully observed data (T̃n). Similar results are given for missing data
(T̃n,c) in Table 2.

The figures corresponding to the null hypothesis (σ0) show that test levels for fully
observed data (T̃n) are near the desired 5% at larger sample sizes (3.9% at sample size
300) but more conservative at smaller sample sizes (1.6% at sample size 50). The results
for missing data (T̃n,c) are further away from 5% when the sample size is small and the
asymptotic quantile b0.05 is used. Both testing procedures appear to have levels near the
desired 5% when the smooth bootstrap quantiles are used, which is expected.

We now consider the power of each test beginning with σ1. The procedure for fully
observed data (T̃n) performs very well at moderate and larger sample sizes. For example, we
rejected the null hypothesis 93.9% of the time at the moderate sample size of 100 using the
asymptotic quantile. In this case, results using the smooth bootstrap quantile were almost
identical (rejecting 94.5% of the time). Similar results were obtained for missing data (T̃n,c),
but they are (as expected) less impressive. Note that the smooth bootstrap quantiles do not
(in general) perform dramatically better than the asymptotic quantile b0.05.

The figures corresponding to σ2 and σ3 show that both tests have difficulty rejecting
when samples are small. The procedure for fully observed data (T̃n) only rejected the null
hypothesis 48.7% (σ2) and 12.7% (σ3) of the time for samples of size 50 and less often when
data were missing. Here the smooth bootstrap quantiles show improved performance over
the asymptotic quantile b0.05 and reject the null hypothesis 63.1% (σ2) and 17.6% (σ3) of the
time. The results are similar for missing data but with reduced performance (as expected).

In conclusion, each test performs well and the procedures T̃n and T̃n,c proposed in this
article appear promising for detecting heteroskedasticity. When sample sizes are small the
smooth bootstrap quantiles appear to be helpful.
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HHH
HHHσ
n

50 100 200 300

σ0 0.017 0.015 0.016 0.019
σ1 0.153 0.749 0.996 1.000
σ2 0.027 0.023 0.025 0.026

Table 3. Example 2: Simulated level (σ0 figures) and power for T̃n using
detection function ω1 = σ1.

HHH
HHHσ
n

50 100 200 300

σ0 0.003 0.010 0.018 0.019
σ1 0.085 0.415 0.904 0.989
σ2 0.015 0.037 0.118 0.208

Table 4. Example 2: Simulated level (σ0 figures) and power for T̃n using
detection function ω2 = 1 + cos((π/2)(x1 + x2)).

HHH
HHHσ
n

50 100 200 300

σ0 0.063 0.049 0.060 0.069
σ1 0.186 0.617 0.971 1.000
σ2 0.477 0.934 1.000 1.000

Table 5. Example 2: Simulated level (σ0 figures) and power for T̃n using
detection function ω3 as an estimated scale function.

Example 2: testing for heteroskedasticity with two covariates. Here we work with
the regression function

r(x1, x2) = 2x1 − x2 + 3ex1+x2 .

The covariates X1 and X2 are generated from a joint normal distribution, with component
variances 1 and correlation coefficient 1/2, restricted to the interval [−1, 1]2 by rejection
sampling. As above we generate the model errors from a standard normal distribution. In
this example we do not consider missing data because we expect the conclusions to mirror
those of the first simulation study. We are interested in the performance of our testing
procedure when we select different weights. We work with d = 3, the locally cubic smoother,
and sample sizes 50, 100, 200 and 300. The level of the test is 5%, as in Example 1. In
Example 1 the bootstrap and the test based on the asymptotic quantile b0.05 produced similar
results for sample sizes 100 and larger. We therefore only consider the latter method in this
example.

For the simulations we use three scale functions:

σ0 ≡ 1, σ1(x1, x2) = 0.5 + 5x2
1 + 5x2

2, σ2(x1, x2) = 4 + 3.5 sin
(
(π/2)(x1 + x2)

)
Our weights are constructed based on detection functions:

ω1 = σ1, ω2(x1, x2) = 1 + cos
(
(π/2)(x1 + x2)

)
.
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and ω3 is an estimated scale function as in Example 1. We expect that the choice ω1 = σ1

will provide the largest power for detecting σ1. We also consider the choice ω2 to illustrate
the test performance when we choose some reasonable non-constant detection function. The
detection function ω3 is based on a locally cubic estimator for the scale function.

We conducted simulations consisting of 1000 runs. The results for ω1, ω2 and ω3 are
given in Tables 3, 4 and 5, respectively. The figures corresponding to the test level α = 5%
(σ0 ≡ 1) and the fixed detection functions ω1 and ω2 show the tests using the asymptotic
quantile are conservative, which mirrors the results from Example 1. At sample size 300,
the rejection rates for the tests using ω1 and ω2 are both near 2%. The test using ω3, an
estimated scale function, generally produces higher rejection rates (but still near the nominal
level). At the sample size 300 the rejection rate for the test using ω3 is about 7%.

When we consider the remaining figures corresponding to the powers of each test, we
find considerable differences. The test using ω1 = σ1 (Table 3) provides, as expected, the
best results when σ1 is in fact the underlying scale function. The corresponding figures for
the test that uses the estimated scale function ω3 (Table 5) are similar. The results in Table
4 indicate that the test using ω2 = 1 + cos((π/2)(x1 + x2)) is less effective for detecting σ1,
but still quite good for the larger sample sizes 200 and 300. Comparing the three tests in
Tables 3-5 for detecting σ2, we see that only the test with the estimated scale function ω3

appears to be powerful.
Only at very large sample sizes can we expect that all three testing procedures will

provide similar results. In conclusion, we find the test using an arbitrary non-constant weight
function is useful but will normally be outperformed by a test using estimated weights.

Remark 4 (curse of dimensionality). The simulation results in Tables 3-5 suggest that
our proposed tests, which are based on local polynomial smoothers, may not be very reliable
when the dimension of the covariate vector is large. In this case the smoother (as well as
other nonparametric function estimators) will be affected by the “curse of dimensionality”,
which is implicated by the entropy results in Section 5. To meet the situation with many
covariates in practice, we recommend working with dimension-reducing transformations:
choose, for example, a transformation ξ of the covariate vector X such that V = ξ(X) is just
one covariate (and the function estimator is not affected by the dimensionality problem). A
popular example would be the single-index model, where ξ is a linear combination of the
components of X. Working with such transformations will not change the independence-
dependence structure between the detection function and the errors, which is key for our
procedure to work.

5. Technical details

In this section we present the proof of Theorem 1, the limiting distribution of Tn under
the null hypothesis, and some auxiliary results. As explained in Section 3, we do not have
to prove Theorem 3 for the MAR model: it suffices to consider the full model and the test
statistic Tn. Our approach consists of two steps. Our first step will be to use Theorem
2.2.4 in Koul’s 2002 book on weighted empirical processes to obtain the limiting distribution
of an asymptotically linear statistic (a sum of i.i.d. random variables) that is related to
Tn. Then we review some results from Müller, Schick and Wefelmeyer (2009), who propose
local polynomial smoothers to estimate a regression function of many covariates. Using
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these results, we will show that the statistic Tn and the asymptotically linear statistic are
indistinguishable for large samples, i.e. they have the same limiting distribution.

The asymptotically linear statistic, which is an empirical process related to Tn, is defined
similarly to Tn as

(5.1) sup
t∈R

∣∣∣n−1/2

n∑
j=1

Wj

{
1[εj ≤ t]− F (t)

}∣∣∣ = sup
t∈R

∣∣∣n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}∣∣∣,
where εj = σ0ej is the unobserved “model error” from the null hypothesis and W1, . . . ,Wn

are the standardised weights given in (1.3). We will now demonstrate that (under H0) the
requirements for Koul’s theorem are satisfied. The asymptotic statement is given afterwards
in Corollary 1.

Theorem 2.2.4 of Koul (2002) states that

ζn(t) = n−1/2

n∑
j=1

Dj

{
1
[
Cj ≤ t

]
−K(t)

}
D−→ ξ

{
B0 ◦K(t)

}
, t ∈ R, as n→∞,

where B0 is the standard Brownian bridge in the Skorohod space D[0, 1], independent of a
random variable ξ. The roles of his random variable Cj and the square integrable random
variable Dj, which are assumed to be independent, are now played by σ0ej and Wj, j =
1, . . . , n. The distribution function K corresponds to our error distribution function F and
is assumed to have a uniformly continuous Lebesgue density. The random variable ξ from
above comes from Koul’s requirement that∣∣∣ 1

n

n∑
j=1

D2
j

∣∣∣1/2 = ξ + op(1) for some positive r.v. ξ.

Here we work with Wj, in place of Dj, with E(W 2
j ) = 1. Therefore, by the law of

large numbers, n−1
∑n

j=1W
2
j = 1 + op(1) and, using the continuous mapping theorem,

|n−1
∑n

j=1 W
2
j |1/2 = 1 + op(1), i.e. ξ ≡ 1. Hence we have

n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}
D−→ B0 ◦ F (t), t ∈ R, as n→∞.

Taking the supremum with respect to t ∈ R, the right-hand side becomes supt∈R |B0 ◦
F (t)| = supt∈[0,1] |B0(t)|, which specifies the asymptotic distribution of the asymptotically
linear statistic (5.1). Note that Koul’s theorem also provides the limiting distribution for a

shifted version ζ̂n of ζn that involves random variables Z1, . . . , Zn. Since we only need the
simpler result for ζn, we do not need to verify the more complicated assumptions regarding
the Zj’s. This shows the conditions of Theorem 2.2.4 in Koul (2002) are indeed satisfied.
We will formulate this result as a corollary. Since we only require the weights to be square-
integrable functions of Xj with E(W 2

j ) = 1, we will not require the explicit form (1.3).

Corollary 1. Consider the homoskedastic nonparametric regression model Y = r(X)+
σ0e. Assume the distribution function F of the errors has a uniformly continuous Lebesgue
density f that is positive almost everywhere. Further, let Wj be a square integrable function
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of Xj satisfying E(W 2
j ) = 1, j = 1, . . . , n. Then

sup
t∈R

∣∣∣n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}∣∣∣ D−→ sup
t∈[0,1]

|B0(t)|, as n→∞,(5.2)

where B0 denotes the standard Brownian bridge.

For our second step, we will show that Tn and the asymptotically linear statistic (5.1)
are asymptotically equivalent. To begin we rewrite Tn, using the identity (under H0) ε̂ =
Y − r̂(X) = σ0e− r̂(X) + r(X), as

sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣ = sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]∣∣∣.
We will first consider the shift in the indicator function from t to t+ r̂ − r, which comes in
because Tn involves an estimator r̂ of the regression function.

Consider now the Hölder space H(d, γ) from Section 2, i.e. the space of functions that
have partial derivatives of order d that are Hölder with exponent γ ∈ (0, 1]. For these
functions we define the norm

‖h‖d,γ = max
i∈I(d)

sup
x∈[0,1]m

∣∣Dih(x)
∣∣+ max

i∈I(d)
sup

x, y∈[0,1]m, x6=y

|Dih(y)−Dih(x)|
‖x− y‖γ

,

where ‖v‖ is the Euclidean norm of a real-valued vector v and

Dih(x) =
∂i1+···+im

∂xi11 · · · ∂ximm
h(x), x = (x1, . . . , xm) ∈ [0, 1]m.

Write H1(d, γ) for the unit ball of H(d, γ) using this norm. These function spaces are
particularly useful for studying local polynomial smoothers r̂ as defined in Section 2. Müller
et al. (2009) make use of these spaces to derive many useful facts concerning regression
function estimation using local polynomials. We will use some of their results to prove
Theorem 1; see Lemma 1 below.

Lemma 1 (Lemma 1 of Müller, Schick and Wefelmeyer, 2009). Let the local
polynomial smoother r̂, the regression function r, the covariate distribution G and the error
distribution F satisfy the assumptions of Theorem 1. Then there is a random function â
such that, for some α > 0,

P (â ∈ H1(m,α))→ 1,(5.3)

sup
x∈[0,1]m

∣∣r̂(x)− r(x)− â(x)
∣∣ = op(n

−1/2).(5.4)

We now use these results to show the difference between the asymptotically linear statistic
(5.1) and an empirical process related to the shifted version of Tn (called R1 in Lemma 2
below) are asymptotically negligible. An unweighted version of that difference (with Wj = 1)
is considered in Theorem 2.2 of Müller, Schick and Wefelmeyer (2007). Since that statistic
does not involve centred weights, the second part of R1 (called R2 in the lemma) is not
asymptotically negligible: it becomes a stochastic drift parameter that depends on the error
density f (f(t)

∫
â dQ in that article) and is therefore not distribution free. This is in contrast

to our case where we have mean zero weights, so R2 does not affect the limiting distribution.
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Lemma 2. Let the null hypothesis hold. Suppose the assumptions of Theorem 1 on r̂, r,
G and F are satisfied. Let Wj be a square integrable function of Xj satisfying E[W 2

j ] <∞,

j = 1, . . . , n. Then supt∈R |R1| = op(n
−1/2), where

R1 =
1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− 1[σ0ej ≤ t]− F

(
t+ r̂(Xj)− r(Xj)

)
+ F (t)

}
.

If, additionally, E[Wj] = 0, j = 1, . . . , n, then supt∈R |R2| = op(n
−1/2), where

R2 =
1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

}
.

Proof. Observe that the class of functions

F =
{

(X, σ0e) 7→ W
{
1
[
σ0e ≤ t+ a(X)

]
− F

(
t+ a(X)

)}
: t ∈ R, a ∈ H1(m,α)

}
is G⊗F -Donsker, which follows from the fact that Wj is a fixed, square-integrable function of
Xj and the class of indicator functions in the definition of F is G⊗F -Donsker from Theorem
2.1 of Müller et al. (2007). It then follows from Corollary 2.3.12 of van der Vaart and
Wellner (1996) that empirical processes ranging over the Donsker class F are asymptotically
equicontinuous, i.e. we have, for any ϕ > 0,

(5.5) lim
κ↓0

lim sup
n→∞

P
(

sup
{f1, f2∈F : Var(f1−f2)<κ}

n−1/2
∣∣∣ n∑
j=1

{
f1(Xj, σ0ej)− f2(Xj, σ0ej)

}∣∣∣ > ϕ
)

= 0.

We are interested in the case that involves the approximation â of r̂ − r in place of a (see
Lemma 1). Then the corresponding class of functions is, in general, no longer Donsker (and
the equicontinuity property does not hold). However, we can assume that â is in H1(m,α),
which holds on an event that has probability tending to one. This together with a negligibility
condition on the variance guarantees that the extended class of processes involving â is also
equicontinuous.

The term R1 from the first assertion can be written as the sum of

(5.6)
1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ â(Xj)

]
− 1[σ0ej ≤ t]− F

(
t+ â(Xj)

)
+ F (t)

}
and

1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)}
(5.7)

− 1

n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ â(Xj)

]
− F

(
t+ â(Xj)

)}
.

The first assertion, ‖R1‖∞ = op(n
−1/2), will follow if we show this separately for the two

terms in (5.6) and (5.7). Consider (5.6) first. We fix the function â by conditioning on the
observed data D = {(X1, Y1), . . . , (Xn, Yn)}. The variance of a function from the extension
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of F that involves â instead of a is

Var
[
W
{
1
[
σ0e ≤ t+ â(X)

]
− 1[σ0e ≤ t]− F

(
t+ â(X)

)
+ F (t)

} ∣∣∣D]
= E

[
W 2
{
F
(

max{t, t+ â(X)}
)
− F

(
min{t, t+ â(X)}

)
−
{
F
(

max{t, t+ â(X)}
)
− F

(
min{t, t+ â(X)}

)}2} ∣∣∣D].
If this variance is op(1), then the extended class of processes is equicontinuous, and the term
in (5.6) has the desired order op(n

−1/2), uniformly in t ∈ R. That the variance condition holds
true is easy to see: the last term is bounded by ‖f‖∞E

[
W 2
]
‖â‖∞ = op(1) with ‖â‖∞ = op(1)

(see page 961 of the proof of Lemma 1 in Müller et al., 2009).
Turning our attention now to the second term (5.7), we have that r̂− r = (r̂− r− â) + â,

and, by property (5.4) of Lemma 1, An = ‖r̂−r−â‖∞ = op(n
−1/2). WriteW−

j = Wj1[Wj < 0]

and W+
j = Wj1[Wj ≥ 0] for the negative and the positive part of Wj, i.e. Wj = W−

j +W+
j ,

j = 1, . . . , n. This yields the following bounds for the weighted indicator functions:

W−
j 1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
≤ W−

j 1
[
σ0ej ≤ t− An + â(Xj)

]
,

W−
j 1
[
σ0ej ≤ t+ â(Xj)

]
≥ W−

j 1
[
σ0ej ≤ t+ An + â(Xj)

]
,

W+
j 1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
≤ W+

j 1
[
σ0ej ≤ t+ An + â(Xj)

]
.

and
W+
j 1
[
σ0ej ≤ t+ â(Xj)

]
≥ W+

j 1
[
σ0ej ≤ t− An + â(Xj)

]
.

Straightforward calculations show that (5.7) is bounded by

1

n

n∑
j=1

{
W+
j −W−

j

}{
1
[
σ0ej ≤ t+ An + â(Xj)

]
− F

(
t+ An + â(Xj)

)}
− 1

n

n∑
j=1

{
W+
j −W−

j

}{
1
[
σ0ej ≤ t− An + â(Xj)

]
− F

(
t− An + â(Xj)

)}
+

1

n

n∑
j=1

{
W+
j −W−

j

}{
F
(
t+ An + â(Xj)

)
− F

(
t− An + â(Xj)

)}
− 1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
=

1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t+ An + â(Xj)
]
− F

(
t+ An + â(Xj)

)}
− 1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t− An + â(Xj)
]
− F

(
t− An + â(Xj)

)}
+

1

n

n∑
j=1

∣∣Wj

∣∣{F(t+ An + â(Xj)
)
− F

(
t− An + â(Xj)

)}
− 1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
.
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Hence (5.7) is op(n
−1/2) uniformly in t ∈ R holds if we show

sup
t∈R

∣∣∣ 1
n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t+ An + â(Xj)
]
− F

(
t+ An + â(Xj)

)}
(5.8)

− 1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ t− An + â(Xj)
]
− F

(
t− An + â(Xj)

)}∣∣∣ = op(n
−1/2),

(5.9) sup
t∈R

1

n

n∑
j=1

∣∣Wj

∣∣{F(t+ An + â(Xj)
)
− F

(
t− An + â(Xj)

)}
= op(n

−1/2)

and

(5.10) sup
t∈R

∣∣∣ 1
n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}∣∣∣ = op(n
−1/2).

Beginning with (5.8), since the random variables |W1|, . . . , |Wn| are square integrable,
the class of functions

F+ =
{

(X, σ0e) 7→ |W |
{
1
[
σ0e ≤ t+ a(X)

]
− F

(
t+ a(X)

)}
: t ∈ R, a ∈ H1(m,α)

}
is also G⊗F -Donsker. Therefore the asymptotic equicontinuity property holds for empirical
processes ranging over F+, i.e. (5.5) holds with F+ in place of F. However, rather than
investigating the situation where â is limiting toward zero, as we did above, we will consider
two sequences of real numbers {sn}∞n=1 and {tn}∞n=1 satisfying |tn − sn| = o(1), which cor-
responds to the case of random sequences t ± An conditional on the data D. Analogously
to the calculations following (5.5), we now prove the variance condition for the function
(X, σ0e) 7→ |W |{1[σ0e ≤ tn + a(X)]− 1[σ0e ≤ sn + a(X)]− F (tn + a(X)) + F (sn + a(X))}.
The variance is

Var
[
|W |

{
1
[
σ0e ≤ tn + a(X)

]
− 1
[
σ0e ≤ sn + a(X)

]
− F

(
tn + a(X)

)
− F

(
sn + a(X)

)}]
= E

[
W 2
{
F
(

max{tn + a(X), sn + a(X)}
)
− F

(
min{tn + a(X), sn + a(X)}

)
−
{
F
(

max{tn + a(X), sn + a(X)}
)
− F

(
min{tn + a(X), sn + a(X)}

)}2}]
.

and bounded by ‖f‖∞E[W 2]|tn−sn| = o(1). Hence we have equicontinuity, and therefore, for
any a ∈ H1(m,α) and sequences of real numbers {sn}∞n=1 and {tn}∞n=1 satisfying |tn − sn| =
o(1),

sup
t∈R

∣∣∣ 1
n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ tn + a(Xj)
]
− F

(
tn + a(Xj)

)}
− 1

n

n∑
j=1

∣∣Wj

∣∣{1[σ0ej ≤ sn + a(Xj)
]
− F

(
sn + a(Xj)

)}∣∣∣ = op(n
−1/2).

Equation (5.8) follows analogously, with tn replaced by t+ An, sn by t− An and a by â.
Now consider (5.9) and (5.10). Since E|W | ≤ E1/2[W 2] <∞, n−1

∑n
j=1 |Wj| is consistent

for E|W |. The left-hand side of (5.9) is bounded by 2‖f‖∞Ann−1
∑n

j=1 |Wj| and (5.10) is

bounded by ‖f‖∞Ann−1
∑n

j=1 |Wj|. Since An = op(n
−1/2), these bounds are also op(n

−1/2),



TESTING FOR HETEROSKEDASTICITY 21

i.e. (5.9) and (5.10) hold. This implies that the term in (5.7) has order op(n
−1/2), uniformly

in t ∈ R, which completes the proof of ‖R1‖∞ = op(n
−1/2).

We will now prove the second assertion that ‖R2‖∞ = op(n
−1/2). The proof is sim-

pler than the proof of the first assertion since we now require that the random variables
W1, . . . ,Wn have mean zero, which allows us to use the central limit theorem. Write R2 as

R2 =
1

n

n∑
j=1

Wj

{
F
(
t+ â(Xj)

)
− F (t)− E

[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]}
+ E

[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]( 1

n

n∑
j=1

Wj

)
+

1

n

n∑
j=1

Wj

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F

(
t+ â(Xj)

)}
.

Then ‖R2‖∞ is bounded by three terms:

(5.11) sup
t∈R

∣∣∣ 1
n

n∑
j=1

Wj

{
F
(
t+ â(Xj)

)
− F (t)− E

[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]}∣∣∣,
(5.12) sup

t∈R

∣∣∣E[F(t+ â(X)
)
− F (t)

∣∣∣D]∣∣∣∣∣∣ 1
n

n∑
j=1

Wj

∣∣∣,
and the third term is the left-hand side of (5.10), which we have already shown is op(n

−1/2).
From the arguments above, it follows for the class of functions

F2 =
{
X 7→ W

{
F
(
t+ a(X)

)
− E

[
F
(
t+ a(X)

)]}
: t ∈ R, a ∈ H1(m,α)

}
to be G-Donsker. Therefore, empirical processes ranging over F2 are asymptotically equicon-
tinuous as in (5.5), but now without σ0e and with F2 in place of F.

As before, we can assume that â belongs to H1(m,α). We will now show the variance
condition is satisfied for the function X 7→ W{F (t+â(X))−F (t)−E[F (t+â(X))−F (t) |D]}.
This variance is equal to

E
[
W 2
{
F
(
t+ â(X)

)
− F (t)

}2 ∣∣∣D]+ E
[
W 2
]
E2
[
F
(
t+ â(X)

)
− F (t)

∣∣∣D]
− 2E

[
W 2
{
F
(
t+ â(X)

)
− F (t)

} ∣∣∣D]E[F(t+ â(X)
)
− F (t)

∣∣∣D],
and is bounded by 2‖f‖2

∞E[W 2]‖â‖2
∞. Since ‖â‖∞ = op(1), the bound above is op(1) and the

variance is asymptotically negligible. Hence we have equicontinuity and (5.11) is op(n
−1/2),

as desired.
Finally we can bound (5.12) by ‖f‖∞‖â‖∞|n−1

∑n
j=1 Wj|. The central limit theorem

combined with E[Wj] = 0, j = 1, . . . , n, gives |n−1
∑n

j=1Wj| = Op(n
−1/2). Since ‖â‖∞ =

op(1), both the bound above and (5.12) are of the order op(n
−1/2). This completes the proof

of the second assertion that ‖R2‖∞ = op(n
−1/2). �

Using the results of Lemma 2, we will now show that the test statistic Tn and the
asymptotically linear statistic above are asymptotically equivalent. This will imply the
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limiting distribution of Tn is the same as that of the asymptotically linear statistic (5.1),
which we have already investigated; see Corollary 1.

Proof of Theorem 1. Consider the asymptotically linear statistic from (5.1),

n−1/2

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}
,

with Wj given in (1.3). It follows, by the arguments preceding Corollary 1, for this statistic
to have the limiting distribution B0 ◦ F (t), where B0 is the Brownian bridge. We will now
show that

(5.13) sup
t∈R

∣∣∣ 1
n

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]
− 1

n

n∑
j=1

Wj

{
1[σ0ej ≤ t]− F (t)

}∣∣∣ = op(n
−1/2).

Combining the above, the desired statement of Theorem 1 concerning the limiting distribu-
tion of the test statistic Tn follows, i.e.

Tn = sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣ D−→ sup
t∈[0,1]

|B0(t)|.

It follows from
∑n

j=1 Ŵj = 0 that we can decompose the difference in (5.13) into the following

sum of five remainder terms: R1 + R3 + R4 − R5 − R6, where R1 and R2 (which is part of
R3) are the remainder terms of Lemma 2, and where the other terms are defined as follows,

R3 = V̂ R2, V̂ =
( Var[ω(X1)]

1
n

∑n
j=1{ω(Xj)− 1

n

∑n
k=1 ω(Xk)}2

)1/2

,

R4 = (V̂ − 1)
( 1

n

n∑
j=1

Wj

{
1
[
σ0e ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)})
,

R5 = V̂
( 1

n

n∑
j=1

Wj

)( 1

n

n∑
j=1

{
1
[
σ0e ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)})
,

R6 = V̂
( 1

n

n∑
j=1

Wj

)( 1

n

n∑
j=1

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

})
.

Showing supt∈R |Ri| = op(n
−1/2), i = 1, . . . , 6, will conclude the proof. The statement for

i = 1 holds true by the first part of Lemma 2 and the statement for i = 2 holds true by the
second part of the same lemma. Note that the assumptions of both statements of Lemma 2
are satisfied for our choice of weights W1, . . . ,Wn. The statement for i = 3 follows from the
second statement of the same lemma regarding R2 and from the fact that the first quantity
of R3, V̂ , is a consistent estimator of one.

To show supt∈R |R4| = op(n
−1/2), we only need to demonstrate that

(5.14) sup
t∈R

∣∣∣ 1
n

n∑
j=1

Wj

{
1
[
σ0ej ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)}∣∣∣ = Op(n
−1/2),

because the first term of R4 both does not depend on t and is asymptotically negligible.
To verify (5.14), combine the statement for R1 with the limiting result (5.2) from Corollary
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1 for the asymptotically linear statistic, which shows n−1
∑n

j=1Wj{1[σ0ej ≤ t] − F (t)} =

Op(n
−1/2), uniformly in t ∈ R.

Now consider R5 and remember that both Corollary 1 and the first statement of Lemma
2 cover the special case where all of the weights are equal to one, i.e. (5.14) holds with
Wj = 1, j = 1, . . . , n. Therefore, the third term of R5 is Op(n

−1/2), uniformly in t ∈ R. It
is clear for the product of the first and second terms of R5 to be op(1). It then follows that
supt∈R |R5| = op(n

−1/2).
We find that supt∈R |R6| is bounded by

sup
t∈R
|f(t)| V̂

(
sup

x∈[0, 1]m

∣∣â(x)
∣∣+ sup

x∈[0, 1]m

∣∣r̂(x)− r(x)− â(x)
∣∣)∣∣∣ 1

n

n∑
j=1

Wj

∣∣∣,
with V̂ a consistent estimator of one. As in the proof of Lemma 2, we use supx∈[0, 1]m |â(x)| =
op(1) and supx∈[0, 1]m |r̂(x)− r(x)− â(x)| = op(1), e.g. see property (5.4) of Lemma 1. Hence,
the third term in the bound above is op(1). We can apply the central limit theorem to treat
the fourth quantity and find it is Op(n

−1/2). Combining these findings yields the bound
above is op(n

−1/2). This implies supt∈R |R6| = op(n
−1/2). �

6. Concluding remarks

We have introduced a completely nonparametric test to detect heteroskedasticity in a
regression model with multivariate covariates that not only converges at the parametric root-
n rate, but is also strikingly simple. The test has the advantage that it is asymptotically
distribution free, i.e. quantiles are readily available. The same test can also be applied if
responses are missing at random by simply omitting the cases that are not complete and
using the same quantiles. Crucial for the performance of the test is the choice of weights: we
have seen that the detection function ω should be highly correlated with the scale function
σ to maximise the power of the test. If ω and σ are not or only vaguely correlated, then
the test has no or almost no power. This suggests that it is best to work with a (possibly
estimated) detection function ω that has the same shape as σ.

The methodology developed in this article can be easily extended to form related tests
for other model conditions and/or for other regression models. We will illustrate this below
by means of two examples. In Example 1 we show how we can modify our statistic (2.2)
to obtain a test for the parametric form of the scale function. In Example 2 we discuss a
possible test for additivity of the regression function. This example is representative for tests
that are based on detecting differences in the regression function under the null and under
the alternative hypothesis.

Example 1. Our method can be modified to obtain tests for the parametric form of
the scale function, i.e. with null hypothesis σ(·) = σθ(·) for some θ ∈ Rp. Under the null
hypothesis we have ε = σθ(X)e, with e scaled and centred as before, so that the standardised
residuals Z = ε/σθ(X) = e and X are independent, which is the key prerequisite for our test
for heteroskedasticity. Hence we can simply use our test based on the statistic

sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
Ẑj ≤ t

]∣∣∣, Ẑj =
ε̂j

σθ̂(Xj)
,
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which is the statistic Tn from (2.2), now with estimated standardised residuals Ẑ in place of

ε̂, where θ̂ is a consistent estimator of θ. We expect that the test will also be asymptotically
distribution free: the standardisation will result in an asymptotically negligible drift which
only affects the indicators 1[Ẑj ≤ t]. This can be handled using similar arguments.

Example 2. Another important application are tests about the regression function.
One might, for example, want to check if certain components of the regression function
are constant or irrelevant, or if the regression function has a specific structure. Suppose, for
example, we assume an additive nonparametric model with two-dimensional covariate vector
Xj = (X1,j, X2,j)

>, i.e. the regression function is r(X1,j, X2,j) = r1(X1,j) + r2(X2,j) under
the null hypothesis. The test statistic is

sup
t∈R

∣∣∣n−1/2

n∑
j=1

Ŵj1
[
ε̂j ≤ t

]∣∣∣, ε̂j = Yj − r̂1(X1,j)− r̂2(X2,j),

where r̂1(x1) and r̂2(x2) estimate r̄1(x1) and r̄2(x2), with r̄1 = r1 and r̄2 = r2 under H0. For
sufficiently large n we have the approximation

1[ε̂ ≤ t] ≈ 1[ε ≤ t+ s(X1, X2)], s(x1, x2) = r̄1(x1) + r̄2(x2)− r(x1, x2),

where the shift s is zero if the null hypothesis holds true. To understand the construction
and the power of the test, consider again (1.2) from the introduction (cf. Remark 1 on
“power under fixed alternatives”). For simplicity assume σ(·) = σ0, i.e. ε = σ0e and X are
independent. This time we have to take the shift into account and consider the difference

E
[{
ω(X)− E

[
ω(X)

]}
1[ε ≤ t+ s(X1, X2)]

]
,

which is zero under H0, due to the independence assumption and since s ≡ 0. Under the
alternative hypothesis we have

E
[
ω(X)1[ε ≤ t+ s(X1, X2)]

]
= E

[
ω(X)F

(t+ s(X1, X2)

σ0

)]
,

which, in general, does not equal E[ω(X)]E
(
F [{t+s(X1, X2)}/σ0]

)
, i.e. the above difference

is not zero. As already observed in Remark 1, we expect a good power if the detection
function is suitably chosen, here in such a way that ω(X) and the shift function s(X1, X2)
are highly correlated.
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