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We consider estimation of linear functionals of the joint law of regression
models in which responses are missing at random. The usual approach is to
work with the fully observed data, and to replace unobserved quantities by
estimators of appropriate conditional expectations. Another approach is to
replace all quantities by such estimators. We show that the second method is
usually better than the first.

1 Introduction

Let (X,Y) be a random vector. We want to estimate E[h(X,Y)], the ex-
pectation of some known square-integrable function h. If we are able to
sample from (X,Y), we can use the empirical estimator %Z?:l h(X;,Y;).
If nothing is known about the distribution of (X,Y’), this estimator is effi-
cient. We are interested in the situation where we always observe X, but Y
only if some indicator Z equals one. We assume that Z and Y are condition-
ally independent given X. Then one says that Y is missing at random. In
this case the empirical estimator is not available unless all Z; are one. Let
m(X)=E(Z|X)=P(Z=1|X). If 7 is known and positive, we could use
the estimator L 3" | Z;h(X;,Y;)/m(X;). If 7 is unknown, one could replace
7 by an estimator 7, resulting in
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Surprisingly, even if 7 is known, replacing m by an estimator can decrease
the asymptotic variance. Such an improvement is given by Schisterman and
Rotnitzky [SRO1]. A similar result, on average treatment effects, is in Hirano,
Imbens and Ridder [HIR03]. Another estimator for E[h(X,Y)] is the partially
imputed estimator
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where x(X;) is an estimator of the conditional expectation
X(Xi) = E(h(X;,Y5) | Xi).

An alternative to the partially imputed estimator is the fully imputed estima-
tor L

— X(X5)- 3

PIREY 3)
An extreme case would be that the conditional distribution of Y given X is
known. It is easy to see that then the fully imputed estimator £ 3" | x(X;) is
at least as good as the partially imputed estimator, and strictly better unless
Z(h(X,Y) — x(X)) is zero almost surely.

We show that the fully imputed estimator (3) is usually better than the
partially imputed estimator (2). We restrict attention to the situation where
7 is bounded away from zero but otherwise completely unknown. We also
impose no structural assumptions on the covariate distribution. We consider
four different models for the conditional distribution of ¥ given X.

Suppose first that the conditional distribution Q(X,dy) of Y given X is
completely unknown. For the case h(X,Y) =Y, Cheng [Che94| shows that
the partially and fully imputed estimators are asymptotically equivalent, and
obtains their asymptotic distribution. He estimates E(Y | X) by a truncated
kernel estimator. Wang and Rao [WR02] obtain a similar result with a dif-
ferently truncated kernel estimator. Cheng and Chu [CC96] study estimation
of the response distribution function and quantiles. We generalize Cheng’s
result to arbitrary functions h and prove efficiency.

Suppose now that we have a parametric model Qy(X,dy) for the condi-
tional distribution of Y given X. In this case the conditional expectation is
of the form yy(z) = [ h(z,y) Qu(x,dy). This suggests estimating xy by x;-
The natural estimator for ¢ is the conditional maximum likelihood estimator.
We show that the fully imputed estimator % SrX 5(X;) is efficient, and bet-
ter than the corresponding partially imputed estimator except in degenerate
cases. This is related to Tamhane [Tam78] who assumes a parametric model
for the joint distribution of X and Y. Then E[h(X,Y")] is a smooth function
of 9; hence it can be estimated efficiently by plugging in an efficient estimator,
such as the maximum likelihood estimator.

Next we consider a model between the fully nonparametric and parametric
ones for @), a linear regression model with covariates and errors independent.
For simplicity we take Y = 9 X + . We do not assume that € has mean zero
but require X to have positive variance for identifiability. Here Q(z,dy) =
f(y — 92) dy, where f is the (unknown) density of the errors. Then x(z) =
[ h(x, 92 + u) f(u) du. Exploiting this representation, we estimate x(z) by

" Zih(z,dr+Y; — 90X, " Z;. We show that the corresponding fully
j=1%4j j j =127



352 Ursula U. Miiller, Anton Schick, and Wolfgang Wefelmeyer

imputed estimator is efficient if an efficient estimator for ¢ is used. Again the
partially imputed estimator will not be efficient in general, even if an efficient
estimator for ¥ is used.

Finally we consider a linear regression model without assuming indepen-
dence between covariates and errors. For simplicity we take ¥ = 9¥X + ¢
with E(e | X) = 0. This can be written as a constraint on the conditional
distribution of Y given X, namely [y Q(X,dy) = 9X. For h(X,Y) =Y this
suggests the estimator 9 % >, X;, which happens to be the fully imputed
estimator. Matloff [Mat81] has shown that such an estimator improves upon
the partially imputed estimator for his choice of J. We show that the fully
imputed estimator of E[h(X,Y)] for general h is efficient if an appropriate
estimator for y is used. This requires an efficient estimator Y for ¥ and a
correction term to the nonparametric estimator of y. An efficient estimator
of ¥ can be obtained as a weighted least squares estimator with estimated
optimal weights, based on the fully observed pairs. Efficient estimation of ¢
for more general regression models and various models for 7 has been studied
in Robins, Rotnitzky and Zhao [RRZ94], Robins and Rotnitzky [RbRt95], and
Rotnitzky and Robins [RtRb95], among others. Efficient score functions for ¢
are calculated by Nan, Emond and Wellner NEWO04] and Yu and Nan [YNO3].
The partially imputed estimator will not be efficient, in general. In view of
this, partially imputed estimators such as the one by Wang, Hardle and Lin-
ton [WHLO4] for E[Y] in a partly linear model are not efficient.

The paper is organized as follows. In Section 2 we characterize efficient
estimators for linear functionals of arbitrary regression models with responses
missing at random; in particular for the four cases above. Our results show
that the model is adaptive in the sense that we can estimate E[h(X,Y)] as
well not knowing 7w as knowing 7. In Section 3 we construct efficient fully
imputed estimators of E[h(X,Y)] in these four models.

2 Efficient influence functions

In this section we calculate the efficient influence function for estimating the
expected value E[h(X,Y)] with observations (X, ZY, Z) as described in the
Introduction. The joint distribution P(dz, dy, dz) of the observations depends
on the marginal distribution G(dz) of X, the conditional probability m(x) of
Z =1 given X = z, and the conditional distribution Q(z,dy) of Y given
X = x. More precisely, we have

P(dx,dy,dz) = G(dz)Br(z)(dz) (2Q(z, dy) + (1 — 2)d0(dy)),

where B, = pd1 + (1 — p)dp denotes the Bernoulli distribution with parameter
p and §; the Dirac measure at t. Consider perturbations G, @n, and .,
of G, @ and 7 that are Hellinger differentiable in the following sense:
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/ (n'/2(aGr? - ac2) - %u dG1/2)2 -0,
// 02 (dQY2 (2, ) — dQY2(x, ) %v(m, 1dQ'(2.))” Gdz) — 0

1 2
/ / n2(ABY2 )~ dBYE) — 5~ w()w(n)dBYE) Gldr) —

This requires that u belongs to

Ly o(G) ={u € Ls(G) : /udG = 0};

that v belongs to

Vo= {v € Ly(M) - / (2.) Q(a, dy) = 0}

with M (dz,dy) = Q(x,dy)G(dz); and that w belongs to Lo(Gr), where
Gr(dz) = m(z)(1 — 7(z)) G(dz).

We have local asymptotic normality: With P, denoting the joint distri-
bution of the observations (X, ZY, Z) under the perturbed parameters G,

Qnov and Ty,

n

dPnuvw _1/2 =
D log = (X0, 2, Zi) = nH 2 Y tunu (X3, 2%, 20)
i=1 =1
1
- 2 [umu(X ZY Z)}+O;D(1)7

where ty,,0 (X, Z2Y,Z) = u(X) + Zv(X,Y) + (Z — n(X))w(X) and

Blt3u(X, 2Y, Z)] = E[w?(X)] + E[Zv*(X,Y)] + E[(Z — m(X))*w*(X)]

/u dG+// (x,dy)G(dx)+/w2dG7r.

If we have models for the parameters GG, () and m, then, in order for the
perturbations G, @ny and m,,, to be within these models, the functions u, v
and w must be restricted to subsets U of Lo o(G), V of Vy, and W of Ly(Gr).
The choices U = L3 o(G) and V' =V}, correspond to fully nonparametric mod-
els for G and Q). Parametric models for G and @ result in finite-dimensional
U and V. In what follows the spaces U, V and W will be assumed to be
closed and linear.

Let now x be a functional of G, @ and 7. The functional is differentiable
with gradient g € Lo(P) if, for all u e U, v € V and w € W,

02 (5(Grs Quos Tnw) — #(G, Q, 1)) — Elg(X, ZY, Z)tupu(X, ZY, Z)].

The gradient g is not unique. The canonical gradient is g, where g.(X, ZY, Z)
is the projection of g(X, ZY, Z) onto the tangent space
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T = {twuw(X,2Y,Z) :uecUveV,we W}

Since T is a sum of orthogonal spaces

T ={uX):ueU},
T, ={Zv(X,Y):veV}
T ={(Z —n(X)w(X):we W},

the random variable g.(X, ZY, Z) is the sum
9+(X, ZY, Z) = us(X) + Zv.(X,Y) + (Z — 7(X))w.(X),

where u,(X), Zv.(X,Y) and (Z — m(X))w.(X) are the projections of the
random variable g(X, ZY, Z) onto T1, To and T3, respectively. We assume
that E[g?(X, ZY, Z)] is positive.

An estimator & for « is reqular with limit L if L is a random variable such
that, foralu e U, v € V and w € W,

02 (i — K(Gnu, Qnos Tnw)) = L under Ppyyy.

The Hajek—Le Cam convolution theorem says that L is distributed as the sum
of a normal random variable with mean zero and variance E[g2(X, ZY, Z)]
and some independent random variable. This justifies calling an estimator &
efficient if it is regular with limit such a normal random variable.

An estimator & for k is asymptotically linear with influence function ¢ €
Ly o(P) if

nl/? (/% - k(G, Q,ﬂ')) =n /2 Zl//(Xi, ZiYi, Zi) + 0p(1).
i=1

As a consequence of the convolution theorem, a regular estimator is efficient if
and only if it is asymptotically linear with influence function g,.. A reference
for the convolution theorem and the characterization is Bickel, Klaassen, Ritov
and Wellner [BKRW9S8].

We are interested in estimating

k(G Q, ) = E[h(X,Y)] = / / Wz, 1) O, dy)G(dz) = / hdM.

Let My (de,dy) = Qny(x,dy)Gpy(dz). Then My, is Hellinger differen-
tiable in the following sense:

/ (n'/2(ani2 — anr'?) - 1td_i\41/2)2 0
nuv 2
with ¢(z,y) = u(x) +v(x,y). If My, satisfies limsup,, [ h? dM,y, < 00, then

nl/Q(/hdMnuv _/hdM) — E[h(X,Y)(u(X) +v(X,Y))];
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see e.g. Ibragimov and Has'minski~i [IH81|, p. 67, Lemma 7.2.
Thus the canonical gradient of E[h(X,Y)] is determined by

Elus(X)u(X)] + E[Zv. (X, Y)v(X,Y)] + E[(Z — 7(X))*w.(X)w(X)]
= EB[MX,Y)(u(X) +v(X,Y))]

for all w € U, v € V and w € W. Setting first v = 0 and v = 0, we
see that w, = 0. Setting v = 0, we see that u.(X) is the projection of
h(X,Y) onto T;. Taking u = 0, we see that the projection of Zv,(X,Y") onto
V = {v(X,Y):v €V} must equal the projection of h(X,Y) onto V.

We are mainly interested in a fully nonparametric model for G, for which
U = Lyo(G). Then u.(X) = x(X) — E[x(X)]. We now give explicit for-
mulas for v,, and hence for the canonical gradient of E[h(X,Y)], in four
cases: fully nonparametric conditional distribution, with V' = Vj; parametric
conditional distribution, with V finite-dimensional; and two semiparametric
models, namely linear regression with and without independence of covariate
and error.

1. Nonparametric conditional distribution. If V' = V4, then the projec-
tions of h(X,Y) and Zv.(X,Y) onto V are h(X,Y)—x(X) and m(X)v.(X,Y).
Thus
hX,Y) — x(X)

m(X) '

Hence, if U = Ly ¢(G), the canonical gradient of E[h(X,Y)] is

v (X,Y) =

Ynp(X, ZY, Z) = x(X) = Ex(X)] +

Ty (X Y) = X)),

For the important special case h(X,Y) =Y we obtain

Unp(X, 2Y,Z) = E(Y | X) — E[Y] + %(Y — E(Y | X)).

2. Parametric conditional distribution. Let Q(z,dy) = qu(z,y)dy,
where 9 is an m-dimensional parameter. In this case, V will be the span
of the components of the score function £y, the Hellinger derivative of the
parametric model gy at ¥:

[ (w0 = 02 = 5T tole e @) dy Gilds) = o)

We also assume that E[Zy(X,Y)ly(X,Y) "] is positive definite. If gy is dif-
ferentiable in ¢, then £y = ¢y /qy, where ¢y is the derivative of gy with respect
to 9. If weset L = £4(X,Y), then V = {¢TL : ¢ € R™}. Thus v, is of the form
c¢] L. Since the projections of h(X,Y) and Zv.(X,Y) onto V are o' L and
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bTL with a = (E[LLT])"E[LA(X,Y)] and b = (E[LLT]) " 'E[ZLLT] c., we
obtain ¢, = (E[ZLL"]))"'E[Lh(X,Y)]. Thus, if U = La(G), the canonical
gradient of E[h(X,Y)] is

Up(X, ZY, Z) = X(X) = BIX(X)] + Ze[ £y(X,Y).

3. Linear regression with independence. We consider the linear regres-
sion model Y = ¥X + ¢ with € and X independent. We assume that ¢ has an
unknown density f with finite Fisher information J for location and X has
finite and positive variance. We do not assume that € has mean zero. In this
model, Q(z,dy) = f(y — ¥x)dy. Write F for the distribution function of f.
As shown in Bickel [Bic82],

V={aX{l(e)+0() :a e R, € Lao(F)}.

Here ¢ denotes the score function £(y) = —f’(y)/f(y) for location. The space
V can be written as the orthogonal sum of the spaces V; = {ag : a € R} with

§ = (X - E[X])(e),

and Vo = {f(¢) : B € Lyo(F)}. The projection of h(X,Y) onto V4 is ¢, &/ E[¢2]
with ¢, = E[h(X,Y)€], and the projection of h(X,Y) onto Vj is h(e) — E[h(c)]
with () = E(h(X,Y) | €). For b € Ly(F), the projection of Zb(¢) onto V;
is c¢/E[¢?] with

¢ = E[Zb(e)¢] = E[Z)(E(X|Z = 1) — E[X])E[b(e){(e)];
and the projection of Zb(e) onto Vs is E[Z](b(¢) — E[b(e)]). Let
L= (X—EX|Z=1))e).

Then Z&, is orthogonal to Va, and its projection onto Vi is a.&/E[¢?] with
a. = E[Z¢.£]) = E[Z€2). Since

cn = Elh(X,Y)E] = E[h(X,Y)&] + (B(X|Z = 1) — E[X])E[M(X,Y)l(e)],
it follows that

Eh(XYIE], 1
Bze] 7

Thus, if U = L3 ¢(G), the canonical gradient of E[h(X,Y)] is

v (X,Y) =

0i(X,2Y.2) = x(X) B0l 2 (P €t g (0 - B )

For h(X,Y) =Y we can use the identity F[ef(e)] = 1 to simplify the canonical
gradient to
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Z(BIX] - B(X|Z=1)), | Z(c—E[])

X = BIXD + BZ€] T

4. Linear regression without independence. Now we consider the linear
regression model Y = 9 X +¢ with E(e | X) = 0. We write 02(X) = E(e? | X)
and pp(X) = E(h(X,Y)e | X). In this model, we have only the constraint
JyQ(xz,dy) = Yz on the transition distribution Q. In this case, the space 1%
is the sum of the two orthogonal spaces

Vi = {ac %(X)Xe:a € R},
Vo= {v(X,Y):v eV, E(w(X,Y)e | X)=0}.
For details see Miiller, Schick and Wefelmeyer [MSWO04]. The projection of
h(X,Y) onto V; is apo~2(X)Xe with
an = EW(X,Y)o *(X)Xe]/Elo%(X)X?],

while the projection onto Vi is hy = h(X,Y) — x(X) — E[pn(X)]o~2(X)e.

It is now easy to check that v,(X,Y) = a,0 %(X)Xe + ho/m(X). Thus, if
U = Ly (@), the canonical gradient of E[h(X,Y)] is

bri(X, 2Y.2) = x(X) — E[x(X)] + %(Wa ¥) — x(X))
Ze (pn(X)
T 2(X) ( ;(X) - “*X)'

Note that ;7 = wnp — Y77 with

WX, 2Y, Z) = 02250 (‘:(())(()) - a*X).

3 Efficient estimators

In this section we indicate that the fully imputed estimators are efficient in
the four models discussed at the end of Section 2. Throughout we assume
that we have no structural information on the covariate distribution G.

1. Nonparametric conditional distribution. In this model, ) is com-
pletely unspecified. The usual partially imputed estimators for E[h(X,Y)]
are of the form

n

H, = %Z (Zih(Xi7 Yi)+(1- Zi)f((Xi)>a
i—1
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where Y is a nonparametric estimator for x of the form

XX) =D Wy Zih(X;,Y))

j=1

with weights W;; depending on Xi,...,X,,Z1,...,Z, only. This includes
kernel-type estimators and linear smoothers. Under appropriate smoothness
conditions on x and 7, and for properly chosen weights W;;, the estimator
H, has the stochastic expansion

n

iy = 30X + 3 30 B (XY~ X)) +o,(n ). (4

In the case h(X,Y) = Y, such conditions are given by Cheng [Che94] and
Wang and Rao [WR02|. These authors use weights W;; corresponding to
truncated kernel estimators. Cheng [Che94] also shows that H; is asymptoti-
cally equivalent to the fully imputed Hy = L3 X(X5). Tt follows from (4)
that H; and Hs have influence function 1) = 1pp and are therefore efficient
by Section 2.

2. Parametric conditional distribution. In this model, Q = Qy, with
an m-dimensional parameter. Then

x(@) = xo(@) = / h(,y) Qo dy).

Here we use an estimator 9 of ¥ and obtain for E[h(X,Y)] the partially and
fully imputed estimators

) 1 n ) 1 n

==Y (Zih(Xi,Y;) +(1- Z,-)Xﬁ(XZ-)) and Hy= - xy(X0).
= [
For the following discussion, we assume again Hellinger differentiability of
Qg as in Section 2 and write £y for the score function. A natural esti-
mator for 1 is the conditional maximum likelihood estimator, which solves
%Z?:l Zily(X;,Y;) = 0. Under some additional regularity conditions, this
estimator has the expansion

R 1<
=1+ 11;15 > Zily(X:,Y;) + op(n1?)

=1

with Iy = E[m(X)ly(X,Y)ly(X,Y)"]. One can show that D is efficient
for ¥ = k(G,Qyg, 7). Moreover, under regularity conditions, for any n'/2-

consistent ¥,
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1 n
— > Zixy(Xo) ZZM )+ D{ (= 9) + 0p(n"?),
i=1

2 0= 20606 = 1 D201 = 2l + DI (0= )+ oy(n™),
where

Dy = E[Zh(X,Y)ly(X,Y)] and Dy = E[(1—- Z)h(X,Y)ly(X,Y)].
Thus, if we use the conditional maximum likelihood estimator for ¥, we have

the expansions

Z( B(X3, i) + (1= Zo)xo (X0) + DY I3 Zito (X, Vi)

:\'—‘

=

_|_
=

0O

Hy =

S
M:

(m(Xi) + (Do + D1) I3 23ty (X0, Y0) ) + 0p(n™1/2).
i=1

Since Dy + Dy = E[h(X,Y)ly(X,Y)], we see that H4 has influence function
¥ = 1, and is therefore efficient. The difference between the estimators is

. . 1 << _ _
Hy — Hy = - ;Z (h(XZ—,YZ-) —xo(X;) =D/ I 1&9(Xi,Yi)) + 0,(n"1/?).

Hence Hj is asymptotically equivalent to Hy, and therefore also efficient, if
and only if Z(h(X,Y)—x9(X)—D{ I;"43(X,Y)) is zero almost surely. Since
this is usually not the case, the partially imputed estimator Hs is typically
inefficient.

3. Linear regression with independence. In this model, Q(x,dy) =
Qo.5(z,dy) = f(y — Yz) dy. We assume that f has finite Fisher information
J for location and X has finite and positive variance. Now

X(@) = x(2,0.1) = [ hlaydz+ ) f(w) du.
This suggests the estimator

TN > Z;h(z, 9z + Y; — 0X)
X(z,0) = ~Z

)

where Z = L 37" | Z;. Then the partially and fully imputed estimators for
E[h(X,Y] are
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n

N 1 . . ) 1 n ) .
Hy = ~ ; (Z:h(X0,Y) + (1= Z)R(X0, D)) and Ay = — ;X(X“ﬁ).
Let
S = iiiih()( IX; +¢;)
n2 P j:1 E[Z] (3] k3 7).
Then E[S] = E[h(X,Y)] = k. By the Hoeffding decomposition,

S/ﬁJr?llZ(x(Xi)/i)JrTllZ(Z];[(;]j)—n)

1= Jj=1

—

1 & Z; ~ _
= XX+ " L (h(e)) — K) + 0,(n 7).
Under additional assumptions,

N 1 - Zj .
He= — ;; ?h(Xi,ﬁXi +ej+ (9 —9)(X; — X;))
1 K Z; 3 —-1/2
== >N ?h(X,-,ﬂXi +&j) + DD —9) + op(n~1/?)
i=1j=1
with 1
D= _—Fh(X;,X Zo(X1 — Xo)l
E[Z] [ (X1, X1+ €2) Zo( Xy 2) (52)}
=E[hX,Y)(X — E(X|Z =1))l(e)].

In the linear regression model without missing responses, efficient estimators
for ¥ have been constructed by Bickel [Bic82], Koul and Susarla [KS83], and
Schick [Sch87, Sch93|. Their influence function is £/E[£?] with £ = (X —
E[X])¢(e). An analogous construction based on the observations (X;,Y;)
with Z; = 1 yields an estimator for ¢ with influence function Z¢,/E[Z£2]
with & = (X — E(X | Z = 1)) {(¢). One can show that ¥ is efficient for
¥ =k(G,Qy,f,m). If we use an estimator ¥ with this influence function, then
Hjg has the stochastic expansion

1y = 13 (4% + g (e =)

T Eze) (Xi - BE(X [ Z2=1)) z<a>) +op(n~1/2).
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Thus this estimator has influence function ¢ = v; and is therefore efficient
by Section 2. Note that in general the partially imputed estimator Hp is
different from I:IG and therefore inefficient. If h(X,Y) = Y, our estimator
becomes VX + 2 37" | Z,(V; — 9X;)/Z.

4. Linear regression without independence. In this model, @) satisfies
the constraint [y Q(z,dy) = Jz. We estimate ¢ by a weighted least squares
estimator based on (X;,Y;) with Z; =1,

Doy Zio (X)X, Y

’1_9 =
Y1 267 (X) X

with 62(x) an estimator of o%(z) = E(¢? | X = x). Such estimators have
been studied without missing responses by Carroll [Car82], Miiller and Stadt-
miiller [MS87], Robinson [Rob87], and Schick [Sch87]. In view of their results,
we get under appropriate conditions that

1L\ -2
G g4 n2mim Zio (X Xiei | 0
E[Zc72(X)X?
This estimator can be shown to be efficient for 9.
A possible estimator for x is the nonparametric estimator y introduced

above for the nonparametric model. Here, however, we have the constraint
[ yQ(z,dy) = ¥z and use the estimator

(n=1/?).

XII ZWZJZh 7 J)

with

n

Z Z”" (Yi—@Xi),

where 7(z) and pp(z) are nonparametrlc estimators of 7(z) and pp(x) =
E(h(X,Y)e | X = z). Note that & is of order n~*/2. Hence X () is asymp-
totically equivalent to the nonparametric estimator y. Nevertheless, it leads
to a better estimator for E[h(X,Y)]. Under appropriate assumptions, ¢ has
the expansion

with d = E[Zpp(X)X/7(X)o?(X)] = E[h(X,Y)o"?(X)Xe]. Using the ex-
pansion for the weighted least squares estimator ¥, we see that

L1 " Ziei (pn(Xy) dX; o
= 1:21 o?(X;) ( (X)) E[ngz(X)Xg]) + 0p(n"1/?)

1 n
= Y Ui(Xi 23 Z) + op(n V).
i=1
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Using this and the stochastic expansion of the nonparametric estimator x, we
obtain that the estimators H 1 —¢and H o — ¢ have influence functions v = ¥y
and are therefore efficient by Section 2. Of course, H,—¢is the fully imputed
estimator based on x;. Both H 1 — ¢ and ﬁQ — ¢ are better than the partially
imputed estimators H, based on the estimator X, and H, — (1 — Z)é based
on the estimator xjy.

Simpler estimators are possible for certain functions h, such as h(z,y) =y,
which is the function usually treated in the literature. Since E(Y | X) = 9X,
we can use the fully imputed estimator X, with X = % Yo, Xi. As smooth

function of the two efficient estimators 9 and X, the estimator UX is efficient
for E(Y | X). Matloff [Mat81] has recommended an estimator of this form,
but with a simpler, in general inefficient, estimator for ¥.
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