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Abstract

Suppose we have independent observations from a distribution which we know
to fulfill a finite-dimensional linear constraint involving an unknown finite-dimen-
sional parameter. We construct efficient estimators for finite-dimensional func-
tionals of the distribution. The estimators are obtained by first constructing an
efficient estimator for the functional when the parameter is known, and then replac-
ing the parameter by an efficient estimator. We consider in particular estimation
of expectations.
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1 Introduction

To begin we recall some results for simpler models. Let X1, . . . , Xn be independent
observations with unknown distribution P (dx). Suppose we want to estimate the expec-
tation Pf = Ef(X) =

∫
f(x)P (dx) of some real-valued P -square-integrable function

f(x). A natural estimator is the empirical estimator

P̂ f =
1

n

n∑
i=1

f(Xi).

Here P̂ = 1
n

∑n
i=1 δXi stands for the empirical distribution, which assigns weight 1/n to

each observation. In the nonparametric model, with P unknown, the empirical estimator
is efficient. This result is due to Levit [20]; see also Koshevnik and Levit [18]. Efficiency
of the empirical distribution function F̂ (t) = P̂ (−∞, t], t ∈ R, considered as infinite-
dimensional functional, is proved by Beran [4].
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Now suppose that the model consists of all distributions P which fulfill the linear con-
straint Pa =

∫
a(x)P (dx) = 0, where a(x) is a known k-dimensional vector of P -square-

integrable functions. Then the empirical estimator P̂ a estimates the zero vector, and we
can introduce new estimators P̂ (f − c>a) for Pf , with c some known k-dimensional vec-
tor of real numbers. Such estimators have asymptotic variance P (f − c>a)2. If Paa> is
invertible, then by the Cauchy–Schwarz inequality the asymptotic variance is minimized
for

cf = (Paa>)−1Paf.

The constant cf depends on the unknown distribution P and must be estimated. A
simple estimator is the empirical estimator

ĉf = (P̂ aa>)−1P̂ af =

(
n∑
i=1

a(Xi)a(Xi)
>

)−1 n∑
i=1

a(Xi)f(Xi).

The resulting estimator P̂ (f− ĉ>f a) has the same asymptotic variance as the “estimator”

P̂ (f − c>f a) which still depends on the unknown P through cf . Levit [21] shows that

P̂ (f − ĉ>f a) is efficient. Similar results exist for nonlinear constraints: Koshevnik and
Levit [18, Section 6], Hipp [15], and Bickel, Klaassen, Ritov and Wellner [5, Section 3.2,
Example 3]. For infinite-dimensional constraints see Koshevnik [17] and Bickel et al. [5,
Section 6.2].

In this paper we assume that the model consists of all distributions P which fulfill the
linear constraint Paϑ =

∫
aϑ(x)P (dx) = 0, where aϑ is a known k-dimensional vector of

P -square-integrable functions which depend on an unknown p-dimensional parameter ϑ.
The main aim of the paper is to construct efficient estimators for linear functionals Pf
under such a linear constraint. We construct such estimators in two steps. First we keep
ϑ fixed and obtain an efficient estimator P̂ (f − ĉ>f,ϑaϑ) as above, with ĉf,ϑ defined as ĉf ,

now with aϑ in place of a. Then we replace ϑ by an efficient estimator ϑ̂ and obtain the
estimator P̂ (f − ĉ>

f,ϑ̂
aϑ̂) for Pf . We prove in Theorem 3 that this estimator is efficient.

The heuristic principle behind our construction is the following: If t̂ϑ is an efficient
estimator for some (real-valued) functional t(P ) when ϑ is known, and ϑ̂ is efficient for
ϑ, then the “plug-in” estimator t̂ϑ̂ is efficient for t(P ) when ϑ is unknown. For semipara-
metric models Pϑ,F , with F a possibly infinite-dimensional nuisance parameter, Klaassen
and Putter [16] give conditions for the plug-in principle to hold; see also Müller, Schick
and Wefelmeyer [23] for semiparametric stochastic process models. For the constrained
model considered here, we cannot introduce a nuisance parameter, in general. We show
in Theorem 1 that nevertheless the plug-in principle continues to hold under appropri-
ate conditions. The conditions can be weakened at the expense of more complicated
estimators.

Our construction requires an efficient estimator for ϑ. The constraint Paϑ = 0
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suggests estimating equations of the form

Bϑ

n∑
i=1

aϑ(Xi) = 0,

where Bϑ is a p× k-dimensional matrix of weights possibly depending on the unknown
parameter ϑ. The weight matrix minimizing the asymptotic variance of the estimator
from this equation depends, in general, on the unknown distribution P and must be
estimated. We show in Theorem 2 that the resulting estimating equation gives an
efficient estimator for ϑ.

Our estimators are related to the empirical likelihood principle. To describe the con-
nection, let us return for a moment to the constraint Pa = 0 not involving a parameter,
and to estimation of a linear functional Pf . It can be shown that the improved empirical
estimator P̂ (f− ĉ>f a) is an asymptotic version of the empirical likelihood estimator P̂ likf ,

where P̂ lik =
∑n

i=1 piδXi is a multinomial distribution on the observations X1, . . . , Xn,
with probabilities pi chosen such that

∏n
i=1 pi is maximized subject to the constraint∑

pia(Xi) = 0. P̂ lik may be interpreted as minimum discriminant information adjust-
ment of P̂ in the sense of Haberman [10]. See also Sheehy [31]. The empirical likelihood
was introduced by Owen [27]. The stochastic equivalence of the two estimators fol-
lows from an appropriate stochastic expansion of the probabilities pi. See Owen [28,
relation (2.17)] for constraints of the form E(X − ϑ) = 0, and Zhang [33, Lemma 2.1]
for estimators of the distribution function F (t) = P (−∞, t]. A generalization of em-
pirical likelihood to estimation of nonlinear functionals, namely M-functionals, is in
Zhang [33, 35].

Similarly, in the model with constraint Paϑ = 0 with unknown parameter ϑ, our
efficient estimator for ϑ may be shown to be an asymptotic version of the corresponding
empirical likelihood estimator ϑ̂lik for ϑ, which maximizes

∏n
i=1 pi(ϑ) in ϑ, where the pi(ϑ)

again maximize
∏n

i=1 pi, now under the constraint
∑n

i=1 piaϑ(Xi) = 0. We write P̂ lik
ϑ f =∑n

i=1 pi(ϑ)f(Xi) for the empirical likelihood estimator of Pf when ϑ is known. Then

our efficient plug-in estimator P̂ (f − ĉ>
f,ϑ̂
aϑ̂) for Pf can be shown to be stochastically

equivalent to the corresponding empirical likelihood plug-in estimator P̂ lik
ϑ̂likf . Hence our

Theorems 2 and 3 imply efficiency of ϑ̂lik and P̂ lik
ϑ̂likf . We do not give details of these

arguments here. For a direct efficiency proof see Qin and Lawless [29, Theorem 3];
they restrict attention to estimating ϑ and F (t). Zhang [34] shows weak convergence of
the empirical likelihood estimator for the distribution function F considered as infinite-
dimensional functional.

In the model constrained by Paϑ = 0, we must assume p ≤ k, i.e. at most as many
unknown parameters as constraints, because otherwise the model would not be well-
defined, in general. A degenerate case is p = 0. This means that the parameter ϑ is
known, or to put it differently, the vector a does not depend on a parameter. Then we
are back to the constraint Pa = 0 discussed first.
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The case p = k is also degenerate because then the unknown distribution is not
constrained at all, and the condition Paϑ = 0 simply defines a functional ϑ(P ) on a
nonparametric model. See also Ahn and Schmidt [1]. This case is also of interest, for
two reasons. One is that we may want to estimate the parameter ϑ. The other is that
certain nonlinear functionals on nonparametric models may conveniently be expressed
using linear constraints. Let us illustrate this point with a simple example. Suppose we
want to estimate the variance E(X − EX)2 when P is an unknown distribution on the
real line. We introduce the one-dimensional parameter ϑ = EX, i.e. the one-dimensional
constraint Paϑ = 0 with aϑ(x) = x−ϑ. The advantage is that for known ϑ the nonlinear
functional E(X−EX)2 becomes the linear functional E(X−ϑ)2. An efficient estimator
for the variance is then obtained by plugging the empirical estimator ϑ̂ = 1

n

∑n
i=1 Xi for

ϑ = EX into the empirical estimator 1
n

∑n
i=1(Xi−ϑ)2 for the variance when ϑ is known.

The resulting estimator is of course just the sample variance.
Constraints can be written in different ways. A simple example is the model with

known coefficient of variation c,

EX = c(E(X − EX)2)1/2. (1.1)

This is a nonlinear constraint not involving a parameter. Set EX = ϑ and rewrite the
constraint (1.1) as

c2E(X − ϑ)2 = ϑ2

to obtain linear constraints as considered in this paper, Paϑ = 0 with a1ϑ(x) = x − ϑ
and a2ϑ(x) = c2(x − ϑ)2 − ϑ2. A third way of writing this example is used in Qin and
Lawless [30]: They set E(X − ϑ)2 = σ2 with constraint ϑ = cσ on the two parameters.

Different ways of writing constraints may be convenient for different purposes. To
calculate variance bounds, it is usually not helpful to introduce additional parameters
into a given model. For the construction of estimators, this can however be useful. We
have already seen this in the simple case of estimating the variance in a nonparametric
model. Similarly, the model with known coefficient of variation is conveniently written
in terms of two linear constraints by introducing the mean as parameter.

The paper is organized as follows. Section 2 recalls a characterization of efficient es-
timators, based on a version of Hájek’s [11] convolution theorem for infinite-dimensional
models. Section 3 gives conditions under which the plug-in principle works if efficient
estimators for ϑ are available. Section 4 constructs an efficient estimator for ϑ as solution
of an estimating equation B̂ϑ

∑n
i=1 aϑ(Xi) = 0, with B̂ϑ a random matrix of weights.

Section 5 considers estimating expectations Pf . Section 6 describes some examples.

2 Characterization of efficient estimators

In this section we introduce, in the context of constrained models, appropriate definitions
of differentiable functional, regular and asymptotically linear estimator, and characteri-
zations of regular and of efficient estimators.
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Let X1, . . . , Xn be i.i.d. with distribution P (dx). Let aτ (x) be a k-dimensional vector
of P -square-integrable functions, with p-dimensional parameter τ , and p ≤ k. Write
Paτ = Eaτ (X) =

∫
aτ (x)P (dx). The model consists of all distributions P such that

Paτ = 0 for some τ . Fix P and ϑ with Paϑ = 0. Write

L2,0(P ) = {v ∈ L2(P ) : Pv = 0}.

For v ∈ L2,0(P ) let Pnv be Hellinger differentiable with derivative v,

P
((dPnv

dP

)1/2

− 1− 1

2
n−1/2v

)2

= o(n−1).

Assumption 1. The vector aτ (x) is L2(P )-differentiable at τ = ϑ with k × p-matrix
of partial derivatives ȧϑ(x),

P [|aτ − aϑ − ȧϑ(τ − ϑ)|2] = o(|τ − ϑ|2),

and Lipschitz at τ = ϑ,
|aτ (x)− aϑ(x)| ≤ z(x)|τ − ϑ|

for some z ∈ L2(P ). Also, the k × k-matrix Aϑ = P [aϑa
>
ϑ ] is nonsingular, and P ȧϑ has

full rank p.

Assumption 1 will be in force throughout. From now on we will omit the true pa-
rameter ϑ whenever convenient. The perturbed distribution Pnv must fulfill a constraint
Pnvaϑnu = 0 for a possibly perturbed parameter ϑnu = ϑ+ n−1/2u, with u ∈ Rp,

0 = Pnvaϑnu = P [(1 + n−1/2v)(a+ n−1/2ȧu)] + o(n−1/2).

This leads to a constraint P [av] = −P ȧu on the perturbation v. The tangent space V∗
of the model at P is the set of all v ∈ L2,0(P ) fulfilling such a constraint. Write

Vu = {v ∈ L2,0(P ) : P [av] = −P ȧu}.

Then V∗ is the union of the affine spaces Vu, u ∈ Rp. The tangent space V∗ is linear and
closed.

Note that our local models consists of distributions Pnv that are absolutely continu-
ous with respect to P . This does not mean that our efficiency results refer only to models
consisting of mutually absolutely continuous distributions. In general, we may have cho-
sen our local model too small, in the sense that the corresponding asymptotic variance
bounds for estimators are unattainable. In our setting, however, we will exhibit estima-
tors attaining the bounds. This implies that the local model was chosen large enough: it
contains the least favorable submodel. On the other hand, our efficiency results continue
to hold when the underlying distributions fulfill additional (smoothness and moment)
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conditions, as long as we find a local model also fulfilling these conditions, and with
tangent space equal to V∗ or at least dense in V∗.

We recall the following definitions and results from Le Cam’s and Hájek’s theory
of efficient estimation. A reference is Bickel, Klaassen, Ritov and Wellner [5]. A q-
dimensional functional t(P ) is called differentiable at P with gradient g if g ∈ L2,0(P )q

and
n1/2(t(Pnv)− t(P ))→ P [gv] for v ∈ V∗.

The canonical gradient g∗ is the componentwise projection of g onto the tangent space
V∗. An estimator t̂ for t(P ) is called regular at P with limit L if

n1/2(t̂− t(Pnv))⇒ L under P n
nv for v ∈ V∗.

The convolution theorem says that if t̂ is regular for t(P ) with limit L, then

L = (P [g∗g
>
∗ ])1/2Nq +M in distribution,

with Nq a q-dimensional standard normal random vector, and M independent of Nq.
This justifies calling a regular estimator efficient for t(P ) if its limit is

L = (P [g∗g
>
∗ ])1/2Nq in distribution.

An estimator t̂ for t(P ) is called asymptotically linear at P with influence function b if
b ∈ L2,0(P )q and

n1/2(t̂− t(P )) = n−1/2

n∑
i=1

b(Xi) + oPn(1).

Result 1. An asymptotically linear estimator for t(P ) is regular if and only if its
influence function is a gradient for t(P ).

Result 2. A regular estimator for t(P ) is efficient if and only if it is asymptotically
linear with influence function equal to the canonical gradient of t(P ).

3 Plug-in estimators

In this section we describe how to construct an efficient estimator of a finite-dimensional
functional t(P ). We begin by decomposing the tangent space V∗ into tangent space for
known ϑ and orthogonal complement.

In Section 2 we have seen that the tangent space V∗ consists of the solutions v of
inhomogeneous equations P [av] = −P ȧu for some u ∈ Rp. If ϑ is known, the tangent
space reduces to the space of solutions of the corresponding homogeneous equation,

V0 = {v ∈ L2,0(P ) : P [av] = 0}.
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Let [a] denote the linear span of the components a1, . . . , ak of a. We have the orthogonal
decomposition

L2,0(P ) = V0 ⊕ [a]. (3.1)

Set A = P [aa>] and

` = −P ȧ>A−1a. (3.2)

Then

P [a`>] = −P ȧ. (3.3)

Let ej denote the p-dimensional unit vector. The j-th component `j of ` is the unique
solution of P [a`j] = −P ȧej that is orthogonal to V0. Write [`] for the linear span of
`1, . . . , `p. Then V∗ has the orthogonal decomposition

V∗ = V0 ⊕ [`]. (3.4)

We have

I = P [``>] = P ȧ>A−1P ȧ. (3.5)

By Assumption 1, the p × p-matrix I is nonsingular. It will play the role of Fisher
information for ϑ.

Lemma 1. Let t(P ) be a q-dimensional functional which is differentiable at P with
gradient g ∈ L2,0(P )q. The canonical gradients of t(P ) for known and unknown ϑ,
respectively, are

g0 = g − ga, g∗ = g − ga + g`,

where ga and g` are the projections of g onto [a] and [`], respectively. We have

ga = P [ga>]A−1a,

g` = P [g`>]I−1` = P [ga>]A−1P ȧ(P ȧ>A−1P ȧ)−1P ȧ>A−1a.

A degenerate case is p = k. Then P ȧ has an inverse, and g` = ga, i.e. g∗ = g.

Proof. The tangent space for known ϑ is V0. By (3.1), the orthogonal complement of
V0 in L2,0(P ) is [a]. The projection of g onto [a] is of the form ga = W>a with W a
k × q-matrix determined by

P [(g −W>a)a>] = 0,

i.e. W = A−1P [ag>]. The projection of g onto V0 is g0 = g − ga.
By (3.4), the tangent space for unknown ϑ has the orthogonal decomposition V∗ =

V0 ⊕ [`]. The projection of g onto [`] is of the form g` = Z>` with Z a p × q-matrix
determined by

P [(g − Z>`)`>] = 0,
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i.e. Z = I−1P [`g>]. Hence the projection of g onto V∗ is g∗ = g0 + g` = g − ga + g`. Use
(3.2) to rewrite ` in terms of a.

Consider the parameter τ as a p-dimensional functional of P by setting ϑ(P ) = τ if
Paτ = 0.

Lemma 2. The functional ϑ(P ) is differentiable at P with canonical gradient

I−1` = −(P ȧ>A−1P ȧ)−1P ȧ>A−1a.

Proof. By (3.2) we have ` = −P ȧ>A−1a. By definition of Vu, for v ∈ Vu we have,
using (3.5),

P [`v] = −P ȧ>A−1P [av] = P ȧ>A−1P ȧu = Iu.

On the other hand, for v ∈ Vu,

n1/2(ϑ(Pnv)− ϑ(P )) = n1/2(ϑnu − ϑ) = u.

The last two equations imply that I−1` is a gradient of ϑ. Since I−1` is in [a] and hence
in V∗, the gradient is canonical. Use (3.2) to rewrite ` in terms of a.

Remark 1. Our efficient estimators will involve consistent estimators for expectations
Pkϑ. Suppose the function kτ (x) fulfills a Lipschitz condition at τ = ϑ of the form

|kτ (x)− kϑ(x)| ≤ z(x)|τ − ϑ| (3.6)

for a P -integrable function z. Let ϑ̂ be consistent for ϑ. Then a consistent estimator for
Pkϑ is obtained as 1

n

∑n
i=1 kϑ̂(Xi). This follows immediately from the inequality

∣∣∣ 1
n

n∑
i=1

kτ (Xi)−
1

n

n∑
i=1

kϑ(Xi)
∣∣∣ ≤ 1

n

n∑
i=1

z(Xi)|τ − ϑ|

and the law of large numbers. If we have

|kjτ (x)− kjϑ(x)| ≤ zj(x)|τ − ϑ|

with P -square-integrable zj and kjϑ, then k1τ (x)k2τ (x) fulfills a Lipschitz condition (3.6),
and 1

n

∑n
i=1 k1ϑ̂(Xi)k2ϑ̂(Xi) is consistent for P [k1ϑk2ϑ].

By Remark 1, the Lipschitz condition of Assumption 1 implies that

Âϑ̂ =
1

n

n∑
i=1

aϑ̂(Xi)aϑ̂(Xi)
>
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is consistent for A. The Lipschitz condition also implies that the empirical process
Enτ = n−1/2

∑n
i=1(aτ (Xi) − Paτ ) is stochastically equicontinuous at τ = ϑ: For each

ε, η > 0 there is a δ > 0 such that

lim sup
n

P n
{

sup
|τ−ϑ|≤δ

|Enτ − Enϑ| > η
}
≤ ε. (3.7)

See e.g. Andrews and Pollard [2].

Theorem 1. Let t(P ) be a q-dimensional functional which is differentiable at P with
gradient g ∈ L2,0(P )q. Let t̂ be an estimator for t(P ) which is asymptotically linear at

P with influence function g, and let Ĝ be consistent for P [aϑg
>]. If ϑ̂ is regular and

efficient for ϑ, then

t̂∗ = t̂− Ĝ>Â−1

ϑ̂

1

n

n∑
i=1

aϑ̂(Xi)

is regular and efficient for t(P ).

Proof. By Result 1 and Lemma 2, the estimator ϑ̂ is asymptotically linear with
influence function equal to the canonical gradient,

n1/2(ϑ̂− ϑ) = I−1n−1/2

n∑
i=1

`(Xi) + oPn(1).

By Assumption 1,
Paτ − Paϑ = P ȧ(τ − ϑ) + o(|τ − ϑ|).

With these relations and stochastic equicontinuity (3.7), applied for τ = ϑ̂,

n−1/2

n∑
i=1

aϑ̂(Xi) = n−1/2

n∑
i=1

a(Xi) + n1/2(Paϑ̂ − Paϑ) + oPn(1)

= n−1/2

n∑
i=1

a(Xi) + P ȧn1/2(ϑ̂− ϑ) + oPn(1)

= n−1/2

n∑
i=1

a(Xi) + P ȧI−1n−1/2

n∑
i=1

`(Xi) + oPn(1). (3.8)

By Remark 1, Âϑ̂ is consistent for A. Hence Ĝ>Â−1

ϑ̂
is consistent for P [ga>ϑ ]A−1. Taken

together, t̂∗ is asymptotically linear with influence function

g − P [ga>ϑ ]A−1(a+ P ȧI−1`) = g − ga + g` = g∗.

By Lemma 1, this is the canonical gradient of t(P ). Hence t̂∗ is regular and efficient for
t(P ) by Result 2.
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Remark 2. The asymptotic covariance matrix of an efficient estimator of t(P ) is
P [g∗g

>
∗ ]. Since [`] is a subspace of [a], the vector g` is shorter than ga. Since g − ga is

orthogonal to ga, we have

P [g∗g
>
∗ ] = P [gg>]− P [gag

>
a ] + P [g`g

>
` ]

= P [gg>]− P [ga>]A−1P [ag>]

+ P [ga>]A−1P ȧ(P ȧ>A−1P ȧ)−1P ȧ>A−1P [ag>].

The asymptotic covariance matrix has a straightforward interpretation: The first term
is the asymptotic covariance matrix of t̂. The second term is the covariance matrix
reduction due to the information in the constraint Paϑ = 0. The third term is the
covariance matrix increase due to the fact that we do not know the parameter ϑ in the
constraint. The third term is never larger than the second term. In the degenerate case
k = p, we have g` = ga and hence P [g∗g

>
∗ ] = P [gg>].

4 Estimators for the parameter

In this section we construct an efficient estimator of ϑ as solution of an estimating
equation. For a different, recursive, efficient estimator of ϑ see Nevel’son [26].

Theorem 2. Any consistent solution of

1

n

n∑
i=1

ȧτ (Xi)
>Â−1

τ n−1/2

n∑
i=1

aτ (Xi) = oPn(1) (4.1)

is regular and efficient for ϑ.

Proof. By Remark 1, 1
n

∑n
i=1 ȧϑ̂(Xi) and Âϑ̂ are consistent for P ȧ and A, respectively.

Furthermore,
Paτ − Paϑ = P ȧ(τ − ϑ) + o(|τ − ϑ|).

Hence any consistent solution of (4.1) fulfills

oPn(1) = P ȧ>A−1n−1/2

n∑
i=1

aϑ̂(Xi)

= P ȧ>A−1
(
n−1/2

n∑
i=1

aϑ(Xi) + P ȧn1/2(ϑ̂− ϑ)
)

+ oPn(1).

We obtain

n1/2(ϑ̂− ϑ) = −(P ȧ>A−1P ȧ)−1P ȧ>A−1n−1/2

n∑
i=1

a(Xi) + oPn(1).
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This proves that ϑ̂ is asymptotically linear with influence function equal to the canonical
gradient I−1` of ϑ(P ) obtained in Lemma 2. Result 2 now implies that ϑ̂ is regular and
efficient for ϑ.

A proof of Theorem 2 via approximation by a multinomial distribution is sketched in
Chamberlain [7]. The estimator in Theorem 2 may be interpreted as generalized method
of moments (GMM) estimator in the sense of Hansen [12, 13]. For an interpretation of
such estimators as maximum likelihood estimators in certain exponential families see
Back and Brown [3].

5 Estimators for expectations

In this section we construct an efficient estimator for the expectation Pf of a P -square-
integrable function f(x). Since Pnv has Hellinger derivative v, and Pv = 0, we have

n1/2(Pnvf − Pf)→ P [vf ] = P [v(f − Pf)].

Hence f −Pf is a gradient of Pf in L2,0(P ). The canonical gradient gf is now obtained
from Lemma 1,

gf = f − Pf − gaf + g`f ,

with

gaf = P [fa>]A−1a,

g`f = P [f`>]I−1` = P [fa>]A−1P ȧ(P ȧ>A−1P ȧ)−1P ȧ>A−1a.

Theorem 3. Let ϑ̂ be regular and efficient for ϑ. Set

F̂τ =
1

n

n∑
i=1

aτ (Xi)f(Xi).

Then

t̂ϑ̂ =
1

n

n∑
i=1

f(Xi)− F̂>ϑ̂ Â
−1

ϑ̂

1

n

n∑
i=1

aϑ̂(Xi) (5.1)

is regular and efficient for Pf .

Proof. By Remark 1, F̂ϑ̂ is consistent for P [af ]. Hence F̂>
ϑ̂
Â−1

ϑ̂
is consistent for

P [fa>]A−1. With expansion (3.8) we now obtain that t̂ϑ̂ is asymptotically linear with
influence function

f − Pf − P [fa>]A−1(a+ P ȧI−1`) = f − Pf − gaf + g`f = gf .

Hence t̂ϑ̂ is regular and efficient for Pf by Result 2.

Estimators of similar form arise when one estimates expectations in semiparametric
models; see Brown and Newey [6, Section 4].
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6 Examples

Linear constraints Paϑ = 0 involving a known k-dimensional vector of functions aϑ(x)
with unknown p-dimensional parameter ϑ arise in many different contexts. Three types
of vectors aϑ(x) are of particular interest. Functions aϑ(x) = r(x) − γ(ϑ) arise in the
method of moments; functions aϑ(x) = Γ(ϑ)s(x) with k × q-matrix Γ and q-vector
s describe relations between expectations of different components of a function s(x);
functions aϑ(x) = r(x − ϑ) define location models with certain symmetries. In the
following we briefly discuss these three types and some more specific examples.

1. Let aϑ(x) = r(x) − γ(ϑ). Then the constraint Paϑ = 0 can be written Pr = γ(ϑ),
and the matrix of partial derivatives ȧϑ(x) = −γ̇(ϑ) does not depend on x. We have
A = P [aa>] = P [rr>]− γγ>.

The efficient estimating equation (4.1) for ϑ is

γ̇(ϑ)>
( 1

n

n∑
i=1

r(Xi)r(Xi)
> − γ(ϑ)γ(ϑ)>

)−1

n−1/2

n∑
i=1

(r(Xi)− γ(ϑ)) = oPn(1).

The efficient estimator (5.1) for Pf is

t̂ϑ̂ =
1

n

n∑
i=1

f(Xi)−
1

n

n∑
i=1

f(Xi)(r(Xi)− γ(ϑ̂))>

( 1

n

n∑
i=1

r(Xi)r(Xi)
> − γ(ϑ̂)γ(ϑ̂)>

)−1 1

n

n∑
i=1

(r(Xi)− γ(ϑ̂)).

For real-valued observations, such a constraint arises in the method of moments,
EXj = γj(ϑ), j = 1, . . . , k, with r(x) = (x, . . . , xk)>. A particular case is (E(X −
EX)2)1/2 = cEX, with known coefficient of variation c. Introduce ϑ = EX to obtain
EX2 = (c2 + 1)ϑ2, i.e. r(x) = (x, x2)> and γ(ϑ) = (γ1(ϑ), γ2(ϑ))> with γ1(ϑ) = ϑ and
γ2(ϑ) = (c2 + 1)ϑ2.

Let Xi = (Yi, Zi) be bivariate i.i.d. observations with EY = EZ. Such models are
used in survey sampling. For an approach via empirical likelihood see Kuk and Mak [19]
and Chen and Qin [8]. We introduce a real-valued parameter ϑ and write the model in
terms of a two-dimensional constraint Paϑ = 0 with aϑ(x) = (y − ϑ, z − ϑ)>. Here Aϑ
is the covariance matrix

Aϑ = covX =

(
η ρ
ρ ζ

)
,

say. Let η̂, ζ̂ and ρ̂ be the corresponding empirical estimators. Then the efficient
estimating equation (4.1) for ϑ is

(η̂ − ρ̂)
n∑
i=1

(Yi − ϑ) + (ζ̂ − ρ̂)
n∑
i=1

(Zi − ϑ) = 0.

12



Hence an efficient estimator for ϑ is

ϑ̂ =

(
1 +

ζ̂ − ρ̂
η̂ − ρ̂

)−1
1

n

n∑
i=1

Yi +

(
1 +

η̂ − ρ̂
ζ̂ − ρ̂

)−1
1

n

n∑
i=1

Zi.

Not surprisingly, this is the optimal weighted average of the two sample means. Similarly
as for known coefficient of variation, see the Introduction, it would also make sense to
introduce a two-dimensional parameter µ via EX = µ, with constraint on the parameter,
here µ1 = µ2.

2. Let aϑ(x) = Γ(ϑ)s(x) with k×q-matrix Γ and q-vector s. Then the constraint Paϑ =
Γ(ϑ)Ps = 0 describes linear relations between expectations of different components of
s, with coefficients depending on the parameter ϑ. We have A = P [aa>] = ΓP [ss>]Γ>

and
ȧϑ(x) = Γ̇(ϑ)s(x) = (Γ(1)(ϑ)s(x), . . . ,Γ(p)(ϑ)s(x)),

where Γ(j)(ϑ) = ∂ϑjΓ(ϑ) is the matrix of partial derivatives of Γ(ϑ) with respect to the
j-th component of ϑ.

The efficient estimating equation (4.1) for ϑ is

n∑
i=1

s(Xi)
>Γ̇(ϑ)>

(
Γ(ϑ)

n∑
i=1

s(Xi)s(Xi)
>Γ(ϑ)>

)−1

Γ(ϑ)n−1/2

n∑
i=1

s(Xi) = oPn(1).

The efficient estimator (5.1) for Pf is

t̂ϑ̂ =
1

n

n∑
i=1

f(Xi)−
n∑
i=1

f(Xi)s(Xi)
>Γ(ϑ̂)>

(
Γ(ϑ̂)

n∑
i=1

s(Xi)s(Xi)
>Γ(ϑ̂)>

)−1

Γ(ϑ̂)
1

n

n∑
i=1

s(Xi).

Suppose in particular that we have real-valued observations, and dependencies be-
tween centered moments, say E(X − EX)j = γj(ϑ2, . . . , ϑp) for j = 2, . . . , k. If we
introduce a new parameter ϑ1 = EX and express the centered moments in terms of the
moments, we can write the dependencies as a constraint of the form Paϑ = Γ(ϑ)Ps = 0
with s(x) = (x, . . . , xk)> and Γ a k-dimensional row vector. Dependencies between
cumulants rather than centered moments can be written in a similar way.

An important example of a model described by relations between centered moments
is the quasi-likelihood model, which assumes that the variance is a function of the mean,
varX = v(EX) with known function v(x). It is conveniently written introducing a real
parameter ϑ for the mean,

EX = ϑ, E(X − ϑ)2 = v(ϑ).

13



This is a linear constraint Paϑ = 0 with aϑ(x) = (x − ϑ, (x − ϑ)2 − v(ϑ))>. The
sample mean would be optimal in the sense of the theory of estimating functions, see
Godambe and Heyde [9]. A better, efficient, estimator for ϑ is obtained from estimating
equation (4.1). Generalized linear models are extensions to non-identically distributed
observations; see McCullagh and Nelder [22, Chapter 10]. Quasi-likelihood models also
have versions for regression models and autoregressive models. We refer to Heyde [14]
for an approach via estimating functions, and to Wefelmeyer [32] for efficient estimators.
General constraints in regression models will be treated in Müller and Wefelmeyer [24].

3. Let the observations be p-dimensional and aϑ(x) = r(x − ϑ), with r of dimension
k ≥ p. Then ȧϑ(x) = −r′(x− ϑ) and Aϑ = P [aϑa

>
ϑ ] =

∫
r(x− ϑ)r(x− ϑ)>P (dx).

The efficient estimating equation (4.1) for ϑ is

n∑
i=1

r′(Xi − ϑ)>
( n∑
i=1

r(Xi − ϑ)r(Xi − ϑ)>
)−1

n−1/2

n∑
i=1

r(Xi − ϑ) = oPn(1).

The efficient estimator (5.1) for Pf is

t̂ϑ̂ =
1

n

n∑
i=1

f(Xi)−
n∑
i=1

f(Xi)r(Xi − ϑ̂)>

( n∑
i=1

r(Xi − ϑ̂)r(Xi − ϑ̂)>
)−1 1

n

n∑
i=1

r(Xi − ϑ̂).

For k = p this gives a nonparametric model, and the constraint
∫
r(x−ϑ)P (dx) = 0

defines a location parameter. For k > p the constraint describes certain symmetries
of P around ϑ. Nevel’son [25] writes the model as a semiparametric model PϑF (dx) =
dF (x − ϑ) with distribution function F fulfilling the constraint

∫
rdF = 0, which does

not involve the parameter. He determines a variance bound for estimators of ϑ.
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sition, and Erich Häusler for pointing out that our estimators are related to empirical
likelihood estimators.
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on Asymptotic Statistics, (J. Hájek, ed.), Vol. 2, pp. 215–238, Charles University, Prague, 1974.

[21] B.Y. Levit, Conditional estimation of linear functionals, Problems Inform. Transmission, 11
(1975), pp. 39–54.

[22] P. McCullagh and J.A. Nelder, Generalized Linear Models, 2nd ed., Monographs on Statistics and
Applied Probability 37, Chapman and Hall, London, 1989.

15



[23] U.U. Müller, A. Schick and W. Wefelmeyer, Plug-in estimators in semiparametric stochastic pro-
cess models, To appear in: Selected Proceedings of the Symposium on Inference for Stochastic
Processes (I.V. Basawa, C.C. Heyde and R.L. Taylor, eds.), IMS Lecture Notes-Monograph Series,
Institute of Mathematical Statistics, Hayward, California, 2001.

[24] U.U. Müller and W. Wefelmeyer, Regression type models and optimal estimators, In preparation.

[25] M.B. Nevel’son, One informational lower bound, Problems Inform. Transmission, 13 (1977), pp.
181–185.

[26] M.B. Nevel’son, Asymptotic optimality of recursive estimates, Problems Inform. Transmission, 14
(1978), pp. 35–49.

[27] A.B. Owen, Empirical likelihood ratio confidence intervals for a single functional, Biometrika, 75
(1988), pp. 237–249.

[28] A.B. Owen, Empirical likelihood ratio confidence regions, Ann. Statist., 18 (1990), pp. 90–120.

[29] J. Qin and J. Lawless, Empirical likelihood and general estimating equations, Ann. Statist., 22
(1994), pp. 300–325.

[30] J. Qin and J. Lawless, Estimating equations, empirical likelihood and constraints on parameters,
Canad. J. Statist., 23 (1995), pp. 145–159.

[31] A. Sheehy, Kullback–Leibler constrained estimation of probability measures Technical Report 137,
Department of Statistics, University of Washington, Seattle, 1988.

[32] W. Wefelmeyer, Quasi-likelihood models and optimal inference, Ann. Statist., 24 (1996), pp. 405–
422.

[33] B. Zhang, M -estimation and quantile estimation in the presence of auxiliary information, J.
Statist. Plann. Inference, 44 (1995), pp. 77–94.

[34] B. Zhang, Estimating a distribution function in the presence of auxiliary information, Metrika, 46
(1997a), pp. 221–244.

[35] B. Zhang, Empirical likelihood confidence intervals for M -functionals in the presence of auxiliary
information, Statist. Probab. Lett., 32 (1997b), pp. 87–97.

16



Ursula U. Müller
Fachbereich 3: Mathematik und Informatik
Universität Bremen
Postfach 330 440
28334 Bremen
Germany
uschi@math.uni-bremen.de

http://www.math.uni-bremen.de/∼uschi/

Wolfgang Wefelmeyer
Fachbereich 6 Mathematik
Universität Siegen
Walter-Flex-Str. 3
57068 Siegen
Germany
wefelmeyer@mathematik.uni-siegen.de

http://www.math.uni-siegen.de/statistik/wefelmeyer.html

17


