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Abstract

We prove a stochastic expansion for a residual-based estimator
of the error distribution function in a partly linear regression model.
It implies a functional central limit theorem. As special cases we
cover nonparametric, nonlinear and linear regression models.

1 Introduction
We consider the partly linear regression model

Y = ϑ>U + %(X) + ε,

where the error ε is independent of the covariate pair (U,X) and the pa-
rameter ϑ is k-dimensional. We make the following assumptions.

(F) The error ε has mean zero, a finite moment of order β > 8/3, and a
density f which is Hölder with exponent ξ > 1/3.

(G) The distribution G of X is quasi-uniform on [0, 1] in the sense that
G([0, 1]) = 1 and G has a density g that is bounded and bounded away
from zero on [0, 1].

(H) The covariate vector U satisfies E[|U |2] < ∞, the matrix E[(U −
µ(X))(U−µ(X)>] is positive definite, µ is continuous and τg is bounded,
where µ(X) = E(U |X) and τ(X) = E(|U |2|X).

(R) The function % is twice continuously differentiable.
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Our goal is to estimate the distribution function F of ε based on n
independent copies (Uj, Xj, Yj) of (U,X, Y ). Our estimator of F will be
the empirical distribution function based on residuals. To obtain residuals
we need estimators of ϑ and %. Under the above assumptions, there exist
n1/2-consistent estimators of ϑ; see e.g. Schick (1996). Given such an
estimator ϑ̂ of ϑ, we estimate % by a local linear smoother %̂ as follows.
For a fixed x in [0, 1], the estimator %̂(x) is the first component of the
minimizer (β̂0, β̂1) of

n∑
j=1

(
Yj − ϑ̂>Uj − β0 − β1

Xj − x

cn

)2

w
(Xj − x

cn

)
, (1.1)

where cn is a bandwidth and w is a kernel with the following properties.

(W) The kernel w is a three times continuously differentiable symmetric
density with compact support [−1, 1].

We then form the residuals

ε̂j = Yj − ϑ̂>Uj − %̂(Xj), j = 1, . . . , n,

and use as estimator of F the empirical distribution function of these resid-
uals,

F̂(t) =
1

n

n∑
j=1

1[ε̂j ≤ t], t ∈ R.

We denote the empirical distribution function based on the errors by

F(t) =
1

n

n∑
j=1

1[εj ≤ t], t ∈ R.

We can now state our main result.

Theorem 1.1 Assume that (F), (G), (H), (R) and (W) hold and cn ∼
(n log n)−1/4. Let ϑ̂ be a n1/2-consistent estimator of ϑ. Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)
1

n

n∑
j=1

εj

∣∣∣ = op(n
−1/2). (1.2)
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Under our assumptions (G) and (R), the optimal choice of bandwidth
for estimating % is of order n−1/5. Our proof requires an undersmoothed
estimator of % with a bias that is of order o(n−1/2). This is guaranteed by
the choice of bandwidth in the theorem.

The nonparametric regression model Y = %(X) + ε is a special case
of the partly linear regression corresponding to ϑ = 0. Taking ϑ̂ = 0, the
above theorem carries over to this model, giving (1.2) without condition
(H).

Our approach is motivated by Akritas and Van Keilegom (2001) who
consider the heteroscedastic nonparametric regression model Y = %(X)+
s(X)ε. In our model, s(X) = 1 and %(X) = E(Y |X), which corresponds
to their function J being 1. Their assumption (A2) would then imply that
ε is quasi-uniform on some finite interval. We get by with considerably
weaker conditions.

Kiwitt, Nagel and Neumeyer (2005) treat the nonparametric regression
model Y = %(X) + ε with additional linear constraints on the error dis-
tribution F . They rely on the results and assumptions of Akritas and Van
Keilegom and use a kernel estimator for %. The kernel estimator requires
stronger assumptions on the design density g than our linear smoother.

In the nonparametric regression model our estimator F̂(t) has influence
function

1[ε ≤ t]− F (t) + f(t)ε

and is therefore efficient by Müller, Schick and Wefelmeyer (2004). Since
this is also the influence function of F̂(t) in the larger partly linear model,
F̂(t) is also efficient there.

The linear regression model Y = ϑ>U + ε corresponds to the case
% = 0. In this model one can take ε̂j = Yj− ϑ̂>Uj with ϑ̂ the least squares
estimator of ϑ and obtains the following result.

Theorem 1.2 Assume that F has mean zero, finite variance and a uni-
formly continuous density f , and the matrix E[UU>] is positive definite.
Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t) (ϑ̂− ϑ)>E[U ]
∣∣∣ = op(n

−1/2).

This was first proved by Koul (1969) for fixed design. See also Koul
(2002) and, for increasing dimension, Mammen (1996). Theorem 1.2 fol-
lows from Theorem 2.3 about nonlinear regression.
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Our paper is organized as follows. In Section 2 we adapt a result of
Akritas and Van Keilegom (2001) on uniform stochastic expansions of
residual-based empirical distribution functions to our setting. In Section 3
we prove Theorem 1.1. Technical details about kernel type estimators are
in Section 4.

2 General results
Let ε be a random variable with distribution function F , and let Z be a
random vector with distribution Q independent of ε. Let D be a non-
negative function in L2(Q), and let D be a set of measurable functions a
such that |a| ≤ D and 0 ∈ D. We now give conditions on the class D that
imply that the class H = {ha,t : a ∈ D, t ∈ R} is F ⊗Q-Donsker, where

ha,t(ε, Z) = 1[ε− a(Z) ≤ t], a ∈ D, t ∈ R.

For this we endow D with the L1(Q)-pseudo-norm. By an η-bracket for
(D, L1(Q)) we mean a set [a, a] = [a ∈ D : a ≤ a ≤ a} where a and a
belong to L1(Q) and satisfy

∫
|a− a| dQ ≤ η. Recall that the bracketing

number N[ ](η,D, L1(Q)) is the smallest integer m for which there are m
η-brackets [a1, a1], . . . , [am, am] which coverD in the sense that the union
of the brackets contains D.

Theorem 2.1 Assume that F has a finite second moment and a bounded
density and that the bracketing numbers satisfy∫ 1

0

√
log N[ ](η2,D, L1(Q)) dη < ∞. (2.1)

Then H is F ⊗Q-Donsker.

Proof: Let F+ denote the distribution function of ε + D(Z) and F− the
distribution function of ε−D(Z). Since these random variables have finite
second moments by the assumptions on F and D, we see that F−(t) ≤
C2/t2 for negative t and (1 − F+(t)) ≤ C2/t2 for positive t, where C is
some positive constant C. Note thatH has envelope 1. We shall show that∫ ∞

0

√
log N[ ](η,H, L2(F ⊗Q)) dη < ∞. (2.2)
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The desired result then follows from Ossiander (1987), see also van der
Vaart and Wellner (1996, Theorem 2.5.6). Let L denote the Lipschitz
constant of F . Let [a, a] be an η2/(2L)-bracket for (D, L1(Q)) and a ∈
[a, a]. We may assume that |a| ≤ D and |a| ≤ D. Let u < v be real
numbers such that v − u ≤ η2/(2L). Then, for t ∈ [u, v], we have

1[ε− a(Z) ≤ u] ≤ 1[ε− a(Z) ≤ t] ≤ 1[ε− a(Z) ≤ v]

and

E[(1[ε− a(Z) ≤ u]− 1[ε− a(Z) ≤ v])2]

= E[F (v + a(Z))− F (u + a(Z))]

≤ L(v − u + E[a(Z)− a(Z)])

≤ η2;

for t ≤ −C/η, we have

0 ≤ 1[ε− a(Z) ≤ t] ≤ 1[ε−D(Z) ≤ −C/η]

and
E[1[ε−D(Z) ≤ −C/η]2] ≤ F−(−C/η) ≤ η2;

and, for t ≥ C/η, we have

1[ε + D(Z) ≤ C/η] ≤ 1[ε− a(Z) ≤ t] ≤ 1

and
E[(1− 1[ε + D(Z) ≤ C/η])2] ≤ 1− F+(C/η) ≤ η2.

This shows that the bracketing numbers N[ ](η,H, L2(F⊗Q)) are bounded
by

Kη−3N[ ](η
2/(2L),D, L1(Q))

for all 0 < η ≤ 1 and some constant K and are bounded by 1 for η ≥ 1
(take the bracket [0, 1]). Since

√
x + y ≤

√
x +

√
y for non-negative x

and y and since
∫ 1

0

√
log(η−3) dη is finite, we see that (2.1) implies the

desired (2.2). 2

Now consider a regression model

Y = r(Z) + ε
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and independent copies (Yj, Zj) of (Y, Z). For an estimator r̂ of r define
the residuals ε̂j = Yj − r̂(Zj). As before we set

F̂(t) =
1

n

n∑
j=1

1[ε̂j ≤ t] and F(t) =
1

n

n∑
j=1

1[εj ≤ t], t ∈ R.

Theorem 2.2 Let D be as in the previous theorem. Let F have a finite
second moment and a density f that is Hölder with exponent ξ ∈ (0, 1].
Assume that there is an â such that

P (â ∈ D) → 1, (2.3)∫
|â|1+ξ dQ = op(n

−1/2), (2.4)

sup
z
|r̂(z)− r(z)− â(z)| = op(n

−1/2). (2.5)

Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)

∫
â dQ

∣∣∣ = op(n
−1/2).

Proof: Without loss of generality we may assume â is D-valued; other-
wise replace â by â1[â ∈ D]. Let

F̃(t) =
1

n

n∑
j=1

1[εj − â(Zj) ≤ t] and Fa(t) =

∫
F (t + a(z)) dQ(z).

Then we can write

F̂(t)− F(t)− f(t)

∫
â dQ = T1(t) + T2(t) + T3(t),

where
T1(t) = F̂(t)− F̃(t),

T2(t) = F̃(t)− Fâ(t)− F(t) + F (t),

T3(t) = Fâ(t)− F (t)− f(t)

∫
â dQ.
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Since f is Hölder, say with constant Λ, we obtain that

|T3(t)| ≤
∫
|F (t + â(z))− F (t)− f(t)â(z)| dQ(z)

≤ Λ

∫
|â|1+ξ dQ = op(n

−1/2).

To deal with T1 and T2, we introduce the empirical process

νn(a, t) =
1√
n

n∑
j=1

(1[εj − a(Zj) ≤ t]− Fa(t))

=
1√
n

n∑
j=1

(ha,t(εj, Zj)− E[ha,t(ε, Z)]), a ∈ D, t ∈ R,

associated with the Donsker class H. Then we have the identity

n1/2T2(t) = νn(â, t)− νn(0, t)

and the bound

|n1/2T1(t)| ≤ n1/2(F̃ (t + Rn)− F̃ (t−Rn))

≤ |νn(â, t + Rn)− νn(â, t−Rn)|
+ n1/2(Fâ(t + Rn)− Fâ(t−Rn)),

where Rn denotes the left-hand side of (2.5). Since f is Hölder, f is also
bounded and the functions Fa are Lipschitz with Lipschitz constant ‖f‖∞.
Thus we have

n1/2(Fâ(t + Rn)− Fâ(t−Rn)) ≤ 2‖f‖∞n1/2Rn = op(1). (2.6)

Moreover, for s, t ∈ R and a, b ∈ D,

E[(ha,s(ε, Z)− hb,t(ε, Z))2] ≤ E[|F (s + a(Z))− F (t + b(Z))|]
≤ ‖f‖∞

(
|s− t|+ E[|a(Z)− b(Z)|]

)
.

In view of this and the stochastic equi-continuity of the empirical process,
for every η > 0 there is a δ > 0 such that, with P ∗ denoting outer measure,

sup
n

P ∗
(

sup
t∈R,a∈D,

R
|a| dQ<δ

|νn(a, t)− νn(0, t)| > η
)

< η,

sup
n

P ∗
(

sup
a∈D,s,t∈R,|s−t|<δ

|νn(a, s)− νn(a, t)| > η
)

< η.
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The first of these statements and (2.4) imply supt |T2(t)| = op(n
−1/2),

while the second, (2.5) and (2.6) imply supt |T1(t)| = op(n
−1/2). 2

Theorem 2.2 was formulated with semiparametric regression in mind.
In parametric regression models one typically has∫

|â| dQ = Op(n
−1/2) (2.7)

in which case the Hölder condition on f can be relaxed to uniform con-
tinuity, as is easily seen by inspecting the proof. To state this result, we
look at the parametric regression model Y = rϑ(Z) + ε with regression
function rϑ indexed by a k-dimensional parameter ϑ and differentiable in
the parameter in the following sense.

(D) There is function ṙϑ into Rk such that |ṙϑ| ∈ L2(Q) and

sup
z
|rϑ+t(z)− rϑ(z)− t>ṙϑ(z)| = o(|t|).

Given a n1/2-consistent estimator ϑ̂ of ϑ, assumptions (2.3), (2.7) and
(2.5) are met with r̂ = rϑ̂ and â = (ϑ̂ − ϑ)>ṙϑ, and with D = {t>ṙϑ :
|t| ≤ 1}. Since

N[ ](η,D, L1(Q)) ≤ Mη−k

for some constant M , the entropy condition (2.1) holds. Thus we have the
following result for parametric regression.

Theorem 2.3 Assume that (D) holds and r̂ = rϑ̂ with ϑ̂ a n1/2-consistent
estimator of ϑ. Let F have a finite second moment and a uniformly con-
tinuous density f . Then

sup
t∈R

∣∣∣F̂(t)− F(t)− f(t)(ϑ̂− ϑ)>
∫

ṙϑ dQ
∣∣∣ = op(n

−1/2).

A special case is the linear regression model, for which rϑ(z) = ϑ>z.
In this model, assumption (D) is trivially satisfied with ṙϑ(z) = z, and a
n1/2-consistent estimator of ϑ is given by the least squares estimator, pro-
vided E[ε] = 0, E[ε2] is finite and the matrix E[ZZ>] is positive definite.
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3 Partly linear regression
To prove our main result, Theorem 1.1, we apply Theorem 2.2 with the
choices Z = (U,X) and r(Z) = ϑ>U + %(X). We take D to be the class
of functions

a(u, x) = b>(u− µ(x)) + c(x)

with b ∈ [−1, 1]k and c belonging to a class C of functions to be introduced
next. Let 1 < α ≤ 2. For a function h defined on [0, 1] set

‖h‖ = sup
0≤x≤1

|h(x)|.

If h is also differentiable on [0, 1], let

‖h‖α = ‖h‖+ ‖h′‖+ sup
0≤x<y≤1

|h′(x)− h′(y)|
|x− y|α−1

.

We take C = Cα
1 ([0, 1]), the set of all such functions h with ‖h‖α ≤ 1. By

Corollary 2.7.2 in van der Vaart and Wellner (1996), there is a constant K
such that

log N[ ](η
2, Cα

1 ([0, 1]), L1(G)) ≤ Kη−2/α, η ≤ 1. (3.1)

Note that

N[ ](η,D, L1(Q)) ≤ N[ ](η,D0, L1(Q))N[ ](η, Cα
1 ([0, 1]), L1(G)),

where
D0 = {(u, x) 7→ b>(u− µ(x)) : b ∈ [−1, 1]k}.

Since N[ ](η,D0, L1(Q)) ≤ Mη−k for some constant M , the desired en-
tropy condition (2.1) follows from (3.1) and α > 1.

Lemma 3.2 below yields (2.5) with

â(u, x) = (ϑ̂− ϑ)>(u− µ(x)) + ĉ(x)

and ĉ defined in (3.11). By the n1/2-consistency of ϑ̂, we have (2.3) if
P (ĉ ∈ Cα

1 ([0, 1])) tends to one. Sufficient conditions for the latter are
given in Lemma 3.1 for arbitrary ĉ and verified in Lemma 3.3 for the
choice ĉ in (3.11). By the definition of µ, we have∫

â2 dQ = (ϑ̂−ϑ)>E[(U−µ(X))(U−µ(X))>](ϑ̂−ϑ)+

∫
ĉ2 dG. (3.2)
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In view of the inequality∫
|â|1+ξ dQ ≤

( ∫
â2 dQ

)(1+ξ)/2

,

relation (2.4) follows from the n1/2-consistency of ϑ̂, Lemma 3.4 and the
choice of bandwidth. Thus the assumptions of Theorem 2.2 hold and we
obtain

sup
t∈R

∣∣∣F̂(t)− F (t)− f(t)

∫
â dQ

∣∣∣ = op(n
−1/2).

By the definition of µ and Lemma 3.5,∫
â dQ =

∫
ĉ dG =

1

n

n∑
j=1

εj + op(n
−1/2).

Since f is Hölder and hence bounded, the desired expansion (1.2) follows.
We now give sufficient conditions for an estimator ĉ to belong to the

class Cα
1 ([0, 1]).

Lemma 3.1 Let G be such that G([0, 1]) = 1. Let ĉ be twice continuously
differentiable on [0, 1] and satisfy ‖ĉ‖ = op(1), ‖ĉ′‖ = Op(n

−β1) and
‖ĉ′′‖ = Op(n

β2) for constants β1 and β2 in (0, 1). Let 1 < α < 1 + β1 ∧
(1− β2). Then P (ĉ ∈ Cα

1 ([0, 1]) → 1.

Proof: We need to show that P (‖ĉ‖α > 1) → 0. In view of ‖ĉ‖ = op(1),
‖ĉ′‖ = op(1) and the definition of ‖h‖α, it is enough to show that

sup
0≤x<y≤1

|ĉ′(x)− ĉ′(y)|
|x− y|α−1

= op(1).

Since ‖ĉ′‖ = Op(n
−β1), we have

sup
y−x>1/n

|ĉ′(x)− ĉ′(y)|
|x− y|α−1

≤ 2nα−1‖ĉ′‖ = Op(n
α−1−β1);

since ‖ĉ′′‖ = Op(n
β2), we have

sup
0<y−x≤1/n

|ĉ′(x)− ĉ′(y)|
|x− y|α−1

≤ ‖ĉ′′‖ sup
0<y−x≤1/n

|x− y|2−α = Op(n
β2+α−2).
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The desired result follows as the exponents α− 1− β1 and α + β2− 2 are
negative. 2

Recall that %̂(x) is the first component of the minimizer (β̂0, β̂1) of
(1.1). This minimizer obeys the normal equations[

p̂0(x) p̂1(x)
p̂1(x) p̂2(x)

] [
β̂0

β̂1

]
=

[
q̂0(x)
q̂1(x)

]
,

where, for i = 0, 1, . . . and with wi(y) = yiw(y),

p̂i(x) =
1

ncn

n∑
j=1

wi

(Xj − x

cn

)
,

q̂i(x) =
1

ncn

n∑
j=1

(Yj − ϑ̂>Uj)wi

(Xj − x

cn

)
.

To describe %̂(x) we set

p̄i(x) = E[p̂i(x)] =

∫
1

cn

wi

(u− x

cn

)
g(u) du =

∫
wi(y)g(x + cny) dy.

For the rest of this section we assume without further mention that the
bandwidth cn satisfies cn → 0 and c−1

n n−1 log n → 0 and make additional
assumptions as needed. This allows one to obtain versions of Theorem 1.1
for more general choices of bandwidth. We also assume (without loss of
generality) that cn < 1/2. Under (G) and (W) we have

‖p̂i − p̄i‖ = Op

(( log n

ncn

)1/2)
, (3.3)

‖p̄i‖ ≤ ‖p̄0‖ ≤ ‖g‖ < ∞. (3.4)

The former follows from Corollary 4.2 applied with v = wi, Tj = T = 1,
β = ∞ and δ = 0. By (G) there is an η > 0 such that g(x) ≥ η for
0 ≤ x ≤ 1. Thus, for such x,

g(x + cny) ≥ η 1
[−x

cn

≤ y ≤ 1− x

cn

]
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and therefore

p̄0(x)p̄2(x)− p̄2
1(x) = p̄0(x)

∫ (
y − p̄1(x)

p̄0(x)

)2

g(x + cny)w(y) dy

is bounded below by

η2

4

∫ (1−x)/cn

−x/cn

2w(y) dy

∫ (1−x)/cn

−x/cn

(
y − p̄1(x)

p̄0(x)

)2

2w(y) dy.

Since we assumed cn < 1/2, the range of integration always includes one
of the intervals [−1, 0] and [0, 1], and 2w restricted to either interval is a
density. This and the symmetry of w imply

p̄0(x)p̄2(x)− p̄2
1(x) ≥ η2σ2

4
(3.5)

with σ2 the variance of 2w restricted to [0, 1]. It follows from (3.3) – (3.5)
that

P
(

inf
0≤x≤1

(p̂0(x)p̂2(x)− p̂2
1(x)) ≥ η2σ2

8

)
→ 1.

Hence, with probability tending to one, we can write

%̂ =
q̂0p̂2 − q̂1p̂1

p̂0p̂2 − p̂2
1

.

For i = 1, 2, let

ŝi =
p̂i

p̂2p̂0 − p̂2
1

and s̄i =
p̄i

p̄2p̄0 − p̄2
1

.

It follows from (3.4) and (3.5) that

‖s̄i‖ ≤
4‖g‖
η2σ2

< ∞, (3.6)

and from (3.3) – (3.5) that

‖ŝi − s̄i‖ = Op

(( log n

ncn

)1/2)
. (3.7)

Let

Ai(x) =
1

ncn

n∑
j=1

εjwi

(Xj − x

cn

)
,
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Bi(x) =
1

ncn

n∑
j=1

Ujwi

(Xj − x

cn

)
,

Ci(x) =
1

ncn

n∑
j=1

(
%(Xj)− %(x)− %′(x)(Xj − x)

)
wi

(Xj − x

cn

)
.

Using the identities q̂i = Ai − (ϑ̂− ϑ)>Bi + Ci + %p̂i + cn%
′p̂i+1, p̂0ŝ2 −

p̂1ŝ1 = 1 and p̂1ŝ2 − p̂2ŝ1 = 0, we can write, with probability tending to
one,

%̂− % = (A0 − (ϑ̂− ϑ)>B0 + C0 + %p̂0 + cn%
′p̂1)ŝ2

− (A1 − (ϑ̂− ϑ)>B1 + C1 + %p̂1 + cn%
′p̂2)ŝ1 − %

= A0ŝ2 − A1ŝ1 − (ϑ̂− ϑ)>(B0ŝ2 −B1ŝ1) + C0ŝ2 − C1ŝ1.

Note that under (R) and in view of (3.3) and (3.4) we have

‖Ci‖ ≤ c2
n‖%′′‖‖p̂0‖ = Op(c

2
n), i = 0, 1. (3.8)

Applying Corollary 4.3 with v = wi and Tj = e>Uj with e ∈ Rk, and
utilizing (H), we obtain

‖e>(Bi − p̄iµ)‖ = op(1), i = 0, 1,

if c−1
n n−δ log n is bounded for some 0 < δ < 1/2. Hence, using (3.4),

(3.6), (3.7), boundedness of µ on [0, 1], and the identity p̄0s̄2 − p̄1s̄1 = 1,
we find that

‖e>(B0ŝ2 −B1ŝ1 − µ)‖ = op(1). (3.9)

Applying Corollary 4.2 with v = wi, Tj = εj and δ = 0, we have

‖Ai‖ = Op

(( log n

ncn

)1/2)
, i = 0, 1, (3.10)

if F has a finite moment of order β > 2 and c−1
n n−1+2/β log n is bounded.

Applying (3.6)–(3.10) to the above representation of %̂− %, and setting

ĉ = A0s̄2 − A1s̄1, (3.11)

we obtain the following result.
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Lemma 3.2 Assume that (H), (G), (R) and (W) hold and that F has a
finite moment of order β > 8/3. Let nc4

n → 0 and c−1
n n−δ log n → 0 be

bounded for some δ in (1/4, 1/2)∩(1/4, 1−2/β]. Let ϑ̂ be n1/2-consistent.
Then (2.5) holds with

â(u, x) = (ϑ̂− ϑ)>(u− µ(x)) + ĉ(x).

The condition β > 8/3 implies 1 − 2/β > 1/4 and ensures the ex-
istence of a sequence of bandwidths with the required properties. For
example, we can pick cn ∼ n−γ with 1/4 < γ < (1− 2/β) ∧ (1/2).

Condition (W) implies that wi, w′
i and w′′

i are integrable and Lipschitz.
Hence, by Corollary 4.2, applied with v = w

(j)
i and Tj = εj , we obtain,

for j = 0, 1, 2,

‖A(j)
0 ‖+ ‖A(j)

1 ‖ = c−j
n Op

(( log n

ncn

)1/2)
provided F has a finite moment of order β > 2 and c−1

n n−1+2/β log n is
bounded. Furthermore, since g is bounded, we have

‖p̄(j)
0 ‖+ ‖p̄(j)

1 ‖+ ‖p̄(j)
2 ‖ = O(c−j

n ).

Thus, in view of (3.4) and (3.5),

‖s̄(j)
1 ‖+ ‖s̄(j)

2 ‖ = O(c−j
n ).

The above rates show that

‖ĉ(j)‖ = c−j
n Op

(( log n

ncn

)1/2)
, j = 0, 1, 2.

Thus, if c−1
n = O(nγ) with γ < 1/3, then the assumptions of Lemma 3.1

hold for all β1, β2 with 0 < 2β1 < 1 − 3γ and β2 ≤ 1/3. Thus we have
the following result for ĉ as defined in (3.11).

Lemma 3.3 Assume that (G) and (W) hold, F has a finite moment of order
β > 2, and c−1

n = O(nγ) for some γ < 1/3. Then P (ĉ ∈ Cα
1 ([0, 1])) → 1

for some α > 1.

Direct calculation show that E[A2
i (x)] ≤ E[ε2]‖g‖‖w‖∞/(ncn). This

and the boundedness of s̄1 and s̄2 yield the following result for ĉ as defined
in (3.11).
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Lemma 3.4 Assume that (G) and (W) hold and F has a finite second mo-
ment. Then ∫

ĉ2 dG = Op

( 1

ncn

)
.

Finally, we have the following result.

Lemma 3.5 Assume that (G) and (W) hold. Then∫
ĉ dG =

1

n

n∑
j=1

εj + op(n
−1/2). (3.12)

Proof: Using p̄0s̄2 − p̄1s̄1 = 1, we find that the integral in (3.12) equals

J =
1

ncn

n∑
j=1

εj

∫ (
w0

(Xj − x

cn

)
s̄2(x)− w1

(Xj − x

cn

)
s̄1(x)

)
dG(x)

=
1

n

n∑
j=1

εj

(
p̄0(Xj)s̄2(Xj)− p̄1(Xj)s̄1(Xj)−∆0(Xj) + ∆1(Xj)

)
=

1

n

n∑
j=1

εj

(
1−∆0(Xj) + ∆1(Xj)

)
with

∆0(Xj) =

∫
1

cn

w0

(Xj − x

cn

)
(s̄2(Xj)− s̄2(x)) dG(x)

=

∫
w0(y)(s̄2(Xj)− s̄2(Xj − cny))g(Xj − cny) dy;

∆1(Xj) =

∫
1

cn

w1

(Xj − x

cn

)
(s̄1(Xj)− s̄1(x)) dG(x)

=

∫
w1(y)(s̄1(Xj)− s̄1(Xj − cny))g(Xj − cny) dy.

Thus the assertion (3.12) follows if
∫

(∆0 − ∆1)
2 dG = op(1). Since w

and g are bounded, this is implied by∫∫
In

(s̄i(x)− s̄i(x− cny))2 dx dy → 0, i = 1, 2,
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with In = {(x, y) : 0 ≤ x ≤ 1,−1 ≤ y ≤ 1, 0 ≤ x − cny ≤ 1}. In view
of (3.4) and (3.5), the latter is implied by∫∫

In

(p̄i(x)− p̄i(x− cny))2 dx dy → 0, i = 0, 1, 2.

These three integrals can be bounded by a multiple of

sup
|t|≤cn

∫
(g(x + t)− g(x))2 dx,

which converges to zero by continuity of shifts in L2; see Theorem 9.5 in
Rudin (1974). 2

4 Auxiliary results
Throughout this section let Z,Z1, Z2, . . . be independent and identically
distributed m-dimensional random vectors, and, for each x in R, let hnx

be a bounded measurable function from Rm into R.

Proposition 4.1 Let Bn be a sequence of positive numbers such that Bn =
O(nα) for some α > 0. Assume that

sup
|x|≤Bn

‖hnx‖∞ = O
( n

log n

)
, (4.1)

sup
|x|≤Bn

E[h2
nx(Z)] = O

( n

log n

)
, (4.2)

and, for positive numbers κ1, κ2 and A,

‖hny − hnx‖∞ ≤ Anκ2|y − x|κ1 , |x|, |y| ≤ Bn, |y − x| ≤ 1. (4.3)

Then

sup
|x|≤Bn

∣∣∣ 1
n

n∑
j=1

hnx(Zj)− E[hnx(Z)]
∣∣∣ = Op(1). (4.4)

Proof: Let Hn(x) denote the expression inside the absolute value in (4.4).
We use an inequality of Hoeffding (1963): If ξ1, . . . , ξn are independent
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random variables that have mean zero and variance σ2 and are bounded
by M , then for η > 0,

P
(∣∣∣ 1

n

n∑
j=1

ξj

∣∣∣ ≥ η
)
≤ 2 exp

(
− nη2

2σ2 + (2/3)Mη

)
.

Applying this inequality with ξj = hnx(Zj) − E[hnx(Z)], we obtain for
η > 0:

P (|Hn(x)| ≥ η) ≤ 2 exp
(
− nη2

2E[h2
nx(Z)] + 2η‖hnx‖∞

)
.

Thus there is a positive number a such that for all η > 0,

sup
|x|≤Bn

P (|Hn(x)| ≥ η) ≤ 2 exp
(
− η2

1 ∨ η
a log n

)
.

Now let xnk = −Bn + 2kBnn
−m for k = 0, 1, . . . , nm, with m an integer

greater than α + κ2/κ1. The above yields for large enough η > 0,

P
(

max
k=0,...,nm

|Hn(xnk)| > η
)
≤

nm∑
k=0

P (|Hn(xnk)| > η) = o(1).

This shows that

Hn,1 = max
k=0,...,nm

|Hn(xnk)| = Op(1).

It follows from (4.3) that

Hn,2 = max
k=0,...,nm

sup
|x−xnk|≤Bnn−m

|Hn(x)−Hn(xnk)|

= O(Bκ1
n n−mκ1nκ2) = Op(1).

In view of the inequality

sup
|x|≤Bn

|Hn(x)| ≤ Hn,1 + Hn,2

we have the desired result (4.4). 2

In the following corollary we interpret 1/β as zero if β is infinity.
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Corollary 4.2 Assume that the function v is integrable and Hölder with
positive exponent κ, the random variable X has a bounded density g, the
random variable T is in Lβ for some 2 ≤ β ≤ ∞, and τg is bounded,
where τ(X) = E(T 2|X). Let cn → 0 and c−1

n n−1−δ+2/β log n be bounded
for some δ ≥ 0. Then, for i.i.d. copies (Tj, Xj) of (T, X), we have

sup
0≤x≤1

∣∣∣ 1

ncn

n∑
j=1

(
Tjv

(Xj − x

cn

)
− E

[
Tv

(X − x

cn

)])∣∣∣ = Op(ζ
−1/2
n )

with ζn = n1−δcn/ log n.

Proof: Set K = 2‖T‖Lβ
. Define

Rnj(x) = ζ1/2
n Tj1[|Tj| ≤ Kn1/β]

1

cn

v
(Xj − x

cn

)
,

Snj(x) = ζ1/2
n Tj1[|Tj| > Kn1/β]

1

cn

v
(Xj − x

cn

)
.

It suffices to show that

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

(Rnj(x)− E[Rnj(x)])
∣∣∣ = Op(1) (4.5)

and

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

(Snj(x)− E[Snj(x)])
∣∣∣ = op(1). (4.6)

Statement (4.6) is true for β = ∞ as then Snj(x) = 0. For β < ∞ we
have

P
(

max
1≤j≤n

|Tj| > Kn1/β
)
≤

n∑
j=1

P (|Tj| > Kn1/β)

≤ K−βE[|T |β1[|T | > Kn1/β]] → 0

and thus

P
(

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

Snj(x)
∣∣∣ > 0

)
≤ P

(
max
1≤j≤n

|Tj| > Kn1/β
)
→ 0.
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The assumptions on v imply that v is bounded. Hence we also have

sup
0≤x≤1

∣∣∣ 1
n

n∑
j=1

E[Snj(x)]
∣∣∣

≤ n(1−δ)/2c−1/2
n (log n)−1/2‖v‖∞E[|T |1[|T | > Kn1/β]]

≤ ‖v‖∞E[|T |β]n(1−δ)/2c−1/2
n (log n)−1/2(Kn1/β)1−β

= O(n−(1+δ)/2+1/βc−1/2
n (log n)−1/2) = o(1).

This shows that (4.6) holds for β < ∞ as well.
To show (4.5) we apply the previous proposition with Bn = 1 and

hnx(Tj, Xj) = Rnj(x). We have

sup
0≤x≤1

‖hnx‖∞ ≤ K‖v‖∞n(1−δ)/2+1/βc−1/2
n (log n)−1/2 = O

( n

log n

)
.

Furthermore,

sup
0≤x≤1

E[h2
nx(T, X)] ≤ n1−δ

cn log n
E

[
τ(X)v2

(X − x

cn

)]
=

n1−δ

log n

∫
v2(y)τ(x + cny)g(x + cny) dy

≤ n1−δ

log n
‖τg‖∞

∫
v2(y) dy.

Since v is Hölder with exponent κ, we obtain, with Λ denoting the Hölder
constant,

‖hny−hnx‖∞ ≤
(n1−δcn

log n

)1/2

n1/βc−1−κ
n Λ|y−x|κ ≤ Cn1+κ+1/β|y−x|κ.

Thus the assumptions of the proposition hold, and we obtain (4.5). 2

Corollary 4.3 Assume that the function v is Hölder with positive exponent
κ and has compact support, the random variable X has a bounded den-
sity g, the random variable T has a finite second moment, µ is uniformly
continuous and τg is bounded, where µ(X) = E(T |X) and τ(X) =
E(T 2|X). Let cn → 0 and c−1

n n−δ log n be bounded for some 0 < δ <
1/2. Then, for i.i.d. copies (Tj, Xj) of (T, X), we have

sup
0≤x≤1

∣∣∣ 1

ncn

n∑
j=1

Tjv
(Xj − x

cn

)
− µ(x)

∫
v(y)g(x + cny) dy

∣∣∣ = op(1).
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Proof: Write

1

cn

E
[
Tv

(X − x

cn

)]
=

∫
µ(x + cny)v(y)g(x + cny) dy

and note that
∫
|v(y)|g(x + cny) dy ≤ ‖g‖

∫
|v(y)| dy. The desired result

now follows from the uniform continuity of µ and Corollary 4.2 applied
with β = 2. 2
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