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Abstract The behavior of estimators for misspecified parametric models
has been well studied. We consider estimators for misspecified nonlinear re-
gression models, with error and covariates possibly dependent. These models
are described by specifying a parametric model for the conditional expec-
tation of the response given the covariates. This is a parametric family of
conditional constraints, which makes the model itself close to nonparamet-
ric. We study the behavior of weighted least squares estimators both when
the regression function is correctly specified, and when it is misspecified and
also involves possible additional covariates.

Keywords Conditional mean model · Efficient estimation · Estimating
equation · Influence function · Misspecification

1 Introduction

Suppose we have specified a parametric regression function E(Y |X) =
rϑ(X) with one-dimensional response Y , random covariate X with values
in some arbitrary space, unknown p-dimensional parameter ϑ and no fur-
ther assumptions on the structure of the law of (X, Y ). This also covers
linear regression models, with rϑ(X) = ϑ⊤X. We can write the model as
Y = rϑ(X) + ε, with E(ε|X) = 0 but the distribution of (X, ε) otherwise
being unknown. We observe (X1, Y1), . . . , (Xn, Yn) and want to estimate ϑ.

The model E(Y |X) = rϑ(X) suggests estimators ϑ̂ that solve estimating
equations

n
∑

i=1

wt(Xi)(Yi − rt(Xi)) = 0 (1.1)
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with respect to t, where wt is a p-dimensional vector of weight functions.
Solutions ϑ̂ of estimating equations of the form (1.1) are called weighted
least squares estimators. The ordinary least squares estimator solves an
estimating equation (1.1) with weights wt(X) = ṙt(X)⊤, where ṙt is the
vector of partial derivatives of rt with respect to the parameter t. We show
in Section 3 that the ordinary least squares estimator is not efficient in the
model specified by E(Y |X) = rϑ(X) and prove that the random weights
wt(X) = ṙt(X)⊤σ̂−2

t (X) lead to an efficient estimator; here σ̂2
t (X) is an

appropriate estimator of the conditional variance E(ε2|X) of the error given
the covariate.

Suppose now that our model for the regression function is wrong and
that the true regression function is E(Y |X, Z) = r(X, Z), with Z being a

possible additional covariate. What does ϑ̂ now estimate — and how well
does it estimate what it estimates?

Again, the model can be written in the form Y = r(X, Z) + ε with
E(ε|X, Z) = 0. The reason for allowing additional covariates is that we
wish to cover misspecifications in which the number of regression parame-
ters is chosen incorrectly. We could, for example, have a linear model with
additional covariates, Y = ϑ⊤X + τ⊤Z + ε, or with an additive nonpara-
metric term, Y = ϑ⊤X + β(Z) + ε. Note that formally these two regression
models could be written as Y = ϑ⊤X + η with correct regression function
rϑ(X) = ϑ⊤X but with errors η = τ⊤Z +ε or η = β(Z)+ε that are in gen-
eral not conditionally centered any more, since E(η|X) equals τ⊤E(Z|X)
or E(β(Z)|X).

To see how the weighted least squares estimator ϑ̂ behaves under mis-
specification, we view the estimating equation (1.1) as an empirical version
of the equation

E(wt(X)(Y − rt(X))) = 0. (1.2)

This is all the information that the weighted least squares estimator uses
about the nonlinear model. Note that the constraint (1.2) is much weaker
than the constraint E((Y −rt(X))|X) = 0 that defines the regression model,
the latter being equivalent to E(w(X)(Y − rt(X))) = 0 for (essentially) all
functions w and for some t. Let t(P ) denote the solution of equation (1.2),

with P denoting the joint law of (X, Y ). It follows that ϑ̂ estimates t(P ).
Here we must assume that such a solution exists. Lindsay and Qu (2003)
then call P compatible.

The estimator ϑ̂ solving (1.1) is an empirical estimator, in the sense
that it solves an empirical version of the equation (1.2) that defines the
functional t(P ). We therefore expect it to be not only consistent but also
efficient for t(P ) in the nonparametric model, with nothing specified about
the law of (X, Y, Z). The reason for this conjecture is that in a nonpara-
metric model all regular and asymptotically linear estimators necessarily
have the same influence function; see also Section 4. The simplest ex-
ample is linear regression, rϑ(X) = ϑX, and the unweighted estimating

equation, i.e. (1.1) with wt(X) = 1, which gives ϑ̂ =
∑

Yi/
∑

Xi. It
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estimates t1(P ) = Er(X, Z)/E(X). The ordinary least squares estimator

ϑ̂ =
∑

XiYi/
∑

X2
i , which solves the weighted estimating equation (1.1)

with wt(X) = X, estimates the functional t2(P ) = E(Xr(X, Z))/EX2.
Both estimators are consistent estimators of ϑ if the linear regression model
is true, r(X, Z) = ϑX, but not efficient in this model since they do not use
the specific structure of the model. They are, however, optimal for estimat-
ing the two functionals t1(P ) and t2(P ) in the nonparametric model.

In Section 4 we show that the weighted least squares estimator ϑ̂ is
efficient for the solution t(P ) of (1.2) in the model E(Y |X, Z) = r(X, Z).
This implies asymptotic normality. We show that the asymptotic variance
bound is not changed when Z is not observed. This result is not unexpected,
because our efficient estimator does not use the additional covariates.

There is a large amount of literature on estimation under model mis-
specification in situations which differ from the one considered here. White
(1982) showed that the quasi maximum likelihood estimator for the param-
eter of a probability model pϑ is strongly consistent for the parameter which
minimizes the Kullback-Leibler distance between the unknown true density
p and pϑ. Since then many authors have studied this topic in various con-
texts, some recently. Aguirre-Torres and Toribio (2004), for example, also
assume a misspecified parametric model for the density (but with unobserv-
able components) and apply the efficient method of moments to estimate
the parameter. Articles on estimation in misspecified regression models are
typically concerned with specific models and misspecifications. Gould and
Lawless (1988) and Zhang and Liu (2003) study models with misspecified
error distribution. Qu et al. (2000) address the problem of a misspecified
correlation structure in longitudinal data analysis. Struthers and Kalbfleisch
(1986) study the behavior of parameter estimates in proportional hazards
regression where the misspecified model is an accelerated failure time model
or where relevant covariates have been omitted. The latter problem of er-
roneously ignored covariates has also been examined by other authors, for
example Sarkar (1989), and McKean et al. (1993), in the context of linear
models. For more work on misspecifications in the linear model see, for ex-
ample, Severini (1998) and Shi et al. (2003). Severini derives properties of
the ordinary least squares estimator in the normal linear model with mis-
specified expectations. Shi et al. consider fixed design points x and derive
minimax robust designs for misspecifications with the form of an additive
function of x.

To our knowledge, the work most pertinent to our study is White (1981)
who looks at the consequences of using approximations Y = rϑ(X) of an
unknown true regression model Y = r(X) (without error term ε). He shows
that the least squares estimator is a consistent estimator of the parameter
that minimizes the prediction mean squared error and also discusses con-
sistency of certain weighted least squares estimators (for more details see
Section 5). Our work covers and extends these results.

The rest of the paper is organized as follows. In Section 2 we derive a
Taylor expansion of weighted least squares estimators. We will distinguish
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two cases: where the nonlinear model is correctly specified and where it is
misspecified. The expansion allows us to derive the asymptotic distribution
of the estimators in both cases, in particular the covariance matrices, and
optimal weights w∗

t for the case that the nonlinear model is the true one. In
Section 3 we will focus on the nonlinear regression model. We show that the
estimator using optimal weights w∗

t is efficient for ϑ if the model is correctly
specified. The weights depend on the underlying distribution and must be
estimated. This does not change the asymptotic variance. In Section 4 we
assume that the model is misspecified and show that weighted least squares
estimators are efficient for functionals t(P ) defined as solutions of (1.2). This
section can be kept concise by using results from Müller and Wefelmeyer
(2002a). In Section 5 we illustrate our results with some simulations and
discuss open problems and examples, in particular linear regression and
additional restrictions on the misspecification.

2 Influence function of weighted least squares estimators

In the following we keep the notation from the Introduction. We assume that
Y is P -square integrable, and that ϑ is a p-dimensional parameter in some
open parameter space Θ. The nonlinear model E(Y |X) = rϑ(X) can be
regarded as a model defined by a conditional constraint, namely by E(Y −
rϑ(X)|X) = 0. The model might be misspecified. In this case we assume that
there is no structural constraint which defines the model. In particular, the
above conditional constraint may not hold. This is a nonparametric model.
We allow for an additional vector of covariates Z and write r(X, Z) =
E(Y |X, Z) for the true (unknown) regression function.

The weighted least squares estimator ϑ̂ solving (1.1) estimates the so-
lution t(P ) of equation (1.2), E(wt(X)(Y − rt(X))) = 0. By definition of
r we have E(wt(X)(Y − r(X, Z))) = 0 as well, for any weight function wt

and any t. Hence t(P ) solves

E(wt(X)rt(X)) = E(wt(X)r(X, Z)). (2.1)

This is useful for determining t(P ).
We assume that a solution t(P ) of the defining equation (2.1) exists.

If the nonlinear model is correctly specified, the unconditional equation
(2.1) obviously holds and, by definition, the conditional constraint E(Y −
rϑ(X)|X) = 0 is satisfied. The latter is not true under misspecification,
which is the crucial difference between the correctly specified and the mis-
specified model: under misspecification the difference Y − rt(P )(X) is not
conditionally centered. This will affect the asymptotic expansion of the
weighted least squares estimator which we will carry out in Theorem 1, cov-
ering both misspecified and correctly specified nonlinear regression models.

We make the following assumptions.

Assumption 1 The p-dimensional vector wτ (X) and the regression func-
tion rτ (X) are L2(P ) differentiable at τ = t(P ) with a p×p matrix of partial
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derivatives ẇt(P )(X) and a p-dimensional gradient ṙt(P )(X), respectively,

E(|wτ (X) − wt(P )(X) − ẇt(P )(X)(τ − t(P ))|2) = o(|τ − t(P )|2),
E(|rτ (X) − rt(P )(X) − ṙt(P )(X)(τ − t(P ))|2) = o(|τ − t(P )|2).

Assumption 1 guarantees that the expected value of wτ (X)(Y − rτ (X))
can be approximated as follows,

E(wτ (X)(Y − rτ (X))) − E(wt(P )(X)(Y − rt(P )(X)))

= −A(τ − t(P )) + o(|τ − t(P )|), (2.2)

where A is a p× p matrix of expectations, namely, with µt(P )(X) = E(Y −
rt(P )(X)|X),

A = E(wt(P )(X)ṙt(P )(X)) − E(ẇt(P )(X)µt(P )(X)). (2.3)

We must assume that A is invertible:

Assumption 2 The p × p matrix A from (2.3) is invertible.

Assumptions 1 and 2 will be in force throughout this paper.

Remark. By Assumption 1, wτ and rτ are L2(P ) differentiable. This
implies that the empirical process

Enτ = n−1/2
n

∑

i=1

(

wτ (Xi)(Yi − rτ (Xi)) − E(wτ (X)(Y − rτ (X)))
)

is stochastically equicontinuous at τ = t(P ): for every ε, η > 0 there is a δ
such that

lim sup
n

P ( sup
|τ−t(P )|≤δ

|Enτ − Ent(P )| > η) ≤ ε. (2.4)

See e.g. Andrews and Pollard (1994).

Theorem 1 Any consistent solution ϑ̂ of (1.1) has the stochastic expansion

n1/2(ϑ̂ − t(P )) = A−1n−1/2
n

∑

i=1

wt(P )(Xi)(Yi − rt(P )(Xi)) + op(1) (2.5)

with A = E(wt(P )(X)ṙt(P )(X)) − E(ẇt(P )(X)µt(P )(X)). If the nonlinear
regression model is correctly specified we have µt(P )(X) = µϑ(X) = E(Y −
rϑ(X)|X) = 0 and the stochastic expansion simplifies:

n1/2(ϑ̂ − ϑ) =
(

E(wϑ(X)ṙϑ(X))
)−1

n−1/2
n

∑

i=1

wϑ(Xi)(Yi − rϑ(Xi)) + op(1).

(2.6)
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Proof. Consider the estimating equation (1.1) and the empirical process
Enτ from equation (2.4) in the above remark. We have

0 = n−1/2
n

∑

i=1

wϑ̂(Xi)(Yi − rϑ̂(Xi))

= Enϑ̂ + n−1/2
n

∑

i=1

E(wϑ̂(X)(Y − rϑ̂(X))) + Ent(P ) − Ent(P )

with Enϑ̂ − Ent(P ) = op(1) by (2.4). Hence

0 = Ent(P ) + n−1/2
n

∑

i=1

E(wϑ̂(X)(Y − rϑ̂(X))) + op(1)

= n−1/2
n

∑

i=1

(

wt(P )(Xi)(Yi − rt(P )(Xi))

−E(wt(P )(X)(Y − rt(P )(X))) + E(wϑ̂(X)(Y − rϑ̂(X)))
)

+ op(1)

= n−1/2
n

∑

i=1

wt(P )(Xi)(Yi − rt(P )(Xi)) − An1/2(ϑ̂ − t(P ))

+n1/2o(|ϑ̂ − t(P )|) + op(1).

In the last equation we used (2.2). Since the matrix A is invertible by
Assumption 2 we have proved (2.5). ⊓⊔

Corollary 1 Theorem 1 implies that ϑ̂ is asymptotically normally distri-
buted with asymptotic mean t(P ). Under misspecification the approximate

covariance matrix of ϑ̂ is Σt(P )/n where Σt(P ) is the asymptotic covariance
matrix,

Σt(P ) = A−1E(σ2
t(P )(X)wt(P )(X)wt(P )(X)⊤)(A⊤)−1,

with σ2
t(P )(X) = E((Y − rt(P )(X))2|X). This would be the conditional vari-

ance of Y given X if the nonlinear model were correctly specified. In that
case the asymptotic mean of ϑ̂ is t(P ) = ϑ and the asymptotic covariance
matrix Σϑ is

(

E(wϑ(X)ṙϑ(X))
)−1

E
(

σ2
ϑ(X)wϑ(X)wϑ(X)⊤

)(

E(ṙϑ(X)⊤wϑ(X)⊤)
)−1

.

A degenerate case is linear regression and ordinary least squares. Then
rϑ(X) = ϑ⊤X and wϑ(X) = X. Hence ṙϑ(X) = X⊤ and ẇϑ(X) = 0. Then
the matrix A simplifies to E(XX⊤).

In Section 4 we will show that the weighted least squares estimator ϑ̂
is efficient for t(P ) in the nonparametric model where t(P ) is defined by
E(wt(X)rt(X)) = E(wt(X)r(X, Z)). Since the meaning of t(P ) depends on
the weights, and since the estimator is efficient, it is clear that changing the
weights would not produce an improved estimator but, rather, an estimator
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for a different functional. The situation is different in the nonlinear model.
Here, any weighted estimator ϑ̂ estimates ϑ. Hence it is reasonable to choose
weights such that the resulting estimator is efficient for ϑ. In order to deter-
mine such optimal weights we consider the asymptotic covariance matrix Σϑ

of ϑ̂ given in Corollary 1, Σϑ = E(k(X, Y )k(X, Y )⊤), where k is the influ-

ence function given in (2.6), k(x, y) =
(

E(wϑ(X)ṙϑ(X))
)−1

wϑ(x)(y−rϑ(x)).
Then, by arguments given below, the weights that minimize the asymptotic
covariance are

w∗
ϑ(x) = ṙϑ(x)⊤σ−2

ϑ (x), (2.7)

where σ2
ϑ(x) is the conditional variance of Y given X = x as defined

above. This can be seen as follows. Write k∗ for the influence function using

weights w∗
ϑ, i.e. k∗(x, y) =

(

E(w∗
ϑ(X)ṙϑ(X))

)−1
w∗

ϑ(x)(y − rϑ(x)). For ϑ
one-dimensional we have, by the Cauchy-Schwarz inequality, (E(k∗k))2 ≤
E(k∗2)E(k2) where E(k∗2) is the asymptotic variance of the estimator ϑ̂
using weights w∗

ϑ. This is the desired E(k∗2) ≤ E(k2) if E(k∗k) = E(k∗2),
which is equivalent to E((k − k∗)k∗) = 0, i.e., to k∗ and k − k∗ orthogo-
nal. It is now easy to check that this holds for our specific choice w∗

ϑ from
(2.7). For higher dimensional ϑ a related argument applies. The weights
above are chosen such that the spaces spanned by the influence function
k∗ and by k − k∗ are orthogonal, E((k − k∗)k∗⊤) = 0 (see also the dis-
cussion of efficiency in Section 3). Writing k = k∗ + (k − k∗) we obtain
Σϑ = E(kk⊤) = E(k∗k∗⊤) + E((k − k∗)(k − k∗)⊤), i.e. the weights w∗

ϑ

minimize the asymptotic covariance.
Note that the optimal weights w∗

ϑ(x) involve the conditional variance
σ2

ϑ(x), which depends on the underlying distribution. Since we are consid-
ering nonlinear regression, where we do not have a parametric model for
σ2

ϑ(x), it must be estimated using nonparametric methods. In Section 3 we
show that the weights w∗

ϑ do indeed yield an efficient estimator in the non-
linear model: we will see that an estimator is efficient if it is asymptotically
linear as stated in (2.6) with wϑ = w∗

ϑ.

Remark. There is literature on the behavior of the maximum likelihood es-
timator in misspecified parametric models (see, for example, White, 1982,
and Greenwood and Wefelmeyer, 1997). Consider independent observations
V1, . . . , Vn with a (misspecified) parametric density pϑ, ϑ ∈ Θ. Let p denote
the true density of the distribution P . By the Kullback–Leibler information
for the family pϑ, ϑ ∈ Θ, we mean the expectation P log pϑ =

∫

log pϑ dP =
∫

log pϑ(v)p(v) dv. Write t(P ) for the parameter ϑ that maximizes P log pϑ.

Then the parameter ϑ̂ that maximizes the empirical version of P log pϑ,
namely 1/n

∑n
i=1 log pϑ(Vi), is an estimator for the maximum Kullback–

Leibler information functional t(P ). In particular, ϑ̂ is the maximum likeli-
hood estimator.

The fact that the maximum likelihood estimator estimates the maximum
Kullback-Leibler information functional relates to the regression setting as
follows. Write Y = rϑ(X) + ε and suppose that X and ε are independent.
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Further assume that ε is normally distributed with known variance and
that the covariate distribution is known, say with density m. Then the
observations Vi = (Xi, Yi) are independent with density

pϑ(x, y) = m(x)
1√
2πσ

exp
(

− (y − rϑ(x))2

2σ

)

.

Hence the maximum likelihood estimator has a score function proportional
to ṙϑ(x)⊤(y−rϑ(x)). Since the least squares estimator solves the estimating
equation (1.1) with weights wϑ(x) = ṙϑ(x)⊤, it coincides with the maximum
likelihood estimator for the family of densities pϑ, ϑ ∈ Θ. Now assume that
the regression model is misspecified and the regression function is r. (It
makes no difference whether an additional covariate Z is involved or not.)
Then the density of the observations does not depend on ϑ and can be
called p. The above argument shows that the functional t(P ) from (2.1) is
the maximum Kullback–Leibler information functional for the family pϑ.

The score function for ϑ is not changed if we assume a model for the
distribution of the covariate X, as long as it does not involve ϑ. The maxi-
mum likelihood estimator then becomes a conditional maximum likelihood
estimator. In particular, we may take m to be completely unknown. Hence
the least squares estimator estimates the maximum Kullback-Leibler infor-
mation functional t(P ) for this larger family of (semiparametric) densities
pϑ, ϑ ∈ Θ.

3 Efficiency in constrained models

In this section we assume that the nonlinear regression model, E(Y |X) =
rϑ(X), is correctly specified. We will show that the least squares estimator
that uses the weights given in (2.7) is efficient for t(P ) = ϑ in the sense of
Hájek and Le Cam. We keep the discussion brief and refer to the exposition
of Bickel et al. (1998), which treats this efficiency concept in detail.

The model is described by a constraint on the conditional distribution
Q of Y given X. It is therefore convenient to factor P ,

P (dx, dy) = M(dx)Q(x, dy).

The marginal distribution M of X is arbitrary. For reasons of clarity we will
use operator notation in this section. For instance, the constraint E(Y −
rϑ(X)|X = x) = 0 is written

Q[y − rϑ(x)] =

∫

(y − rϑ(x))Q(x, dy) = 0

and, similarly, the unconditional expectation E(Y −rϑ(X)) is P [y−rϑ(x)] =
∫

(y − rϑ(x))P (dx, dy).
In order to be able to characterize efficient estimators in an adequate

way, we first need to determine the tangent space of the model which is
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the set of possible perturbations of P within the model. An estimator of a
particular functional is, roughly speaking, efficient if its influence function
equals the canonical gradient of the functional, which is an element of the
tangent space.

In a first step we consider the nonparametric model, without constraint
Q[y − rϑ(x)] = 0, and (Hellinger differentiable) perturbations of M and Q,

Mnv(dx) =̇M(dx)(1+n−1/2v(x)), Qnh(x, dy) =̇Q(x, dy)(1+n−1/2h(x, y))

with derivatives v in L2,0(M) and h in H where

L2,0(M) = {v ∈ L2(M) : Mv(x) = 0},
H = {h(x, y) ∈ L2(P ) : Qh(x, y) = 0}.

Note that we require Mv(x) = 0 and Qh(x, y) = 0 in order to guarantee that
Mnv and Qnh are probability distributions. The perturbed joint distribution
is

Pnvh(dx, dy) = Mnv(dx)Qnh(x, dy) =̇P (dx, dy)(1 + n−1/2(v(x) + h(x, y)))

with derivative v(x) + h(x, y). Since the functions v in L2,0(M) and h in H
are orthogonal, P [v(x)h(x, y)] = M [v(x)Qh(x, y)] = 0, the tangent space of
the nonparametric model at P is the orthogonal sum

L2,0(M) ⊕ H = {v(x) + h(x, y) : v ∈ L2,0(M), h ∈ H}.

We now consider the nonlinear regression model, i.e. we additionally take the
constraint Q[y − rϑ(x)] = 0 into account in order to determine the tangent
space of this constrained model. The perturbed distribution Pnvh(dx, dy)
must now fulfill a perturbed constraint, Qnh[y − rϑnu

(x)] = 0 for some ϑnu

close to ϑ, say ϑnu = ϑ + n−1/2u with u in Rp. Using Q[y − rϑ(x)] = 0 and
Q[h(x, y)] = 0 we obtain

0 = Qnh[y − rϑnu
(x)] =̇ Q(1 + n−1/2h(x, y))[y − rϑnu

(x)]

=̇ Q(1 + n−1/2h(x, y))[y − rϑ(x) − n−1/2ṙϑ(x)u]

= n−1/2(Q[h(x, y)y] − ṙϑ(x)u),

which leads to a constraint Q[h(x, y)y] = ṙϑ(x)u on h in H. For fixed u ∈ Rp

we write Hu for the solution space of this equation,

Hu = {h ∈ H : Q[h(x, y)y] = ṙϑ(x)u},

and H∗ for the union of all affine spaces Hu, u ∈ Rp. With this notation
the tangent space of the constrained model is

H = L2,0(M) ⊕ H∗.

Note that if the marginal distribution M is known then we do not have
to perturb M and the tangent space reduces to the solution space H∗.
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If ϑ is known, H∗ reduces to the space of solutions of the corresponding
homogeneous equation,

H0 = {h ∈ H : Q[h(x, y)y] = 0},

and the tangent space reduces to L2,0(M) ⊕ H0.
The tangent space of the constrained model is now specified, namely as

the orthogonal sum of L2,0(M) and the solution space H∗, but we find it
convenient to go further and decompose H∗ into the homogeneous solution
space H0 and its orthogonal complement in H∗. We again write σ2

ϑ(x) for
the conditional variance given x, σ2

ϑ(x) = Q[y − rϑ(x)]2, and introduce the
p-dimensional vector

ℓ(x, y) = ṙϑ(x)⊤σ−2
ϑ (x)(y − rϑ(x)). (3.1)

Let ℓj denote the j-th component of ℓ and ej the p-dimensional standard
basis vector, i.e. the j-th component is one and the other components are
zero. In order to describe the solution space of the inhomogeneous equation
Q[h(x, y)y] = ṙϑ(x)u, u ∈ Rp, we solve the equation for the standard basis
vectors u = ej , j = 1, . . . , p. It is easily seen that h = ℓj is the unique
solution of Q[h(x, y)y] = ṙϑ(x)ej that is orthogonal to H0. Write [ℓ] for the
linear span of ℓ1, . . . , ℓp, [ℓ] = {u⊤ℓ : u ∈ Rp}. Then H∗ has the orthogonal
decomposition into the homogeneous solution space H0 and the inhomo-
geneous solution space [ℓ], H∗ = H0 ⊕ [ℓ], and the tangent space of the
constrained model is

H = L2,0(M) ⊕ H0 ⊕ [ℓ].

This decomposition is useful for estimating arbitrary differentiable function-
als t(P ).

We restrict our attention to estimating ϑ and consider it as a p–dimen-
sional functional of P by setting t(P ) = ϑ if Q[y − rϑ(x)] = 0. The vector ℓ
in (3.1) will play the role of score function for ϑ. The Fisher information is

I = P [ℓℓ⊤] = M [ṙϑ(x)⊤ṙϑ(x)σ−2
ϑ (x)]. (3.2)

At this point we need to recall some results on the characterization of
efficient estimators. For parametric models the results are due to Le Cam
(1960) and Hájek (1970). For semiparametric models, as considered here,
we again refer to Bickel et al. (1998).

A p-dimensional functional t(P ) is called differentiable at P with gradient
g̃ if g̃ = ṽ + h̃ with ṽ in L2,0(M)p and h̃ in Hp and

n1/2(t(Pnvh) − t(P )) → P [(ṽ + h̃)(v + h)] for v ∈ L2,0(M), h ∈ H∗.

The canonical gradient g is the component-wise projection of g̃ onto the
tangent space H = L2,0(M) ⊕ H∗, i.e. g = ṽ + h̃∗ with h̃∗ the component-

wise projection of h̃ onto H∗.
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An estimator Tn for t(P ) is called regular at P with limit L if

n1/2(Tn − t(Pnvh) ⇒ L under Pnvh for v ∈ L2,0(M), h ∈ H∗.

The convolution theorem says that

L = (P [gg⊤])1/2Np + R in distribution,

where Np is a p-dimensional standard normal vector and R is independent
of Np. This justifies calling an estimator Tn efficient for t(P ) if

n1/2(Tn − t(P ) ⇒ (P [gg⊤])1/2Np under Pn.

An estimator Tn for t(P ) is called asymptotically linear at P with influence
function k if k ∈ L2,0(P )p and

n1/2(Tn − t(P )) = n−1/2
n

∑

i=1

k(Xi, Yi) + op(1).

We have the following characterizations:
1. An asymptotically linear estimator is regular if and only if its influence

function is a gradient.
2. An estimator is regular and efficient if and only if it is asymptotically

linear with influence function equal to the canonical gradient.
We will utilize the second characterization as follows: in the next lemma

we determine the canonical gradient of ϑ and then go on to show that the
weighted least squares estimator ϑ̂ with suitably estimated weights w∗

ϑ as
given in (2.7) has the expansion (2.6) (with wϑ = w∗

ϑ), and that the influence
function given there equals the canonical gradient. This gives efficiency.

Lemma 1 The functional t(P ) defined by t(P ) = ϑ if Q[y − rϑ(x)] = 0 is
differentiable at P with canonical gradient

I−1ℓ(x, y) = (M [ṙϑ(x)⊤ṙϑ(x)σ−2
ϑ (x)])−1ṙϑ(x)⊤σ−2

ϑ (x)(y − rϑ(x)).

Proof. Let v ∈ L2,0(M) and h ∈ H∗, i.e. v + h ∈ H. By definition, t(P ) is
differentiable at P with gradient g if

n1/2(t(Pnvh) − t(P )) → P [g(v + h)] with g ∈ L2,0(M)p ⊕ Hp.

Since n1/2(t(Pnvh) − t(P )) = n1/2(ϑnu − ϑ) = u, we therefore need to
determine g such that P [g(v + h)] = u. In particular, we want g to be the
canonical gradient, i.e. with components in the tangent space H. Due to the
orthogonal decomposition H = L2,0(M)⊕ H0 ⊕ [ℓ], where [ℓ] comes from ϑ
being unknown, we can assume that the components of g are in the linear
span [ℓ], i.e. g is of the form Jℓ where J is some p× p matrix. Indeed, using
P [ℓv] = 0, Q[h(x, y)y] = ṙϑ(x)u and formulas (3.1) and (3.2) for the score
function ℓ and the Fisher information I, we obtain for g = Jℓ

P [Jℓ(v + h)] = JP [ℓh] = JP [ṙϑ(x)⊤σ−2
ϑ (x)(y − rϑ(x))h(x, y)]

= JM [ṙϑ(x)⊤σ−2
ϑ (x)Q[h(x, y)y]] = JM [ṙϑ(x)⊤σ−2

ϑ (x)ṙϑ(x)u] = JIu.
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The choice J = I−1 thus gives the desired P [g(v+h)] = P [I−1ℓ(v+h)] = u.
Since the components of g = I−1ℓ are in the tangent space by construction,
this shows that g = I−1ℓ is the canonical gradient of t(P ). ⊓⊔

We will now show that any consistent solution ϑ̂ of the weighted esti-
mating equation (1.1) with optimal weights w∗

ϑ(x) = ṙϑ(x)⊤σ2
ϑ(x)−1 is

efficient for ϑ. As mentioned earlier, the equation is undetermined since
the weights involve the unknown conditional variance σ2

ϑ(x). Hence it can-
not be used as it stands. We can, however, replace σ2

ϑ(x) with an appro-
priate consistent estimator σ̂2

ϑ(x). This does not change the asymptotic
variance since the stochastic approximation (2.6) remains valid: the term
n−1/2

∑n
i=1 ṙϑ(Xi)

⊤(σ̂2
ϑ(Xi)

−1−σ2
ϑ(Xi)

−1)(Yi−rϑ(Xi))) is (approximately)
conditionally centered and hence negligible. Two simple estimators come
immediately to mind. Since σ2

ϑ(x) = E(Y 2|X = x) − (E(Y |X = x))2 =
E(Y 2|X) − rϑ(x)2, we can use a kernel estimator such as the Nadaraya–
Watson estimator for the first term of the sum. For the second term we can
use the regression function directly or a second kernel estimator.

Note that if we had a parametric model for the conditional variance, i.e.
if σ2

ϑ(x) were a known function (up to the parameter ϑ), we could use the
weights directly but would lose efficiency. The reason is as follows. A para-
metric model for the conditional variance constitutes a second constraint
on the model, namely E((Y − rϑ(X))2 − σ2

ϑ(X)|X) = 0. This would yield
a two-dimensional constraint which would have to be incorporated into the
estimating equation. In particular it would lead to new different optimal
weights involving higher moments (see Müller and Wefelmeyer, 2002b, for
autoregressive models with multidimensional constraints).

In the following let σ̂2
ϑ(x) be some consistent estimator for σ2

ϑ(x) (which

possibly depends on ϑ) and consider a consistent solution ϑ̂ of the (deter-
mined) estimating equation with estimated optimal weights,

n
∑

i=1

ṙt(Xi)
⊤σ̂2

t (Xi)
−1(Yi − rt(Xi)) = 0. (3.3)

As explained in the above remark, the approximation (2.6) remains valid:

n1/2(ϑ̂ − ϑ) = (Ew∗
ϑ(X)ṙϑ(X))−1n−1/2

n
∑

i=1

w∗
ϑ(Xi)(Yi − rϑ(Xi)) + op(1)

= n−1/2
n

∑

i=1

(

E[ṙϑ(X)⊤ṙϑ(X)σ−2
ϑ (X)]

)−1

ṙϑ(Xi)
⊤σ−2

ϑ (Xi)(Yi − rϑ(Xi)) + op(1)

= n−1/2
n

∑

i=1

k∗(Xi, Yi) + op(1)
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with influence function k∗(x, y) = I−1ℓ(x, y) as given in Lemma 1. Hence

ϑ̂ is asymptotically linear with influence function equal to the canonical
gradient, i.e. it is efficient. We formulate the result as a corollary.

Corollary 2 In the nonlinear regression model E(Y |X) = rϑ(X), any con-

sistent solution ϑ̂ of the estimating equation (3.3) is efficient for ϑ.

Note that ϑ̂ is asymptotically normally distributed with asymptotic co-
variance matrix I−1 where I is the Fisher information given in (3.2). An
illustration of the estimation procedure is in Section 5 where we compare
the performance of the efficient estimator and the ordinary least squares
estimator by means of a simple simulation study.

4 Efficiency under misspecification

We now consider the case where the parametric model is misspecified and
assume that the true regression model is nonparametric, i.e. E(Y |X, Z) =

r(X, Z). A weighted least squares estimator ϑ̂ solving equation (1.1) is an
empirical estimator in the nonparametric model. This indicates that it is ef-
ficient for t(P ) given by (2.1), E(wt(P )(X)rt(P )(X)) = E(wt(P )(X)r(X, Z)).

For a rigorous proof we refer to Müller and Wefelmeyer (2002a), who
construct efficient estimators for ϑ in a more general context. Let us briefly
sketch the connection. Müller and Wefelmeyer consider parametric models
defined by an unconditional constraint, Eaϑ(V ) = 0, where aϑ is a k-
dimensional vector of functions and ϑ a p-dimensional parameter vector
with k ≥ p. Note that only the case k > p defines a proper constraint. If
k = p then the model is nonparametric, which is the situation considered
here. Using E(Y |X, Z) = r(X, Z), we can rewrite (2.1) as an (improper)
unconditional constraint,

E(wt(P )(X)(Y − rt(P )(X))) = 0. (4.1)

Since the dimension of wt(P ) is p, our misspecified model is a special case of
Eat(P )(V ) = 0 with V = (X, Y ) and k = p. We can now apply Lemma 2 in
Müller and Wefelmeyer (2002a), which gives the efficient influence function

of ϑ̂ in the general constrained model. Simple calculations show that it
equals the influence function of ϑ̂ given in our expansion (2.5) in Theorem

1. This shows that ϑ̂ is efficient for t(P ) defined by (4.1) and therefore, if
we write E(Y |X, Z) = r(X, Z), is efficient for t(P ) defined by (2.1). We
formulate the result as a corollary.

Corollary 3 In the nonparametric regression model E(Y |X, Z) = r(X, Z),

any consistent solution ϑ̂ of (1.1) is efficient for the functional t(P ) defined
by (2.1).
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Note that for the above result the additional covariate Z need not be an
additional observation but could also stand for an unobservable variable
such as an error. In either case ϑ̂ is asymptotically normally distributed
with asymptotic mean t(P ) and asymptotic covariance matrix Σt(P ) as in
Corollary 1.

The efficiency proof in Müller and Wefelmeyer (2002a) is similar to the
proof carried out in the last section, yet simpler. The reason is the following.
The nonlinear regression model is defined by a conditional constraint,

E(wϑ(X)(Y − rϑ(X))|X) = 0. (4.2)

Since (4.2) implies (4.1), model (4.2) is a submodel of (4.1) with more struc-
ture. In the last section, in order to determine a local model we had to factor
the joint distribution P (dx, dy) into the marginal distribution M(dx) and
the conditional distribution Q(x, dy) (for which the conditional constraint
is defined) and perturbed both distributions. This is not necessary in the
unconditionally constrained model (4.1), where it suffices to perturb P . It
should, however, be noted that the efficiency proof from Section 3 adapts
to this simpler situation in a straightforward way.

5 Applications

There are many examples of nonlinear regression models that are covered
by our parametric model E(Y |X) = rϑ(X), for example cases where rϑ

is a power function, rϑ(x) = ϑ1x
ϑ2 , the exponential decay model rϑ(x) =

ϑ1 exp(−ϑ2x) and polynomial and polynomial-trigonometric regression. A
popular model for enzymatic reactions and for other applications is the
Michaelis–Menten model (1913), rϑ(x) = ϑ1x/(ϑ2+x). It features no typical
error structure (see e.g. Ruppert et al. 1989) and thus fits well into our model
class where only the conditional expectation E(Y |X) is specified.

As seen in the previous discussion, when the nonlinear model is correctly
specified the optimally weighted least squares estimator ϑ̂ is efficient for ϑ.
It is straightforward to write down the estimating equation (3.3) for specific
examples such as the regression models from above. For an illustration, and
in order to compare the ordinary least squares estimator (OLS) and the
efficient estimator, we performed a simple simulation study considering the
regression model Y = ϑ1 cos(ϑ2X)+ε with amplitude parameter ϑ1 = 1 and
frequency parameter ϑ2 = 2. In applications, data often suggest that the
conditional variance of Y given X = x, σ2(x), is increasing with x or that it
is larger in the boundary regions. In order to study these two situations we
generated the error variables ε as transformations of the covariates X and
auxiliary standard normally distributed variables N , namely ε = σ(X)N
with σ (a) an increasing line and (b) a parabola. For the sake of simplicity we
sampled the covariates X from a uniform distribution with support [−1, 1].
The regression function and two typical samples with size n = 200 are shown
in Figure 1.
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Fig. 1 Graph of the regression function rϑ(x) = ϑ1 cos(ϑ2x) with ϑ1 = 1, ϑ2 = 2,
and typical sample data (xi, yi), i = 1, . . . , 200, with (a) σ an increasing line,
σ(x) = 0.5x + 0.6 (upper panel) and (b) σ a parabola, σ(x) = x2 + 0.1 (lower
panel).

Table 1 shows the simulated mean squared errors of the OLS and the
efficient estimator for the regression parameters ϑ1 and ϑ2 for samples of
size n = 50, n = 100 and n = 200. The simulations are based on 10,000
repetitions. The simulated mean squared error is computed as the aver-
age of the 10,000 sample mean squared errors (ϑ̂1 − 1)2 and (ϑ̂2 − 2)2.
The efficient estimator requires an estimator of the conditional variance
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σ2(x) = E(Y 2|X = x) − (E(Y |X = x))2. We estimated the two terms of
σ2(x) by box kernels with bandwidths b = 0.3, 0.6, 0.9 and 1.2. (For n = 50
we skipped the case b = 0.3, for which the simulations were unstable; the
same applies for n = 100 and n = 200 and bandwidths b < 0.3.) For com-
parison, we also computed the simulated mean squared error of the efficient
estimator with the true σ(x) in place of the estimated σ̂(x). As expected,
it outperforms both the efficient estimator (with estimated σ(x)) and the
ordinary least squares estimator. Nevertheless, the efficient estimator is no-
ticeably better than the OLS for all choices of b (and in a few cases even
very close to optimal). We expect that the performance of the efficient es-
timator can even be improved further if a more elaborate estimator of σ(x)
is chosen. A deliberate estimation approach will in particular be necessary
if the covariate data contain outliers (e.g. if their distribution is close to
normal) which can lead to very biased estimators of σ(x), especially if the
conditional variance at those data points is large.

Table 1 The table entries are the simulated mean squared errors of estimators
ϑ̂1 and ϑ̂2 of ϑ1 = 1 and ϑ2 = 2 in the regression model rϑ(x) = ϑ1 cos(ϑ2x) with
(a) σ(x) = 0.5x + 0.6 and (b) σ(x) = x2 + 0.1. We considered the ordinary least
squares estimator (OLS), the efficient estimator with kernel estimators for σ(x)
and bandwidths b = 0.3, 0.6, 0.9, 1.2, and, for comparison, the efficient estimator
(CP) using the true σ(x).

Amplitude ϑ1

σ n OLS 0.3 0.6 0.9 1.2 CP
(a) 50 0.020674 – 0.015551 0.015873 0.016186 0.012804

100 0.009914 0.007113 0.006972 0.007376 0.007702 0.006053
200 0.005157 0.003360 0.003559 0.003831 0.003995 0.003089

(b) 50 0.006247 – 0.001506 0.001733 0.002338 0.001201
100 0.003031 0.000656 0.000653 0.000748 0.001014 0.000580
200 0.001473 0.000301 0.000309 0.000348 0.000467 0.000286

Frequency ϑ2

σ n OLS 0.3 0.6 0.9 1.2 CP
(a) 50 0.041415 – 0.008080 0.009865 0.012396 0.005311

100 0.020047 0.003260 0.003117 0.004058 0.005354 0.002310
200 0.009375 0.001205 0.001382 0.001815 0.002409 0.001104

(b) 50 0.049602 – 0.038141 0.043202 0.048663 0.026118
100 0.023624 0.016170 0.016419 0.020000 0.022275 0.012550
200 0.011537 0.006930 0.007928 0.009722 0.010721 0.006355

If the regression model is correctly specified, the weights of the asymptot-
ically optimal estimator are uniquely determined (see estimating equation
(3.3)). In the following we will therefore focus on the more interesting sit-
uation where the model is misspecified, i.e. when arbitrary weighted least
squares estimators ϑ̂ are used which estimate, depending on the choice of
weights, different functionals t(P ) of the distribution. It is clear that in
most applications one can not find an explicit solution t = t(P ) of the
defining equation (2.1), E(wt(X)rt(X)) = E(wt(X)r(X, Z)), even if one
chooses specific weights such as those used by the OLS, wt(X) = ṙt(X)⊤.
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The situation is different if the model rϑ has a linear structure, for example
if we have a linear or polynomial regression model, which we will discuss in
the following.

Linear regression and ordinary least squares. Consider the linear
regression model rϑ(X) = ϑ⊤X and the least squares estimator, i.e. the
estimating equation (1.1) with weight vector ṙt(X)⊤ = X. The defining
equation (2.1) for t(P ) is E(Xt⊤X) = E(XX⊤)t = E(Xr(X, Z). Hence,

assuming EXX⊤ is invertible, the least squares estimator ϑ̂ estimates

t(P ) = (EXX⊤)−1E(Xr(X, Z)).

We now consider some special cases of misspecification.
1. Suppose the true model is an additive model r(X, Z) = α(X) + β(Z)

involving a second covariate vector Z, where α and β are known or unknown
functions. In this case ϑ̂ estimates

t(P ) = (EXX⊤)−1[E(Xα(X)) + E(Xβ(Z))].

2. Another candidate for a misspecified model is a special additive model,
the partially linear model, r(X, Z) = ϑ⊤X + β(Z), where β is an unknown
function of the second covariate vector Z. If the true model is partially
linear, ϑ̂ estimates

t(P ) = ϑ + (EXX⊤)−1E(Xβ(Z)). (5.1)

Typically one can neither assume independence of the two covariate vectors
X and Z nor make any further assumptions, such as EX = 0, which taken
together would guarantee that the bias term was zero. However, if one knows
about the type of the misspecification, and if the function β (and thus
r) satisfies certain smoothness conditions, one can use this information to
estimate ϑ consistently with a bias-corrected estimator ϑ̃,

ϑ̃ = ϑ̂ −
(

n
∑

i=1

XiX
⊤
i

)−1 n
∑

i=1

Xiβ̂(Zi), (5.2)

where β̂ is some nonparametric function estimator (see below for an illustra-
tion). Note that the model r(X, Z) = ϑ⊤X +β(Z) is also appropriate if the
error in the linear regression model is misspecified. Then β(Z) represents
an additional additive error and Z an unobservable random variable. In this
case it is plausible to assume Eβ(Z) = 0 and independence of X and Z.

Then ϑ̂ is a consistent estimator of ϑ.
3. Another special case is given if the true model is, in fact, linear but

involves additional parameters τ and covariates Z, i.e., r(X, Z) = ϑ⊤X +

τ⊤Z. Then ϑ̂ estimates t(P ) = ϑ + E(XX⊤)−1E(XZ⊤)τ and is consistent
under obvious assumptions, e.g. if X and Z are independent with EX = 0
or EZ = 0. If not, the information can, in a similar way to the above, be
used to construct a bias-corrected estimator ϑ̃.
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4. Now assume that the true model is polynomial of order q (without
additional covariate Z). For simplicity let X be one-dimensional, so that the
misspecified model is linear, rϑ(X) = ϑX, and the true model is r(X, Z) =

r(X) = ϑX + τ1X
2 + . . . + τq−1X

q. In this case ϑ̂ estimates

t(P ) = ϑ +

∑q
i=2 τi−1E(Xi+1)

EX2
.

Hence ϑ̂ is, for example, consistent if the true model is quadratic and if the
distribution of X is symmetric around zero.

For an illustration of the above we performed a simple simulation study for
one-dimensional ϑ with Y = X +β(Z)+ ε as the true model, i.e. r(X, Z) =
ϑX + β(Z) with ϑ = 1. We considered two cases, namely (a) β(Z) = Z and

(b) β(Z) = Z3. By (5.1) the OLS ϑ̂ in the model Y = ϑX + ε estimates
(a) t(P ) = 1 + E(XZ)/EX2 and (b) t(P ) = 1 + E(XZ3)/EX2. In order to
consider the more interesting situation with a non-zero bias, we generated
dependent covariates X and Z, namely X from a uniform distribution on
[0, 2] and Z from a uniform distribution on [X − 1, X + 1]. The errors ε
are standard normally distributed and independent of (X, Z). It is easy to

see that in this example ϑ̂ is biased: it estimates (a) t(P ) = 2 and (b)
t(P ) = 1 + 17/5. We therefore expect the simulated mean squared error of

ϑ̂ to be dominated by the squared bias (t(P ) − ϑ)2 = (t(P ) − 1)2 which is
1 in (a) and (17/5)2 = 11.56 in (b). This is indeed supported by the data
in the second column of Table 2, “OLS 1”, which contains our simulation
results for samples of size n = 50, 100 and 200.

Table 2 The table entries are the simulated mean squared errors of estimators
of ϑ = 1 in the regression model Y = ϑX + β(Z) + ε with (a) β(Z) = Z and (b)
β(Z) = Z3. We considered the OLS of ϑ in the model Y = ϑX + ε (OLS 1) and
in the model Y = ϑX + τZ + ε (OLS 2), the bias-corrected estimator (5.2) using
the true β(Z) (CP) and estimator (5.2) using a box kernel β̂(Z) and different
bandwidths b = 0.1, . . . , 1.5. Note that β̂(Z) involves a pilot estimator (P) of ϑ

which equals (5.2) if b ≈ 0. The simulations are based on 20, 000 repetitions.

(a)
n OLS 1 OLS 2 CP b ≈ 0 (P) b = 0.5 b = 1.0 b = 1.5
50 1.018891 0.001547 0.015312 0.154243 0.150550 0.146785 0.144919
100 1.007946 0.000384 0.007435 0.067519 0.066632 0.066154 0.067287
200 1.005097 0.000093 0.003722 0.031184 0.031034 0.031573 0.033589

(b)
n OLS 1 OLS 2 CP b ≈ 0 (P) b = 0.1 b = 0.3 b = 0.5
50 11.84135 0.035280 0.015333 0.203137 0.197967 0.197271 0.199133
100 11.70474 0.015979 0.007611 0.085443 0.082668 0.084776 0.093209
200 11.62956 0.007583 0.003721 0.042339 0.040499 0.044307 0.055980

We also calculated a simple bias-corrected estimator ϑ̃ as suggested in (5.2).

We estimated β(Z) with a box kernel β̂(Z) based on “pseudo-observations”
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Yi − ϑ̂pXi where ϑ̂p denotes a nonparametric pilot estimator for ϑ. (For

the construction of ϑ̂p one can, for example, choose a variable W such that
E(W |Z) = 0. Then E(WY ) = E(WX)ϑ and ϑ = E(WY )/E(WX) can be
estimated empirically. We took W = X−E(X|Z) with E(X|Z) replaced by

a kernel estimator.) Note that here the OLS is simply ϑ̂ =
∑

XiYi/
∑

X2
i .

By (5.2), the bias-corrected estimator ϑ̃ therefore equals the pilot estimator

ϑ̂p if the kernel estimator β̂ interpolates the data, i.e. if β̂(Zi) = Yi − ϑ̂pXi,

which is the case if the bandwidth b of β̂ is very small, b ≈ 0. The last
four columns of Table 2 show the simulated mean squared errors of the
bias-corrected estimator ϑ̃ from (5.2) for different bandwidths b of β̂(Z)

including b ≈ 0 where ϑ̃ = ϑ̂p (“P” in Table 2). For a comparison we

also simulated the mean squared errors of ϑ̃ with the true β(Z) inserted
(see column “CP”). These are obviously significantly smaller than those

of ϑ̃ using kernel estimators β̂(Z), which are of similar order for different
bandwidths b, indicating that the pilot estimator does not perform very
well.

Finally, column “OLS 2” of Table 2 contains the simulated mean squared
errors of the first component of the OLS (ϑ̂, τ̂) in the linear regression
model Y = ϑX + τZ + ε with (ϑ, τ ) = (1, 1) (which is the true regression
model in case (a)). In (a), due to its optimality property as best linear
unbiased estimator, this estimator, as expected, clearly outperforms the
other estimators. This does not apply in (b) where the true model involves
the cubic term β(Z) = Z3. Here the values in column CP are smaller. We
expect that the bias-corrected estimator with a better estimator of β would,
besides being consistent, perform reasonably well.

Polynomial regression and ordinary least squares. In this paragraph
we consider a polynomial model rϑ for the regression function, rϑ(X) = ϑ0+
ϑ1X + . . .+ϑp−1X

p−1, and assume we have no information about a possible
misspecification, i.e. the true model is the nonparametric model r(X, Z).

The least squares estimator ϑ̂ uses the weight vector w(X) = ṙϑ(X)⊤ =
(1, X, X2, . . . , Xp−1)⊤. Hence we can write rϑ(X) = ϑ⊤w(X). The defining
equation (2.1) for t(P ) is E(w(X)w(X)⊤)t = E(w(X)r(X, Z)). Hence the
weighted least squares estimator estimates

t(P ) = (E(w(X)w(X)⊤))−1E(w(X)r(X, Z))

with w(X) = (1, X, X2, . . . , Xp−1)⊤. Special misspecifications can now be
studied analogously to the above on linear regression.

Linear regression and weighted least squares. We again consider lin-
ear regression, rϑ(X) = ϑ⊤X. The optimal estimator uses weights w∗

t (X) =
ṙt(X)⊤σ̂(X)−2 = Xσ̂(X)−2. (Since estimators of σ need not depend on ϑ
we have dropped the subscript t for this illustration.) If the true model is

nonparametric, E(Y |X, Z) = r(X, Z), ϑ̂ estimates

t(P ) = (E(XX⊤σ(X)−2))−1E(Xr(X, Z)σ(X)−2).
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The situation is more complicated if we consider arbitrary weights, in par-
ticular if the weights depend on ϑ. The defining equation is then t =
(Ewt(X)X⊤)−1E(wt(X)r(X, Z)) and must be solved with respect to t.

It is possible that t(P ) is not identifiable and ϑ̂ not a point but a set-
valued estimator. A solution exists, for example, if the weights factorize,
wt(X) = g(t)h(X). Then the weighted least squares estimator estimates
(Eh(X)X⊤)−1E(h(X)r(X, Z)).

In both situations, i.e. when the model is correctly specified and when it is
misspecified, the choice of weights is of particular importance. If the para-
metric model holds, weighted least squares estimators ϑ̂ are always con-
sistent, but only the estimator using optimal weights w∗

t is efficient for ϑ.

If the model is misspecified, then the weights determine what ϑ̂ estimates:
in order to estimate a particular functional t(P ), weights should be chosen
carefully so that t(P ) is identifiable. If one has certain knowledge about a
possible misspecification it may sometimes be advisable, in order to achieve
consistency, to choose simple weights and/or use the additional informa-
tion to construct a bias-corrected estimator, as suggested in (5.2) for linear
regression.

Another question of interest in this context is: is it possible to choose
weights such that ϑ̂ is robust against specific misspecifications, i.e. such
that ϑ̂ is consistent for ϑ? There is no satisfactory answer yet, in par-
ticular no general answer. The above examples for linear regression have
revealed that the ordinary least squares estimator is consistent under cer-
tain special assumptions on the misspecification and especially if the true
model equals the parametric model except for an additional independent
error. If the misspecification is described by such an additive structure,
r(X, Z) = rϑ(X) + β(Z) with X and Z uncorrelated and Eβ(Z) = 0, then
weighted least squares estimators are clearly consistent: t = t(P ) = ϑ solves
the defining equation (2.1), in this case E(wt(X)rt(X)) = E(wt(X)rϑ(X)).
A similar conclusion was drawn by White (1981, Corollary 2.3), who also
considered weighted least squares estimators (with weights not depending
on the parameter). His parametric model is Y = rϑ(X) and his misspecified
model is Y = rϑ(X) + ε. The latter can be rewritten as our parametric
model E(Y |X) = rϑ(X). Hence our parametric model is already flexible
enough to cover a misspecification in form of an additive error. Consistency
in a misspecified model of this type is thus not surprising, neither here nor
in the above examples.

Acknowledgments. I thank a referee for suggestions that improved the
exposition considerably.
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