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ABSTRACT

Consider a detector which records the times at which the endogenous variable of a non-

parametric regression model exceeds a certain threshold. If the error distribution is known,

the regression function can still be identified from these threshold data. The author con-

structs estimators for the regression function that are transformations of kernel estimators.

She determines the bandwidth that minimizes the asymptotic mean average squared error.

Her investigation was motivated by recent work on stochastic resonance in neuro-science

and signal detection theory, where it was observed that detection of a subthreshold signal

is enhanced by the addition of noise. The author compares her model with several others

that have been proposed in the recent past.

RÉSUMÉ

Supposons qu’un appareil enregistre les temps auxquels la variable endogène d’un modèle

de régression non paramétrique dépasse un certain seuil. Si la loi des erreurs est connue,

la fonction de régression peut quand même être identifiée à partir de telles observations.

L’auteure propose des estimateurs pour cette fonction de régression qu’elle obtient par

transformation d’estimateurs à noyau. Elle détermine la taille de fenêtre qui minimi-

se une erreur quadratique moyenne expérimentale asymptotique. Ses recherches ont été

motivées par des travaux récents portant sur la résonance stochastique en théorie de la

détection du signal et en neuro-science, domaines où l’on a observé que la présence d’un

bruit facilite la détection d’un signal inférieur à un seuil donné. L’auteure compare son

modèle à plusieurs autres qui ont été proposés ces dernières années.

1. INTRODUCTION

In a system with a threshold, a subthreshold signal may be detected if noise, either
from the background or artificially generated, is added to the input. If the noise
is too low, it does not help much. If it is too high, it drowns out the signal.
It is plausible and has been observed both empirically and through simulations
that there is an optimal level of noise. This property of the system is known as

1



stochastic resonance, although this name is not really appropriate unless the signal
is periodic.

The term stochastic resonance was introduced by Benzi et al. (1981) in the
context of a model describing the periodic recurrence of ice ages. Climate changes
are modeled as transitions in a double-well potential system pushed by a signal, the
orbital eccentricity, which causes small variations of the solar energy influx. Since
the periodic forcing for switching from one state point to the other is very weak,
it must be assisted by other factors such as short term climate fluctuations that
are modeled as noise. However, if there is too much noise, the transitions become
independent of the frequency of the periodic signal. Consequently there must be
an optimal noise level, i.e., stochastic resonance.

Since then, stochastic resonance has been extended to a large variety of physi-
cal systems with simpler thresholds (for an overview, see Gammaitoni et al. 1998).
It attracted particular attention in neuro-science these past few years. Various
models for information processing in the nervous system were proposed that are
explained by stochastic resonance. Here, theory turns away from bistable systems
which do not describe neuronal dynamics well. Moreover, neuronal models with
aperiodic input signal are often more appropriate than models limited to periodic
inputs and have gained considerable attention (Collins et al. 1996). Perhaps the
simplest model for neural dynamics regards a single neuron as a threshold cross-
ing detector as follows: the cell is stimulated by an external input (signal); if its
membrane voltage exceeds a fixed threshold, the cell fires and is reset. It can be
assumed that the sensory system is optimized, so that the spike train of a fir-
ing cell contains significant information. The presence of noise, e.g., background
noise from other neurons, leads to maximal performance, i.e., stochastic resonance
(Wiesenfeld & Moss 1995). Stochastic resonance was studied not only theoreti-
cally but could also be exhibited in several experiments. For example, Douglass
et al. (1993) demonstrated stochastic resonance in the firing rate of sinusoidally
stimulated mechanoreceptor cells of crayfish.

Although a large amount of literature is available, there is little statistical work
on this subject. For the models described, stochastic resonance is usually exhibited
through simulations. Various measures of detectability are used. In the case of
periodic signals, this is typically the signal-to-noise ratio (e.g., Wiesenfeld & Moss
1995). If the signal is aperiodic, usually a correlation measure is considered (e.g.,
Collins et al. 1995). A more familiar approach from a statistical point of view was
considered by Stemmler (1996) in the case of a (nearly) constant signal. Instead of
commonly adopted measures, which break down for constant signal, he uses Fisher
information. Recently, Greenwood et al. (1999) have derived efficient estimators
and analyzed stochastic resonance statistically for single and multiple thresholds.

As in Stemmler (1996) and Greenwood et al. (1999), the model considered
here is embedded in a neuro-physiological context. We consider the simple neuron
detector described above: if the incoming noisy signal reaches a certain threshold,
the cell fires and is reset. The observations are the times when the threshold is
exceeded. For the quantification of neuronal responses, it is standard practice to
sum all spikes in a fixed period to obtain an estimation of the firing rate. Clearly
there is additional information in the timing of the spikes, especially when the
shape of the signal is unknown. This information will be used in our statistical
approach based on kernel regression methods. We will derive a consistent estimator
of a subthreshold signal from the exceedance times data. The problem is cast as
nonparametric regression.
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Consider the nonparametric regression problem Y (ti) = s(ti) + ε(ti) with inde-
pendent mean zero error variables ε(ti). Let a > 0 be a threshold, and suppose that
we do not observe the realizations Y (ti) but only the times at which the threshold
a is exceeded. Then the observations (threshold data) are Bernoulli variables coded
by 1 or 0 as follows:

X(ti) = 1{s(ti) + ε(ti) > a} = 1{Y (ti) > a}; (1)

this was suggested by McCulloch & Pitts (1943) as a model of a neuron.
We can always estimate the probabilities

E{X(ti)} = p(ti) = P{X(ti) = 1} = P{s(ti) + ε(ti) > a}, (2)

say by kernel methods. To identify the signal s(t), the distribution of the ε(ti)’s,
say Fti , must be known and invertible. Then

s(ti) = a − F−1
ti

{1 − p(ti)}. (3)

The estimator of s(ti) will be taken to be the kernel estimator for p(ti) transformed
as in (3).

If the noise is artificially generated, then it is reasonable to assume that the
error distribution function is completely known. If the noise is background noise,
we may at least know the form of the distribution. For example, it may be plausible
to assume that the errors are normally distributed. However, we cannot identify
the noise amplitude from the X(ti)’s. One way of dealing with the problem is to
get information about the noise from elsewhere, for example by using a second
detector with a different threshold; see Greenwood et al. (1999) for a treatment
of the constant signal case. A second solution is to note that even if the noise
distribution is known up to a scale parameter, the signal can still be identified up
to a one-parameter family of transformations. Hence most of the information is
retained, unless the signal is constant, of course.

As in every approach involving kernel estimators, the choice of the bandwidth is
of crucial importance. Our criterion for bandwidth selection will be the asymptotic
mean average squared error of the estimator of s, which we derive. A formula for the
asymptotically optimal bandwidth can then be written. Since the formula involves
unknown quantities, we estimate the optimal bandwidth by plugging in estimators
for them. An asymptotic approach is reasonable since a linearization of the mean
squared error E{ŝ(t) − s(t)}2 is necessary. This already involves asymptotics.
Because of this approximation, it does not seem worthwhile to pursue a more
sophisticated bandwidth selection technique. Our approach is similar to that of
Ruppert et al. (1995), who derive an asymptotically optimal bandwidth for the
classical setting, i.e., fully observed data. The main difference between this article
and theirs is the nonlinear link occurring here, in particular in the mean squared
error expression. Through the linearization of this expression, the calculation of
the optimal bandwidth becomes similar to the standard case, and familiar results
can be used.

This paper is organized as follows. In Section 2 we give the kernel estimator,
basic notation and assumptions. Section 3 is the main section of this article. We
derive the asymptotic expressions for the mean squared error, the mean average
squared error, and the resulting optimal local and global optimal bandwidths. Some
remarks and references concerning the suggested plug-in estimation will be given
in Section 4. Section 5 concludes the article with an example and a comparison
with existing techniques, emphasizing stochastic resonance.
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2. KERNEL REGRESSION

Consider the model introduced in Section 1, Equations (1)–(3), and let the time
points be equally spaced in [0, 1], i.e., ti = i/n, i = 1, . . . , n. We assume that the
distribution functions of the noise Fti are continuous with mean zero. Often, the
ε(ti) will be identically distributed, and the distribution will be normal. We also
require that s have two continuous derivatives and be bounded from below, viz.

s(t) ≥ −c for every t ∈ [0, 1] for some c > 0.

In addition, Ft should be four times continuously differentiable, and there should
exist p1, p2 ∈ (0, 1) such that for all 0 ≤ t ≤ 1,

1 − Ft(a + c) ≥ p1 and Ft(0) ≥ p2.

These conditions and the subthreshold assumption s(t) < a imply that p has two
continuous derivatives and is bounded away from 0 and 1, viz.

p(t) ∈ [p1, 1 − p2] for each t, (4)

a condition that is easily verified. To simplify the notation, we write Gt(x) =
1 − Ft(a − x), so that p(t) = Gt{s(t)} and s(t) = G−1

t {p(t)}.
We treat the problem of estimating the probabilities p(t) as a nonparametric

regression problem and estimate p(t) by a modified kernel estimator p̃h(t), where
h > 0 denotes the bandwidth. We obtain an estimator for the signal by

ŝh(t) = G−1
t {p̃h(t)}

with

p̃h(t) =

{
p̂h(t) if p̂h(t) ∈ C = [p1/2, 1 − p2/2],

1/2 otherwise.

Here, p̂h(t) is a classical kernel estimator. If the values of p̂h(t) are near 0 and 1,
G−1

t {p̂h(t)} is undefined. For simplicity, we set p̃h(t) equal to 1/2 if p̂h(t) /∈ C (or
to a suitable different constant). Because of (4), we have p(t) ∈ C. The kernel
estimator used here is the Nadaraya-Watson estimator

p̂h(t) =
∑n

i=1
1
hK( t−ti

h )X(ti)∑n
i=1

1
hK( t−ti

h )
.

For the estimation at inner points t ∈ [h, 1 − h] considered in this article, let
K : IR → IR be some second order kernel function, i.e.,∫

K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du = c 6= 0.

We also need that the derivative K ′ be bounded and assume that the support of
K is [−1, 1]. For t /∈ [h, 1 − h], a different approach with some boundary kernel K
should be chosen (cf., e.g., Gasser et al. 1985).

Instead of the Nadaraya-Watson estimator, one could also consider a local linear
kernel estimator (cf. Ruppert et al. 1995), which is known for its superior boundary
behaviour but requires more work. The proofs given here can be adapted to this
approach in a straightforward way. Later on, we take h = hn → 0 and nh3 → ∞
as n → ∞.
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3. ASYMPTOTIC ERROR AND OPTIMAL BANDWIDTH

In nonparametric regression theory, generally accepted measures of the quality
of the estimation are the mean squared error E{ŝh(t)−s(t)}2 and the mean average
squared error n−1

∑
ti∈T E{ŝh(ti)−s(ti)}2. In the latter case, summation is usually

restricted to some interval T = [c, d] ⊂ (0, 1) because of boundary effects. These
quantities will also be studied here and taken as criteria for an asymptotically
optimal local and an asymptotically optimal global bandwidth. Another popular
global error measure would be the mean integrated squared error

∫
T

E{ŝh(t) −
s(t)}2dt. The proofs given herein adapt to this case in a straightforward way.

The approach of this section will be to derive a Taylor approximation for the
mean squared error (which immediately gives the approximation for the mean
average squared error). The bandwidth h that minimizes the leading terms of
the expansion will then be called optimal. The distinguishing characteristic of
our model is that it involves the nonlinear transformation ŝh(t) = G−1

t {p̃h(t)}. An
additional problem arising from the modification p̃h(t) of the kernel estimator p̂h(t)
will be seen to be negligible, because it can easily be verified that p̃h(t) coincides
asymptotically with the common estimator p̂h(t).

The following lemmas recall and extend well known auxiliary results from classi-
cal theory. They provide approximation formulas for the bias, variance and higher
moments of p̂h(t). The derivations are standard and can be found either in Eubank
(1988) or Müller (1999).

In the following, let h be sufficiently small so that the time points t where esti-
mation takes place satisfy t ∈ [h, 1−h]. The terminology and conditions introduced
in Section 2 will be assumed throughout.

Lemma 1. Consider the asymptotics n → ∞, h = hn → 0, and nh2 → ∞. For
` = 2, 3, the approximation

E[p̂h(t) − E{p̂h(t)}]` = (nh)1−`E{X(t) − p(t)}`

∫ 1

−1

K`(u)du + o
{
(nh)1−`

}
then holds uniformly in t ∈ [h, 1 − h], where X(t) is a Bernoulli random variable
with parameter p(t). Furthermore,

E[p̂h(t) − E{p̂h(t)}]4 = O{(nh)−2} = o{(nh)−1},
uniformly in t ∈ [h, 1 − h].

Lemma 2. For n → ∞, h = hn → 0 and nh2 → ∞, the bias and the mean squared
error of p̂h(t) can be approximately uniformly in t ∈ [h, 1 − h] by

E{p̂h(t) − p(t)} = h2 p′′(t)µ2(K)/2 + o(h2) + O{(nh2)−1}
and

E{p̂h(t) − p(t)}2 = V ar{p̂h(t)} + [E{p̂h(t)} − p(t)]2

= (nh)−1p(t){1 − p(t)}R(K) + h4p′′(t)2µ2(K)2/4
+o{(nh)−1} + o(h4) + O{(nh2)−2} (5)

with µ2(K) =
∫ 1

−1
u2K(u)du and R(K) =

∫ 1

−1
K2(u)du. Furthermore,

E{p̂h(t) − p(t)}3 = o{(nh)−1} + O(h6) + O{(nh2)−3}, (6)
E{p̂h(t) − p(t)}4 = o{(nh)−1} + O(h8) + O{(nh2)−4}, (7)
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uniformly in t ∈ [h, 1 − h].

We now state our main theorem. It concerns the signal estimator ŝ, a function of
the modification p̃h of the estimator p̂h, whose properties are described in Lemmas 1
and 2. We give the asymptotic mean squared error (locally), the asymptotic mean
average squared error (globally) and the respective optimal bandwidths.

Theorem. Consider the asymptotics n → ∞, h = hn → 0, and nh3 → ∞. The
mean squared error MSE(h, t) = E{ŝh(t)− s(t)}2 exists and may be approximated
as follows by the asymptotic mean squared error, viz.

AMSE(h, t) =
(nh)−1p(t){1 − p(t)}R(K) + h4p′′(t)2µ2(K)2/4

G′
t{s(t)}2

(8)

where R(K) =
∫ 1

−1
K2(u)du and µ2(K) =

∫ 1

−1
u2K(u)du. This approximation is

valid up to an term of order o{(nh)−1 + h4} and uniform in t ∈ [h, 1 − h],
For the mean average squared error MASE(h) = n−1

∑
ti∈T E{ŝh(ti)−s(ti)}2,

the approximation

AMASE(h) =
R(K)
n2h

∑
ti∈T

p(ti){1 − p(ti)}
G′

ti
{s(ti)}2

+
h4µ2(K)2

4n

∑
ti∈T

p′′(ti)2

G′
ti
{s(ti)}2

.

holds up to a term of order o{(nh)−1 + h4}. The asymptotically optimal local
bandwidth is

hopt(t) =
[
R(K)p(t){1 − p(t)}

nµ2(K)2p′′(t)2

]1/5

(9)

and the asymptotically optimal global bandwidth is

hopt =


R(K)

∑
ti∈T

1
G′

ti
{s(ti)}2 p(ti){1 − p(ti)}

nµ2(K)2
∑

ti∈T
1

G′
ti
{s(ti)}2 p′′(ti)2




1/5

. (10)

Proof. Let t ∈ [h, 1 − h] and ŝh(t) = G−1
t {p̃h(t)} as in Section 2. Consider the

loss function Ht : (0, 1) → IR defined by

Ht(x) = [G−1
t (x) − G−1

t {p(t)}]2.

Applying the so-called delta method, we obtain a linearization of the mean squared
error,

E{ŝh(t) − s(t)}2 = E[Ht{p̃h(t)}]
=

1
2
H

(2)
t {p(t)}E{p̃h(t) − p(t)}2

+
1
3!

H
(3)
t {p(t)}E{p̃h(t) − p(t)}3 + E[Rt{p̃h(t)}] (11)

with H
(2)
t {p(t)}/2 = 1/G′

t{s(t)}2 and

Rt{p̃h(t)} = {p̃h(t) − p(t)}4

∫ 1

0

(1 − z)3

3!
H

(4)
t [p(t) + z{p̃h(t) − p(t)}]dz.
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In order to establish the asserted approximation, we use the auxiliary results

E{p̃h(t) − p(t)}` − E{p̂h(t) − p(t)}` = o{(nh)−1} + o(h4), ` ∈ IN (12)
E[Rt{p̃h(t)}] = o{(nh)−1} + o(h4), (13)

which hold uniformly in t ∈ [h, 1 − h], as will be verified at the end of the proof.
Both relations, combined with (6) and nh3 → ∞, imply that the two last terms
of (11) have the order o{(nh)−1} + o(h4). Similarly, the mean squared error of
p̃h(t) in the first term can be replaced by the familiar approximation (5) for the
mean squared error of p̂h(t). This establishes (8), uniformly for t ∈ [h, 1−h]. Since
T ⊂ [h, 1−h] for sufficiently small h, the approximation formula AMASE(h) for the
mean average squared error MASE(h) = n−1

∑
ti∈T MSE(h, ti) is immediately

derived from this result. The optimal local and global bandwidth given in (9) and
(10) are obtained by simple calculus, differentiating AMSE(h, t) and AMASE(h)
with respect to h. Hence only the auxiliary statements (12) and (13) remain to be
shown.

For the proof of (12), it should first be noticed that C = [p1/2, 1−p2/2] ⊂ (0, 1)
was chosen such that p(t) ∈ C. By equation (4), we have p(t) ∈ [p1, p2] ⊂ C. Hence
there exists some δ > 0 such that [p(t) − δ, p(t) + δ] ⊂ C for all t ∈ [0, 1]. This
will be used in the following chain of equalities and inequalities, which holds for
arbitrary nonnegative integer `:

|E{p̃h(t) − p(t)}` − E{p̂h(t) − p(t)}`|

=
∣∣∣ ∑̀

k=1

(
`

k

)
E[{p̃h(t) − p̂h(t)}k{p̂h(t) − p(t)}`−k]

∣∣∣
≤

∑̀
k=1

(
`

k

)
E[1[0,1]\C{p̂h(t)} · |p̃h(t) − p̂h(t)|k|p̂h(t) − p(t)|`−k]

≤
∑̀
k=1

(
`

k

)
E[1[0,1]\C{p̂h(t)}]

= (2` − 1)P{p̂h(t) /∈ C}
≤ (2` − 1)P{|p̂h(t) − p(t)| > δ}
≤ (2` − 1)E{p̂h(t) − p(t)}4/δ4.

In the last step, Markov’s inequality was applied. Relation (12) now follows from
(7) and the fact that nh3 → ∞.

For the proof of (13), we will use the boundedness of H
(4)
t on C, which results

from the fact that Ft is four times continuously differentiable. Thus

|E[Rt{p̃h(t)}]|

=
∣∣∣E [

{p̃h(t) − p(t)}4 ·
∫ 1

0

(1 − z)3

3!
H

(4)
t [p(t) + z{p̃h(t) − p(t)}]dz

] ∣∣∣
≤ E{p̃h(t) − p(t)}4 · sup

x∈C
|H(4)

t (x)|.

Using (12) with ` = 4 and E{p̂h(t) − p(t)}4 = o((nh)−1) + o(h4), one then gets
(13) immediately. Hence the proof is complete. �
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Let us briefly discuss the approximate mean squared error calculated in (8). Its
numerator is the Taylor approximation of the mean squared error E{p̂h(t)−p(t)}2

of the kernel estimator p̂h(t). This well known formula yields the decomposition of
E{p̂h(t)− p(t)}2 into variance and squared bias of p̂h(t) (Equation (5), Lemma 2).
In particular, the characteristic variance-bias trade-off becomes evident.

With the optimal asymptotic bandwidth hopt at hand, the minimal value of
AMASE may now be written as

AMASE(hopt) =
5
4

[
µ2(K)2

n4

∑
ti∈T

p′′(ti)2

G′
ti
{s(ti)}2

] 1
5

[
R(K)

n

∑
ti∈T

p(ti){1 − p(ti)}
G′

ti
{s(ti)}2

] 4
5

.

This value depends on the squared second derivatives of p(t) = Gt{s(t)}. Smooth
signals will, in general, lead to small values of p′′(t)2 and thus to small values of
infh>0 AMASE(h). Furthermore, this formula shows the influence of the kernel K,
which appears only in the expression µ2(K)2/5R(K)4/5. The (second order) kernel
with support [−1, 1] which minimizes this term, and thus the asymptotic mean
average squared error under the further constraint K ≥ 0, is the Epanechnikov
kernel

K∗(u) = 3(1 − u2)1[−1,1](u)/4.

The optimal kernel K∗ is not much better than other kernels, for example the
Gaussian kernel (cf. Wand & Jones 1995). What is really crucial is the correct
choice of the bandwidth h.

4. DATA-DRIVEN BANDWIDTH SELECTION

In this section, we construct an optimal data-driven bandwidth. We assume that
the kernel K is given. In particular, the kernel constants R(K) =

∫ 1

−1
K2(u) du

and µ2(K) =
∫ 1

−1 u2K(u) du are known.
Recall the asymptotically optimal local bandwidth in our theorem, viz.

hopt(t) = n−1/5c(p(t), p′′(t)), c(p(t), p′′(t)) =
[
R(K)p(t){1 − p(t)}

µ2(K)2p′′(t)2

]1/5

.

The following arguments will also apply to the optimal global bandwidth hopt. Both
are of the form n−1/5c, with c depending on the unknown probability function p
and its second derivative, p′′. At first it should be mentioned that both optimal
bandwidths, hopt(t) and hopt, have the (optimal) convergence rate n−1/5, and that
this rate is maintained for any bandwidth h of the form h = n−1/5c, where c > 0 is
an arbitrary constant. However, the choice of c has a strong influence on the finite
sample behaviour. Hence, in order to guarantee a good bandwidth approximation
in a concrete application, p and p′′ should be estimated reasonably well.

We estimate hopt(t) by a so-called plug-in strategy. This means that we estimate
the unknown values p(t) and p′′(t) with a preliminary estimator and plug them
into the formula above. For the pilot estimator, a large variety of methods is
available, since estimating p is a classical nonparametric regression problem with
binary responses. One can, for example, apply cross-validation or the so-called
blocking method introduced by Härdle & Marron (1995). In the latter, the design
space is divided into blocks, and a polynomial of low degree is fitted to every
block. Another approach would be to carry out some preliminary kernel smoothing.
However, a new bandwidth selection problem then arises and, at some point, a pilot
bandwidth has to be determined with a different technique.
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A comprehensive overview of bandwidth selection techniques is given by Wand &
Jones (1995). Several plug-in methods for the classical setting are discussed in Rup-
pert et al. (1995). Further discussions of bandwidth selection techniques can be
found in the books of Eubank (1988) and Härdle (1990).

5. THE STOCHASTIC RESONANCE EFFECT

The model considered here was suggested by models for neuron firing triggered
by a noisy signal. The literature in this field emphasizes the stochastic resonance
effect, i.e., the existence of an optimal noise level for the detectability of the signal.
This effect has mainly been shown empirically through simulations. In several
papers (Collins et al. 1995, 1996; Henegan et al. 1996; Chialvo et al. 1997a,b) a box
kernel is used to estimate the probability that a threshold is crossed. This kernel
corresponds with our more sophisticated estimator p̂h(t) but with a fixed bandwidth
whose choice is justified by physical arguments. The estimator is compared with the
signal using Pearson correlation or modifications thereof, mostly called “normalized
power norm” or “cross-correlation coefficient,” namely

C =
∑n

i=1{s(ti) − s}{p̂h(ti) − p̂h}
[
∑n

i=1{s(ti) − s}2]1/2[
∑n

i=1{p̂h(ti) − p̂h}2]1/2
∈ [−1, 1].

Here, p̂h stands for any estimator of the exceedance probabilities, s and p̂h denote
mean averages.

Figure 1. (a) Left panel: simulation of signal estimates ŝh (dashed line) for s(t) =
sin(2πt) (solid line), with n = 1000, a = 1, h = 0.16 and i.i.d. N(0, 1.082) noise;
the dotted line shows the probability estimates p̂h. (b) Right panel: realizations of
the Pearson correlation C (circles) between the sinusoid s from the left panel and
its estimates ŝh, for σ = 0.5, 1, . . . , 3 and n = 100.

An illustration of our technique is given in Figure 1, whose left panel shows an
estimate of a simple sinusoidal signal s(t) = sin(2πt). In this example, we chose
n = 1000 time points, a threshold a = 1 and independent normal N(0, 1.082)
noise. The bandwidth ĥopt = 0.16 was estimated by plug-in methods, using a
modification of the blocking method of Härdle & Marron (1995), which is relatively
close to the theoretically optimal bandwidth hopt = 0.13. Besides the estimated
signal ŝh, this figure also shows the estimated probabilities p̂h that correspond to
the box kernel mentioned above. Of course, these estimators are not consistent for

9



the signal. Nevertheless, both the Pearson correlation between s and p̂h and the
correlation between s and our consistent estimator ŝh are close to 1 (C = 0.977
resp. C = 0.995). This is not surprising, however, since C is invariant with respect
to linear transformations and p̂h still catches essential characteristics of the shape
of s.

For n = 100, the right panel of Figure 1 shows five realizations of the Pearson
correlation between s and ŝh, for each value of σ = 0.5, 1, . . . , 3. Papers in this
field usually perform more elaborate simulation studies and get empirical estimates
of mean and standard error of C. In particular, a concave curve of the estimated
mean as a function of σ can then be drawn, producing stochastic resonance. That
there is an optimal noise level already emerges in our picture, however: for σ = 1,
the five values of C are all close to one; for smaller and larger σ, the correlation
is not always high. For a comparison, we performed the same simulation but with
n = 1000 time points, getting values C close to one throughout. This observation
illustrates well a phenomenon first reported by Collins et al. (1995) in a different
setting, namely “stochastic resonance without tuning”: since the variance of the
signal estimator and hence the variance of C decreases with n, the correlation is
high for a broad range of σ’s. Although there is stochastic resonance, i.e., an
optimal level of noise, C cannot detect it if the time points are too densely spaced.

For threshold data in the nonparametric regression model considered here, a
stochastic resonance effect analogous to that shown by simulation in the literature
would imply that the asymptotic mean squared and the asymptotic mean average
squared error are convex as functions of the standard deviation of the noise. We
do not expect this behaviour for all signals or for all error distributions. For the
example with the sinusoid from above, stochastic resonance is easily verified. In
Figure 2, we plotted the asymptotic mean average squared error, with the optimal
bandwidth, as a function of the noise level σ. Here, we used the “tuned” version,
i.e., infh{AMASE(σ, h)} multiplied by the convergence rate n4/5. Since the sums
appearing in the formula approximate integrals, the same convex curve is produced
for all n sufficiently large. In particular, a sharp optimal noise level, σ = 1.08, can
be derived which we have already used for the simulation in Figure 1.

Figure 2. Plot of n4/5 infh AMASE(σ, h) for the sinusoid example,
s(t) = sin(2πt), with n sufficiently large (here n = 1000).

In general, a proof is not straightforward, not even if we restrict attention to
well-behaved unimodal distributions such as the normal N(0, σ2) distribution. The
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function p of Section 2 is then expressed as p(t) = Φ[{s(t) − a}/σ], in terms of Φ,
the distribution function of the standard normal N(0, 1) with density φ. As for the
asymptotic mean squared error, it is equal to

1
nh

σ2Φ
{

s(t)−a
σ

}
Φ

{
a−s(t)

σ

}
φ2

{
s(t)−a

σ

} R(K) +
h4

4

{
a − s(t)

σ2
s′(t)2 + s′′(t)

}2

µ2(K)2.

The first term of the sum corresponds to the inverse Fisher information Ia
s in

Greenwood et al. (1999) and shows the typical stochastic resonance behaviour: it
tends to infinity when σ2 → ∞ or σ2 → 0 (cf. Greenwood et al. 1999). The second
term, however, varies like 1/σ4. The behaviour of the sum requires further analysis.

The stochastic resonance behaviour of AMSE and further aspects will be inves-
tigated numerically and by simulations in a forthcoming paper of Müller & Ward
(1999).
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