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The proof of Theorem 2 follows in the same spirit as the proof of Theorem 1 in the main
article. The primary difference between the proofs is in how one handles the technical details
regarding the estimated weights W̃j, which are now more complicated due to the presence
of the scale estimator σ̂. Recall that the test statistic in Theorem 2 is given by

T̃n = sup
t∈R

∣∣∣∣n−1/2 n∑
j=1

W̃j1
[
ε̂j ≤ t

]∣∣∣∣
with estimated weights W̃j as specified in equation (2.4) in the article,

(1) W̃j =
{
σ̂(Xj)− σ̂

}/[ 1

n

n∑
k=1

{
σ̂(Xk)− σ̂

}2]1/2
for j = 1, . . . , n, writing σ̂ = n−1

∑n
j=1 σ̂(Xj).

Sketch of proof of Theorem 2. Consider the statistic

(2) sup
t∈R

∣∣∣n−1/2 n∑
j=1

Wn(Xj)
{
1
[
εj ≤ t

]
− F (t)

}∣∣∣,
with weights Wn(X1), . . . ,Wn(Xn) specified in equation (5) below. Using similar arguments
as in the proof of Theorem 1, we can show that this statistic and the test statistic T̃n are
asymptotically equivalent,

(3) sup
t∈R

∣∣∣ 1
n

n∑
j=1

W̃j1
[
ε̂j ≤ t

]
− 1

n

n∑
j=1

Wn(Xj)
{
1[εj ≤ t]− F (t)

}∣∣∣ = oP (n−1/2).

The term in absolute brackets in (2) converges in distribution to a standard Brownian bridge
B0, i.e. we have

(4) sup
t∈R

∣∣∣n−1/2 n∑
j=1

Wn(Xj)
{
1
[
εj ≤ t

]
− F (t)

}∣∣∣ D−→ sup
t∈[0,1]

B0(t) (n→∞).

Combining equations (3) and (4) yields the desired limiting result for T̃n.
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Before sketching the proofs of equations (3) and (4), let us explain the notation and
how Wn emerges. We use local polynomial smoothers and properties of local polynomial
smoothers as presented in Müller et al. (2009). For greater transparency, we therefore use
the same notation as in that article. In particular we write r̂ for the estimated regression
function and â for the approximation of the difference r̂ − r. Our estimators r̂ and r̂2
are explained in the article: r̂2 has the same form as r̂ with Y 2 in place of Y ; â and â2
approximate the differences associated with r̂ and r̂2.

Our weights Wn in the equivalent statistic (2) are

(5) Wn(·) =
(ncmn )1/2Wn,1(·)

Σ
1/2
σ̂

with

Wn,1(·) = Vn,1(·)−
∫
[0, 1]m

Vn,1(x)g(x) dx, Vn,1(x) =
1

2σ0
{â2(x)− 2r(x)â(x)}

and, writing µ4 = E[ε4] and Ψ = (ψi)i∈I(d),

Σσ̂ =
µ4 − σ4

0

4σ2
0

∫
[0, 1]m

∫
[−1, 1]m

{
eTQ−1∗ (u)Ψ(v)

}2
w2(v)g2(u) dv du;

see the article and Müller et al. (2009) for notation. The Wn,1 in the definition of Wn comes

from the numerator of W̃j in equation (1), namely from approximating σ̂(x)− σ0 by

1

2σ0
{â2(x)− r(x)â(x)};

the factor (ncmn /Σσ̂)1/2 is an approximation of the denominator of W̃j,

(6)
∣∣∣ 1
n

n∑
j=1

{
σ̂(Xj)− σ̂

}2

− Σσ̂

ncmn

∣∣∣ = oP (1).

Proceeding as in Dette (2002), who uses Corollary 3.1 of Hall and Heyde (1980), and
using equicontinuity arguments derived from Theorem 1 of Bae et al. (2014), we obtain that

(ncm/2n )
1

n

n∑
j=1

Wn,1(Xj)
{
1[εj ≤ ·]− F (·)

}
= cm/2n

n∑
j=1

Wn,1(Xj)
{
1[εj ≤ ·]− F (·)

}
converges in distribution to Σ

1/2
σ̂ B0 ◦ F . A similar argument can also be found on pages

549-551 of Koul and Ossiander (1994) in the proof of Lemma 2.1.
This yields for the scaled statistic

sup
t∈R

∣∣∣cm/2n

n∑
j=1

Wn,1(Xj)

Σ
1/2
σ̂

{
1
[
εj ≤ t

]
− F (t)

}∣∣∣
= sup

t∈R

∣∣∣n−1/2 n∑
j=1

(ncmn )1/2Wn,1(Xj)

Σ
1/2
σ̂

{
1
[
εj ≤ t

]
− F (t)

}∣∣∣
D−→ sup

t∈[0,1]
B0(t),

i.e., in view of (5), the desired limiting result (4).
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To see that (3) holds true write W n = n−1
∑n

j=1Wn(Xj) and

V ∗ =
(
Σσ̂/(nc

m
n )
)1/2/[ 1

n

n∑
k=1

{
σ̂(Xk)− σ̂

}2]1/2
.

Define the remainder terms

R∗1 =
1

n

n∑
j=1

Wn(Xj)
{
1
[
εj ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)
− 1[εj ≤ t] + F (t)

}
,

R∗2 = V ∗
1

n

n∑
j=1

Wn(Xj)
{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

}
,

R∗3 =
(
V ∗ − 1

)( 1

n

n∑
j=1

Wn(Xj)
{
1
[
εj ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)})
,

R∗4 = V ∗W n

( 1

n

n∑
j=1

{
1
[
εj ≤ t+ r̂(Xj)− r(Xj)

]
− F

(
t+ r̂(Xj)− r(Xj)

)})
,

R∗5 = V ∗W n

( 1

n

n∑
j=1

{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

})
.

The difference of the two statistics in (3) is equal to R∗1 + R∗2 + R∗3 − R∗4 − R∗5 + oP (n−1/2).
Metric entropy and equicontinuity arguments as in the proof of Lemma 2 yield supt∈R |R∗1| =
oP (n−1/2) and

sup
t∈R

∣∣∣ 1
n

n∑
j=1

Wn(Xj)
{
F
(
t+ r̂(Xj)− r(Xj)

)
− F (t)

}∣∣∣ = oP (n−1/2).

By equation (6), the quantity V ∗ consistently estimates one. This and the latter statement
give supt∈R |R∗2| = oP (n−1/2). Proceeding exactly as in Dette (2002), we obtain that the
weights Wn satisfy |W n| = OP (n−1/2). Using this and the consistency of V ∗ it follows that
supt∈R |R∗i | = oP (n−1/2), i = 3, 4, 5. �
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