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Abstract

Goodness-of-fit tests for discrete data and models with parameters to be estimated are usually based

on Pearson’s χ2 or the Likelihood Ratio Statistic. Both are included in the family of Power-Divergence

Statistics SDλ which are asymptotically χ2 distributed for the usual sampling schemes. We derive

a limiting standard normal distribution for a standardization Tλ of SDλ under Poisson sampling by

considering an approach with an increasing number of cells. In contrast to the χ2 asymptotics we do

not require an increase of all expected values and thus meet the situation when data are sparse. Our

limit result is useful even if a bootstrap test is used, because it implies that the statistic Tλ should be

bootstrapped and not the sum SDλ. The peculiarity of our approach is that the models under test

only specify associations. Hence we have to deal with an infinite number of nuisance parameters. We

illustrate our approach with an application.

Key words: contingency tables, goodness-of-fit, odds ratios, Poisson data, Power-Divergence Statis-

tics, sparse data.

1 Introduction

In this article we consider goodness-of-fit tests for discrete data with parameters to be es-

timated. For those tests, observed and expected counts for a given parametric model are

compared by applying a certain “distance measure”. This should be small if the model is true

and large if it is not. Of course, the distribution of the distance under the null hypothesis,

i.e., when the model holds, is needed in order to check the goodness-of-fit. The best known

statistics are Pearson’s χ2 and the Likelihood Ratio Statistic (“deviance”). Cressie and Read

1, 2 have embedded them in a family of “Power-Divergence Statistics” SDλ (λ ∈ R). Each
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member SDλ is a sum over all deviations between observed and expected counts:

SDλ =
∑
cells

aλ(observed, expected)

with distance function aλ : [0,∞)× (0,∞)→ [0,∞),

(x, µ) 7→ aλ(x, µ) =
2x

λ(λ+ 1)

((x
µ

)λ
− 1

)
− 2
λ+ 1

(x− µ) ≥ 0.

The values λ = 0, where a0 is defined by continuity, λ = −1/2 and λ = 1 indicate known

goodness-of-fit statistics:

a−1/2(x, µ) = 4(x1/2 − µ1/2)2 (Freeman–Tukey),

a0(x, µ) = 2
(
x log x/µ− (x− µ)

)
(Likelihood Ratio),

a1(x, µ) = (x− µ)2/µ (Pearson’s χ2).

Cressie and Read 2 further suggested λ = 2/3 as an intermediate value. To allow zero

observations, which are typical when data are sparse, we will consider only values λ ∈
(−1,∞).

The data consist of a J × K contingency table (see Table 1) of observed counts Xjk of

objects (Z,D) belonging to group j and category k. The J groups are often represented by

different values zj of a covariate vector Z ∈ RM ; the variable D denotes K categories.

Table 1: J ×K contingency table

categories

group/code D

(covariates) 1 · · · k · · · K sum

1 (z1) X11 · · · X1k · · · X1K X1+

...
...

...
...

...

j (zj) Xj1 · · · Xjk · · · XjK Xj+

...
...

...
...

...

J (zJ) XJ1 · · · XJk · · · XJK XJ+

sum X+1 · · · X+k · · · X+K X++

We consider Poisson sampling, i.e., X11, . . . , XJK are independent Poisson distributed

random variables. Typical applications are epidemiological studies where the variable D

stands for different states of a disease and all available data (Z,D) are collected within a

fixed period. Besides its practical meaning, the Poisson model plays a key role for theoretical

investigations of contingency tables: The usual sampling schemes derive from the Poisson
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model through fixing of certain marginal sums. Important examples are case-control and

cohort studies. Both consider product-multinomial tables (the columns respectively rows

are independent multinomials) and hence distribution models being conditional Poisson.

The main interest in the investigation of contingency tables lies in the description of asso-

ciations within a table rather than in the marginal distributions of covariates and categories.

Thus, the models to be tested specify dependencies between covariates and categories by a

finite-dimensional parameterized model and leave the marginal distributions arbitrary. Since

the distribution of a contingency table is uniquely determined through marginal distributions

and odds ratios, the actual models of interest are “odds ratio models”, i.e., only the odds

ratios are specified. We will consider models for the conditional distribution of the categories

given the covariate groups. They will be shown to cover the class of odds ratio models.

It is known that for increasing sample size SDλ is asymptotically χ2 distributed for the

common sampling schemes. This approach assumes the number of cells J · K to be fixed

— hence the number of parameters is finite — and, moreover, an increase of all expected

values. These assumptions are often violated, especially when the expectations of the cells

are small (“sparse data”). Since χ2 tests are standard tools in statistical software packages,

they are used even so, especially when odds ratio models are to be checked. We argue that

in the sparse data situation a different asymptotic approach with an increasing number of

covariate groups J is more realistic. In this article we derive a limiting normal distribution of

SDλ for these asymptotics. In particular, we do not require all expectations to be large. The

difficulty in proving such a result is that our models under test do not specify the marginal

distribution of the covariate groups. Hence we have to deal with an asymptotically infinite

number of nuisance parameters.

Our limiting result provides a new tool for goodness-of-fit testing. However, the tests

derived are not designed for specific directions of departure and thus are likely to be too

optimistic. Hence, the result is, in the first place, useful for comparisons, in particular,

to check how the classical χ2 approximation (and the critical region for the test statistic)

relocates when our different asymptotic approach is appropriate.

The problem of χ2 testing in the sparse data situation was mentioned early, for example

by Haldane 3 in the context of a simple parametric model: He derived the exact conditional

mean and variance of Pearson’s statistic (conditional on marginal sums) for the model of

homogeneity, i.e. all odds ratios are one. The possibility of taking a normal rather than a

χ2 approximation using the increasing cells approach was discussed later. Morris 4, who

did not consider estimated but given expected values, proved the asymptotic normality of

Pearson’s χ2 and the Likelihood Ratio Statistic for multinomial sampling. He made explicit

use of the fact that the multinomial distribution is a special conditional Poisson distribu-

tion. McCullagh 5 considered Pearson’s χ2 and the Likelihood Ratio Statistic for Poisson
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and binomial sampling with all expected values, and hence the distribution of the table,

being specified by a finite-dimensional parametric model. Osius 5 derived the asymptotic

normality of SD (for a general distance measure) under binomial sampling and later ex-

tended these results to the case when the underlying model fails. Rojek 7 generalized and

strengthened these arguments for product-multinomial sampling with the rows being J in-

dependent multinomials (e.g., cohort studies). His limiting result for the null hypothesis, an

outline of its derivation and further supplementary information are given in Osius and Rojek

8. In terms of expected values, Osius and Rojek examined the same models as this article.

Hence several results could be adapted for our approach. Because of the underlying sampling

scheme, though — the group sizes are given, they did not have to deal with an increasing

number of nuisance parameters. The same applies to the work of Koehler 9 and Dale 10 who

studied product-multinomial sampling as well. Koehler derived the limiting normality for

the Likelihood Ratio Statistic when the dimension of the parameter vector increases as well.

Dale considered Likelihood Ratio and Pearson’s χ2 Statistic, assuming the expectations of

all cells to be bounded.

This article has its origin in the thesis of Müller 11 which treats the described subject

in detail and, beyond Poisson sampling, suggests an approach to derive goodness-of-fit tests

for product-multinomial sampling with the columns being independent multinomials (case-

control studies). We will focus on Poisson distribution and present a more general result

than that thesis by admitting an extended class of models under test.

The paper is organized as follows. Section 2 and 3 provide the general background. We

will describe sampling scheme and asymptotics, explain the models under test and specify

the estimators. In Section 4 we state our main result, namely the asymptotic normality of the

Power-Divergence Statistics under the null hypothesis, i.e., when the model holds. Further,

the decision rule for a goodness-of-fit test will be given. Section 5 contains a discussion of the

assumptions. It turns out that the marginal distribution of the covariate groups will have to

satisfy certain conditions. In particular, the data may not be extremely sparse. In Section

6 we sketch the derivation of the limiting result. Since the considered approach requires

comprehensive calculations, the proof cannot be given in full length. Readers interested in

technical details should refer to 11. In Section 7 we discuss our approach by means of a real

data application. Section 8 concludes the paper with some final remarks.

2 Stochastic model and asymptotics

In view of the comparatively complex asymptotics, let us describe the stochastic model first.

This is necessary to explain the way of grouping and to clarify the meaning of the number

of (covariate) groups to be a non-stochastic quantity. The asymptotic will now be indicated

through a running index n.
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We consider contingency tables (Xn
jk)j,k with observed counts of objects belonging to

group j ∈ {1, . . . , Jn} and category k ∈ {1, . . . ,K}. Each row of a table represents a

group and each column a category (see Sec. 1, Table 1). In applications, a group is usually

characterized by a certain range of values of a covariate vector Z ∈ RM where Z consists

of explanatory variables such as gender, weight or blood pressure. Formally speaking, we

consider for each n ∈ N a disjoint decomposition of the image space of Z, namely

ImZ =
Jn⋃
j=1

Inj with In1 , . . . , I
n
Jn pairwise disjoint.

Hence, in the presence of covariates, the groups are specified by the partitions In1 , . . . , I
n
Jn .

In practice the groups are often characterized by some representative covariate value znj . For

example, if Z is a continuously distributed random variable and Inj some interval, then znj

might be taken to be the middle of Inj .

The natural sampling scheme leading to Poisson distributed contingency tables (Xn
jk)j,k is

an independent sample of Nn individuals (Zi, Di), i = 1, . . . , Nn, each characterized through

a covariate vector Z and a category D, which arrive by chance within a fixed period. Then,

under nearby assumptions, the counts of each cell are Poisson distributed with expected

value µnjk,

Xn
jk = |{1 ≤ i ≤ Nn|Zi ∈ Inj , Di = k}| ∼ Pois(µnjk) for every j, k, n,

Xn
11, . . . , X

n
JnK stochastically independent.

This applies when the distribution of the counts is given through independent Poisson pro-

cesses (see, for example, Billingsley 12, Section 23). The marginal sums, e.g., Xn
j+, and the

total sample size Nn = Xn
++ also are Poisson, with parameter µnj+ and µn++, respectively

(The subscript “·” will always denote the vector and “+” the sum over the corresponding

index).

For the asymptotic we assume:

• The expected total sample size tends towards infinity, µn++ −→∞,

• the dimension M of the covariate vector is fixed,

• the number K of categories is fixed.

For applications, the running index n can be regarded as the realized sample size. Since the

sample size is stochastic, we treat n as a formal index which increases proportionally to the

expected sample size µn++, i.e., µn++ = n · const + O(1), where const denotes some positive

constant.

Additionally, and in contrast to the classical χ2 asymptotics, we suppose:

• The number of groups Jn increases, Jn −→∞.
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One basic requirement to accomplish the increasing cells approach is the existence of a

sequence of decompositions (
⋃Jn
j=1 I

n
j )n where the number of partitions increases and, in

particular, each partition has a chance to be filled, i.e., P (Z ∈ Inj ) > 0 for all j, n. This is,

for example, not given if the distribution of the covariates is discrete with finite domain. Even

stronger, we will have to demand that asymptotically all groups be filled with probability one

(see cond. (LC0), Sec. 5). Further some conditions on the unspecified marginal distribution

of the covariates and the way of grouping will have to be satisfied. These are given in

Section 5.

3 Parametric modeling and estimation

Keeping the notation of the last sections now the models under test will be described. We

consider the table of expectations (µnjk)j,k ∈ (0,∞)J
n×K and the conditional probabilities

π◦njk = P (D = k|Z ∈ Inj ) which are of particular interest for applications. In the Poisson

model they equal the ratios µnjk/µ
n
j+,

π◦njk = P (D = k|Z ∈ Inj ) = µnjk/µ
n
j+ for j = 1, . . . , Jn, k = 1, . . . ,K, n ∈ N.

We will model them in dependence on a finite-dimensional parameter vector θ ∈ Θ, where Θ

is some open parameter space, and call the models briefly πnjk(θ). The functions πnjk(·) should

depend on the category k and on the covariate group j: If, for example, D denotes a disease

state, we expect that more people from risk groups will belong to the category “infected”

than people who are not exposed. Parametric models for typical hypotheses like this should,

of course, be covered by our general class of models πnjk(·). Since the covariate groups or

covariate vectors znj ∈ RM may vary with n, we further allow our modeled probabilities to

depend on n. In the presence of covariate vectors znj , a simple example of such a model is

πnjk(θ) = Fk(znj , θ) for every j, k, n,

where F1, . . . , FK denote given functions. Here the dependence on j and n only comes

in through the covariates. In particular, for each category (disease state) k a different

dependence on the covariates is assumed.

Besides the parameter vector θ for the modeled ratios, we take the expected row sums

µn1+, . . . , µ
n
Jn+ into account as additional parameters. This means, in particular, that we

do not specify the marginal distribution of the covariate groups. Hence we have µnjk(θ) =

µnj+π
n
jk(θ), θ ∈ Θ, as a model for the cell expectations.

The hypothesis to check with a goodness-of-fit test states the model is true:

H0 : For each n there exists θn0 ∈ Θ such that µnjk = µnj+π
n
jk(θ

n
0 ) for all j, k. (1)
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Since µnjk = µnj+π
◦n
jk we can, equivalently, formulate H0 in terms of probabilities, i.e., π◦njk =

πnjk(θ
n
0 ). The reason why the true parameter vector θn0 should depend on n will probably be

explained best by the next important example, the odds ratio model.

In applications typically the odds ratios are parameterized. They can be derived from a

log linear model with linear predictor ηnjk = logµnjk,

logµnjk = ηnjk = αn + ρnj + γnk + ψ◦njk .

Interpretation and uniqueness of the parameters are given through suitable marginal con-

ditions, e.g., ρn1 = γn1 = 0, ψ◦nj1 = 0, ψ◦n1k = 0. Under these constraints the parameters ψ◦njk
equal the log odds ratios,

ψ◦njk = ηnjk + ηn11 − ηnj1 − ηn1k = log
µnjk · µn11

µnj1 · µn1k
.

Log odds ratio models assume ψ◦njk = ψnjk(β). A popular example is the log linear odds ratio

model with the odds ratios given by the scalar product, ψnjk(β) = (znj , βk), βk ∈ RM . Here

β1 = 0 and, without loss of generality, zn1 = 0 is set in order to meet the marginal conditions.

For each category we again assumed different dependencies on znj by writing βk. Rewriting

shows that the log odds ratio models accomplishes our model for the conditional probabilities

from above: Under the null hypothesis we have for the general log odds ratio model

π◦njk = πnjk(θ
n
0 ) =

exp(γnk + ψ◦njk )∑K
l=1 exp(γnl + ψ◦njl )

=
exp(γnk + ψnjk(β))∑K
l=1 exp(γnl + ψnjl(β))

(2)

with θn0 = (γn2 , . . . , γ
n
K , β). In the explicit log linear odds ratio model with ψnjk(β) = (znj , βk)

the parameter vector states θn0 = (γn2 , . . . , γ
n
K , β2, . . . , βK) ∈ RS , S = (K − 1) · (1 +M). Be-

sides the odds ratio parameter vector β of interest, θn0 consists of further nuisance parameters,

namely

γnk = log
µn1k
µn11

= log
( µn1k
µn1+

·
µn1+

µn11

)
= log

P (D = k|Z ∈ In1 )
P (D = 1|Z ∈ In1 )

, k = 1, . . . ,K. (3)

At this point it becomes clear why we let θn0 depend on n: We are interested only in as-

sociations within a table. Hence we let γnk (and thus θn0 ) vary with n in order to to avoid

additional restrictions concerning the distribution within the first row of the table.

For the estimation of θn0 we will take the maximum likelihood estimator θ̂n, or some

equivalent estimation function in regard to the approximability through information matrix

and scores (see Sec. 5). The log likelihood function ln(θ) and the score vector Un(θ) are

given by

ln(θ) =
Jn∑
j=1

( K∑
k=1

Xn
jk logµnj+ +

K∑
k=1

Xn
jk log πnjk(θ)− µnj+ −

K∑
k=1

logXn
jk!
)
,

Un(θ) =
Jn∑
j=1

Unj (θ) =
Jn∑
j=1

K∑
k=1

Xn
jkD

T
θ log πnjk(θ) = DT

θ l
n(θ).
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The information matrix under the null hypothesis is obtained by simple calculus:

In(µn·+, θ
n
0 ) = Cov(Un(θn0 )) =

Jn∑
j=1

µnj+

K∑
k=1

1
πnjk(θ

n
0 )
DT
θ π

n
jk(θ

n
0 ) ·Dθπ

n
jk(θ

n
0 ).

Since for the vector of expected row sums µn·+ no structure is specified, the observed counts

in every covariate group will be used for its estimation: µ̂nj+ = Xn
j+ for j = 1, . . . , Jn. They

are easily seen to be maximum likelihood estimators. In conclusion, the estimators for the

expectations in the model will be µ̂nj+π
n
jk(θ̂

n) for all j, k, n.

4 Limit theorem and goodness-of-fit test

With the fitted expectations being specified, the test statistic SDn
λ(µ̂n·+, θ̂

n) is given (µ̂n·+ is

the vector of row sums as stipulated: µ̂n·+ = (µ̂nj+)j = (Xn
j+)j):

SDn
λ(µ̂n·+, θ̂

n) =
Jn∑
j=1

K∑
k=1

aλ(Xn
jk, µ̂

n
j+π

n
jk(θ̂

n)).

We now state the main result, the limiting normal distribution of the statistic for the in-

creasing cells asymptotics. Having the central limit theorem in mind, this behavior is not

surprising: We consider an increasing sum with Jn nearly independent components — cor-

relations arise since the parameter estimator θ̂n is involved. The idea of proof is a standard

one: We derive an approximation of the test statistic which does not depend on estimators

any more and apply the central limit theorem. The standardization terms in Theorem 1 are

expected value and standard error of the approximated statistic, evaluated at its estimates.

The result will be given for the null hypothesis, i.e., when the assumed model holds. A

similar normal limit can be derived for arbitrary alternatives. This will, however, not be

carried out here.

Theorem 1 Consider the increasing cells asymptotics described in Section 2 and assume

that condition (LC0) – (LC3), (RC0) – (RC3), (MD0) – (MD2) and (VC) given in Section

5 are satisfied. If the null hypothesis (1) holds, i.e., the model fits, the family of Power-Di-

vergence Statistics SDn
λ (λ > −1) has a limiting normal distribution as follows:

Tnλ =
SDn

λ(µ̂n·+, θ̂
n)−m∗nλ (µ̂n·+, θ̂

n)

σnλ(µ̂n·+, θ̂n)
L−→ N(0, 1) (n→∞).

The asymptotic expectation m∗nλ is

m∗nλ (µ̂n·+, θ̂
n) = mn

λ(µ̂n·+, θ̂
n)− Jn

where mn
λ denotes the expectation of SDn

λ ,

mn
λ(µn·+, θ

n
0 ) = E(SDn

λ(µn·+, θ
n
0 )) =

Jn∑
j=1

K∑
k=1

E(aλ(Xn
jk, µ

n
j+π

n
jk(θ

n
0 ))),
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and is evaluated at the estimate (µ̂n·+, θ̂
n). Additionally, m∗nλ involves the number of groups

Jn which is the expectation of Pearson’s statistic for the row sums, i.e.,
∑Jn

j=1 a1(Xn
j+, µ

n
j+).

This term is part of the approximation of SDn
λ(µ̂n·+, θ̂

n) and must be incorporated in order

to handle the bias caused by the estimation of the marginal distribution of the covariate

groups (see Sec. 6 for details). Of course, this also effects the asymptotic variance, i.e., the

variance of the approximation, which computes to

σn2
λ (µn·+, θ

n
0 )

= V ar
(
SDn

λ(µn·+, θ
n
0 )−

Jn∑
j=1

a1(Xn
j+, µ

n
j+)
)
− cnλ(µn·+, θ

n
0 )In(µn·+, θ

n
0 )−1cnλ(µn·+, θ

n
0 )T (4)

=
Jn∑
j=1

K∑
k=1

V ar(aλ(Xn
jk, µ

n
j+π

n
jk(θ

n
0 ))) + 2Jn +

Jn∑
j=1

1
µnj+

− 2
Jn∑
j=1

1
µnj+

K∑
k=1

Cov(aλ(Xn
jk, µ

n
j+π

n
jk(θ

n
0 )), (Xn

jk)
2)

+ 4
Jn∑
j=1

K∑
k=1

πnjk(θ
n
0 )Cov(aλ(Xn

jk, µ
n
j+π

n
jk(θ

n
0 )), Xn

jk)

− cnλ(µn·+, θ
n
0 )In(µn·+, θ

n
0 )−1cnλ(µn·+, θ

n
0 )T .

The quadratic form at the end of the formula comes from the estimation of the parameter

vector θn0 . It involves the S-dimensional vector of covariances between SDn
λ and the score

vector Un,

cnλ(µn·+, θ
n
0 ) = Cov

(
SDn

λ(µn·+, θ
n
0 ), Un(θn0 )

)
=

Jn∑
j=1

K∑
k=1

Dθ log πnjk(θ
n
0 ) · Cov(aλ(Xn

jk, µ
n
j+π

n
jk(θ

n
0 )), Xn

jk),

and the inverse of the information matrix In(µn·+, θ
n
0 ).

Since large deviations between observed and fitted expectations, i.e., large values of SDn
λ ,

speak against the null hypothesis, the limiting result suggests the following one-sided level

α test (zα denotes the upper α–quantile of the standard normal distribution N(0, 1)):

rejection of H0 ⇔ Tnλ > zα.

Except for integer valued λ, the moments involved in Tnλ (e.g., mn
λ, cnλ) cannot be stated

explicitly. Nevertheless, numerical computation of those Poisson expectations as a sum over

all relevant outcomes is straightforward. Most convenient in regard to computational efforts

is Pearson’s statistic (λ = 1),

SDn
1 (µ̂n·+, θ̂

n) =
Jn∑
j=1

K∑
k=1

(Xn
jk − µ̂nj+πnjk(θ̂n))2

µ̂nj+π
n
jk(θ̂n).
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Its expectation mn
1 = E(SDn

1 ) needs no estimation since it does not depend on the model,

mn
1 = Jn · K. Hence we have the asymptotic expectation m∗n1 = mn

1 − Jn = Jn(K − 1).

Writing Xn
j+ instead of µ̂nj+, the test statistic states in this case:

Tn1 =
1

σn1 (Xn
·+, θ̂

n)

( Jn∑
j=1

K∑
k=1

(Xn
jk −Xn

j+π
n
jk(θ̂

n))2

Xn
j+π

n
jk(θ̂n)

− Jn(K − 1)
)

with

σn1 (Xn
·+, θ̂

n) =
(
2Jn(K − 1) +

Jn∑
j=1

1
Xn
j+

(
K∑
k=1

1
πnjk(θ̂n)

+ 1− 2K)

−cn1 (θ̂n)In(Xn
·+, θ̂

n)−1cn1 (θ̂n)T
)1/2

and

cn1 (θ̂n) =
Jn∑
j=1

K∑
k=1

Dθ log πnjk(θ̂
n).

Let us compare Tn1 and the Pearson statistic of Osius and Rojek 8, who consider the same

setting as this article, but row–multinomial sampling, i.e., the Jn rows are independent

multinomials and the row sums are given, Xn
j+ = µnj+ = nj . Their test statistic states

T̃n1 =
1

σ̃n1 (Xn
·+, θ̂

n)

( Jn∑
j=1

K∑
k=1

(Xn
jk −Xn

j+π
n
jk(θ̂

n))2

Xn
j+π

n
jk(θ̂n)

− m̃n
1

)
with

m̃n
1 = Jn(K − 1),

σ̃n1 (Xn
·+, θ̂

n) =
(
2Jn(K − 1) +

Jn∑
j=1

1
Xn
j+

(
K∑
k=1

1
πnjk(θ̂n)

−K2 − 2(K − 1))

−cn1 (θ̂n)In(Xn
·+, θ̂

n)−1cn1 (θ̂n)T
)1/2

.

The quadratic form at the end of the variance formula has the same analytic form as the

corresponding term in our formula. Obviously, the centering terms are the same for both

distribution models, namely Jn(K − 1). The variances are different. Since we estimate the

marginal covariate distribution, the variance in the Poisson model is, as expected, bigger

than the variance in the row–multinomial model:

σn1 (Xn
·+, θ̂

n) = σ̃n1 (Xn
·+, θ̂

n) + (K2 − 1)
Jn∑
j=1

1
Xn
j+

.

This will lead to smaller values of the test statistic. Hence, we expect that tests for Poisson

data will be less powerful than tests for row–multinomial sampling.
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5 Sufficient conditions

We now give the conditions for our limit theorem, Theorem 1, and discuss them briefly. One

basic assumption concerns the estimators µ̂nj+ = Xn
j+ (j = 1, . . . , Jn) of the expected row

sums. They are required to be asymptotically nonzero with probability 1,

(LC0) P (µ̂nj+ > 0 ∀ j ∈ {1, . . . , Jn}) −→ 1,

i.e., all covariate groups have to be filled. Hence (LC0) corresponds well with practice where

only those groups are taken into account which have at least one observation. In particular,

it explains the meaning of Jn as the number of observed groups. From a technical point of

view, (LC0) is in need, because aλ(·, µ) is not defined for µ = 0.

The following “limiting conditions” are standard assumptions with (LC2) and (LC3) being

satisfied by the maximum likelihood estimator under mild conditions:

(LC1) n−1In(µn·+, θ
n
0 ) −→ I∞ positive definite,

(LC2) n1/2(θ̂n − θn0 ) = Op(1),

(LC3) (θ̂n − θn0 ) = In(µn·+, θ
n
0 )−1Un(θn0 ) +Op(n−1).

For the modeled ratios we need some “regularity conditions”. First of all, the sequence of

true parameters must be asymptotically stable:

(RC0) θn0 = O(1).

This condition guarantees the existence of a convex compact subset W̄ ⊂ Θ which contains

almost all θn0 and, due to the assumed consistency (LC2), almost all θ̂n. We will need W̄ for

the proofs, particularly in order to formulate the technical conditions (RC2) and (RC3). In

the log odds ratio model (2) condition (RC0) is satisfied. Here θn0 consists of the (constant)

odds ratio parameter vector β and of the parameters γnk = log(µn1k/µ
n
11) = log(π◦n1k/π

◦n
11 )

(k = 2, . . . ,K, see Eq. (3)). The γnk ’s are bounded by the subsequently formulated condition

(RC2) which, in particular, requires that every cell has a chance to be filled and which we

need anyway.

We assume that the following regularity conditions hold:

(RC1) πnjk(θ) is continuously differentiable twice in θ for all j, k, n,

(RC2) ∃ ε > 0 : πnjk(θ) ≥ ε for all j, k, n, θ ∈ W̄ ,

(RC3) ∃M > 0 : a) ‖Dθπ
n
jk(θ)‖ < M for all j, k, n, θ ∈ W̄ ,

b) ‖D2
θπ

n
jk(θ)‖ < M for all j, k, n, θ ∈ W̄ .

In order to understand (RC3), let us consider the parametric model introduced in Sec. 3,

πnjk(θ) = Fk(znj , θ) with given functions F1, . . . , FK and covariates zn1 , . . . , z
n
Jn . The func-
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tions Fk are typically continuously differentiable. Hence, (RC3) is obviously fulfilled if the

covariates have a natural bound which is the normal situation in applications. (For an il-

lustration consider the logit model (2) with ψnjk(β) = (znj , βk), for which the derivatives can

be determined by simple calculations.) It should be mentioned that (RC3) could be relaxed

to some extent since the proofs only consider sums over j and hence certain means. This

would, however, amount to several additional technical conditions, and will, for reasons of

clarity, not be carried out here.

For the expected row sums, and hence for the (not modeled) marginal distribution of the

covariate groups, we need a bounding condition:

(MD0) ∃ ε > 0 : µnj+ ≥ ε for all j, n.

This condition, combined with (RC2), particularly implies that the cell expectations µnjk
must be bounded away from zero. Those bounding conditions will be seen to be essential for

our proofs where we will need several auxiliary results about the order of Poisson moments,

regarded as a function of the expected value.

So far we only formulated assumptions which are typically satisfied in practice. Now we

state two assumptions concerning the marginal distribution of the covariate groups which

should be checked carefully. We require

(MD1) (Jn)−1/2
Jn∑
j=1

( µnj+
µn++

)1/2
−→ 0,

(MD2) (Jn)−1/2
Jn∑
j=1

(µnj+)−1/2 −→ 0.

These conditions arise when we replace the estimated by the true covariate distribution and

represent the approximation error, which, of course, must disappear in the limit. Both con-

ditions, (MD1) and (MD2), can be stated equivalently in terms of sample means. Consider

the p–th mean

Mp(µn·+) =
( 1
Jn

Jn∑
j=1

(µnj+)p
)1/p

, p ∈ R,

where p = 1, 1/2 and −1/2 denote arithmetic, square root and inverse square root mean.

With this notation we obtain

(MD1)’
(
(Jn)−1/2

Jn∑
j=1

( µnj+
µn++

)1/2)−2
=

M1(µn·+)
M1/2(µn·+)

→ ∞,

(MD2)’
(
(Jn)−1/2

Jn∑
j=1

(µnj+)−1/2
)−2

=
M−1/2(µn·+)

Jn
→ ∞.

The latter condition states that the inverse square root mean of the row sums must increase

faster than the number of rows. This clarifies that our approach is intermediate between the

12



classical “fixed cells” approach, where each row sum must increase, and an “extreme sparse

increasing cells” approach, where all row sums have a fixed bound. Since the p–th mean is

increasing in p, (MD2)’ implies M1(µn·+)/Jn = µn++/(J
n)2 → ∞. Hence, due to the choice

of n, (Jn)2/n→ 0 must be satisfied.

Condition (MD1)’ requires an increase of the ratio M1/M1/2. This ratio is a measure of

dispersion for the roots rnj = (µnj+)1/2 of the row sums. In fact the variance (with respect to

point mass 1/Jn) is given by

1/Jn
Jn∑
j=1

(rnj − r̄n)2 = M1(µn·+)−M1/2(µn·+).

Hence (MD1)’ requires that this variance increases faster than the square (r̄n)2 = M1/2(µn·+)

of the mean,

(M1(µn·+)−M1/2(µn·+))/M1/2(µn·+) → ∞.

In summary, condition (MD2) requires that the inverse square root mean of the row sums

increases suitably fast whereas condition (MD1) demands an increasing variation of the row

sums. The latter is, for example, not given when all row sums of a table are equally sized.

Particularly when µnj+ = (Jn)1+α for every j (α > 0), one easily checks that (MD1) fails and

(MD2) is satisfied. A simple example for the opposite situation is the following: Assume

that only the first row sum increases, say µn1+ = (Jn)2, whereas µnj+ = 1 for all j > 1. In

this case (MD1) is satisfied but (MD2) fails.

Since asymptotic conditions can never be verified for concrete samples, a simple rule of

thumb would certainly be desirable. Such a rule is, unfortunately, not yet available. For this

purpose one needs more evidence, in particular elaborate empirical and simulation studies.

This goes beyond the scope of this paper, but would certainly be interesting, also in view

of the fact that it is not yet clear whether the sufficient conditions (MD1) and (MD2) are

also necessary. We recommend to compute the left-hand side of (MD1)’ and (MD2)’ for the

observed row sums Xn
j+ = µ̂nj+ to see whether they may be considered large. An illustration

for one particular data situation and a further discussion is given in Section 7.

Our last condition finally concerns the variance which must increase sufficiently fast:

(VC)
Jn

σn2
λ (µn·+, θn0 )

= O(1).

This condition only affects the first part of the variance given in (4) since the quadratic term

in that formula has the order (Jn)2/n, and, due to the discussion above, is asymptotically

negligible. For Pearson’s χ2 Statistic (λ = 1) the variance is explicitly given (see end of Sec.

4). Condition (VC) is obviously satisfied in this case.

13



6 Derivation of the limit theorem

We now sketch the proof of Theorem 1. The idea of proof is to approximate the centered

statistic

Znλ (µ̂n·+, θ̂
n) = SDn

λ(µ̂n·+, θ̂
n)−mn

λ(µ̂n·+, θ̂
n)

gradually through a statistic which does not depend on the estimators anymore. This ap-

proximation is a sum of Jn independent random variables. Hence we can apply the central

limit theorem to its standardization. Since the variance must be estimated, too, we finally

need the consistency of the variance estimation. In conclusion, this establishes the asserted

normality of the Power–Divergence family.

In the following we will assume throughout that all covariate groups be filled with prob-

ability 1 (LC0) and that the sequence of true parameters θn0 is asymptotically stable (RC0).

The last condition implies that there is a convex compact subset W̄ of Θ which contains

almost all θn0 . Since the approximation of the test statistic is based on Taylor expansions,

we will also assume that the modeled probabilities are differentiable (RC1).

6.1 Approximation of the test statistic

We start with a first order Taylor expansion in θ̂n around θn0 which gives for the centered

statistic:

Znλ (µ̂n·+, θ̂
n) = Znλ (µ̂n·+, θ

n
0 ) +DθZ

n
λ (µ̂n·+, θ

n
0 ) · (θ̂n − θn0 ) +Op(1). (5)

The idea of proof is the following. Let be W̄ ⊂ Θ a convex compact neighborhood with

θn0 ∈ W̄ ⊂ Θ for all n. This can, due to (RC0), be assumed without loss of generality.

For reasons of definiteness let all observed row sums µ̂nj+ = Xn
j+ be nonzero and consider

θ̂n ∈ W̄ . The case that some row sums are zero or that θ̂n /∈ W̄ is asymptotically negligible

by assumption (LC0) and the assumed consistency of θ̂n. The approximation error in (5)

computes to

‖Znλ (µ̂n·+, θ̂
n)− Znλ (µ̂n·+, θ

n
0 )−DθZ

n
λ (µ̂n·+, θ

n
0 ) · (θ̂n − θn0 )‖

= ‖(θ̂n − θn0 )T
∫ 1

0
(1− z)D2

θZ
n
λ (µ̂n·+, θ

n
z )dz (θ̂n − θn0 )‖

≤ ‖θ̂n − θn0 ‖2 ·
Jn∑
j=1

K∑
k=1

sup
θ∈W̄

∥∥∥D2
θ

(
aλ(Xn

jk, µ̂
n
j+π

n
jk(θ))− eλ(µ̂nj+, π

n
jk(θ))

)∥∥∥.
We wrote briefly θnz for θn0 + z(θ̂n − θn0 ). The function eλ denotes the expected value of aλ,

eλ(µnj+, π
n
jk(θ)) = E(aλ(Xn

jk, µ
n
j+π

n
jk(θ))), where Xn

jk is Poisson distributed with expected

value µnj+π
n
jk(θ). If now for all j, k, n holds

sup
θ∈W̄

∥∥∥D2
θ

(
aλ(Xn

jk, µ̂
n
j+π

n
jk(θ))

)∥∥∥ ≤ µ̂nj+ · const for all j, k, n, (6)

sup
θ∈W̄
‖D2

θeλ(µ̂nj+, π
n
jk(θ))‖ ≤ µ̂nj+ · const for all j, k, n, (7)
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we obtain

‖Znλ (µ̂n·+, θ̂
n)− Znλ (µ̂n·+, θ

n
0 )−DθZ

n
λ (µ̂n·+, θ

n
0 ) · (θ̂n − θn0 )‖

≤ ‖θ̂n − θn0 ‖2 ·
Jn∑
j=1

K∑
k=1

µ̂nj+ · const

= ‖θ̂n − θn0 ‖2 · µ̂n++ ·K · const

= ‖n1/2(θ̂n − θn0 )‖2 ·
µ̂n++

n
·K · const.

Since n increases proportionally with µn++ and µ̂n++/µ
n
++

P−→ 1, we have µ̂n++/n = Op(1).

This and condition (LC2), n1/2(θ̂n − θn0 ) = Op(1), then establishes (5).

The proof of (6) is straightforward. Besides the generally assumed conditions (LC0, RC0,

RC1) only analytical arguments and condition (RC2) apply, i.e. the probabilities must be

bounded away from zero on W̄ where W̄ is a convex subset of Θ as above and exists due to

(RC0). Inequality (7) will be verified by showing that for each j, k, n holds

sup
θ∈W̄
‖D2

θeλ(µnj+, π
n
jk(θ))‖ ≤ µnj+ · const for all µnj+ ∈ [ε,∞)

where ε is some constant on (0, 1). This suffices since the row sums in (7) were assumed to

be nonzero, i.e., µ̂nj+ = Xn
j+ ≥ 1 for all j, k, n. Simple calculus gives

D2
θeλ(µnj+, π

n
jk(θ))

= µnj+

( µnj+
µnjk(θ)

·DT
θ π

n
jk(θ) · µnjk(θ)

∂2

(∂µnjk(θ))2
E(aλ(Xn

jk, µ
n
jk(θ))) ·Dθπ

n
jk(θ)

)
+ µnj+

( ∂

∂µnjk(θ)
E(aλ(Xn

jk, µ
n
jk(θ))) ·D2

θπ
n
jk(θ)

)
.

We have to show that the two terms in large parentheses are bounded for θ ∈ W̄ . This

is obvious for the (derived) probabilities by the assumed bounding conditions (RC2) and

(RC3). In order to formulate bounding results for (derivatives of) Poisson expectations like

∂/(∂µnjk(θ))E(aλ(Xn
jk, µ

n
jk(θ))) for our special asymptotics, we show, in this example,∣∣∣ ∂

∂µ
E
(
aλ(X,µ)

)∣∣∣ ≤ const for all µ ≥ ε > 0 (8)

where X is Poisson distributed with expected value µ. This suffices since we assume that

for θ ∈ W̄ the cell expectations µnjk(θ) are bounded away from zero (MD0, RC1). Results

like this are crucial for the derivation of our limit theorem and are needed several times. For

reasons of brevity we will not go into technical details or state the full list of auxiliary results

needed and refer to 11, Sec. 4.

With Equation (5) being verified, we now want to exchange estimated and true row

expectations in the right-hand side of (5). Consider the gradient DθZ
n
λ first. We will show

DθZ
n
λ (µ̂n·+, θ

n
0 ) = DθZ

n
λ (µn·+, θ

n
0 ) +

Jn∑
j=1

Op((µnj+)1/2). (9)
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Then, using the
√
n–consistency of θ̂n (LC2) and n/µn++ = O(1),

DθZ
n
λ (µ̂n·+, θ

n
0 )(θ̂n − θn0 ) = DθZ

n
λ (µn·+, θ

n
0 ) · (θ̂n − θn0 ) +

Jn∑
j=1

Op
(
(
µnj+
µn++

)1/2
)
. (10)

The proof of (9) is done by Taylor expansion. By definition we have DθZ
n
λ (µ̂n·+, θ

n
0 ) =

DθSD
n
λ(µ̂n·+, θ

n
0 ) − Dθm

n
λ(µ̂n·+, θ

n
0 ). Hence the result can be proved treating the two terms

separately. Consider the derivative of the goodness-of-fit statistic first and remember that

SDλ =
∑
j,k aλ. We show that for given δ ∈ (0, 1) there exists a constant Mδ such that for

almost all n holds

P

(∥∥∥(µnj+)−1/2Dθ

K∑
k=1

(
aλ(Xn

jk, µ̂
n
j+ · πnjk(θn0 ))− aλ(Xn

jk, µ
n
j+ · πnjk(θn0 ))

)∥∥∥ > Mδ

)
≤ δ (11)

for all j ∈ {1, . . . , Jn}. Then the difference is stochastically bounded giving

DθSD
n
λ(µ̂n·+, θ

n
0 )−DθSD

n
λ(µn·+, θ

n
0 ) =

Jn∑
j=1

Op((µnj+)1/2).

To prove (11) let any j ∈ {1, . . . , Jn} be given and consider µ̂nj+ > 0. Using the positive

homogeneity of the distance function aλ, i.e. c aλ(x, µ) = aλ(cx, cµ), we obtain

∥∥∥(µnj+)−1/2Dθ

K∑
k=1

(
aλ(Xn

jk, µ̂
n
j+ · πnjk(θn0 ))− aλ(Xn

jk, µ
n
j+ · πnjk(θn0 ))

)∥∥∥
≤ (µnj+)1/2

K∑
k=1

∥∥∥Dθaλ
(Xn

jk

µnj+
,
µ̂nj+
µnj+
· πnjk(θn0 )

)
−Dθaλ

(Xn
jk

µnj+
, πnjk(θ

n
0 )
)∥∥∥.

Taylor expansion in µ̂nj+/µ
n
j+ around its stochastic limit, 1, and application of the bounding

conditions concerning the derived probabilities (RC3) shows that the term above is bounded.

Since zero row sums µ̂nj+ appear with probability 0 by (LC0), we have (11). In order to verify

Dθm
n
λ(µ̂n·+, θ

n
0 ) = Dθm

n
λ(µn·+, θ

n
0 ) +Op(

Jn∑
j=1

(µnj+)1/2) (12)

we show, componentwise, that for every j, k holds

(µnj+)−1/2
( ∂

∂θs
eλ(µ̂nj+, π

n
jk(θ

n
0 ))− ∂

∂θs
eλ(µnj+, π

n
jk(θ

n
0 ))
)

= Op(1).

Since we need to differentiate with respect to the expected value and zero row sums can be

neglected, we prove, instead,

1N(µ̂nj+)
( ∂

∂θs
eλ(µ̂nj+, π

n
jk(θ

n
0 ))− ∂

∂θs
eλ(µnj+, π

n
jk(θ

n
0 ))
)

= Op((µnj+)1/2). (13)

Here 1N is an indicator function, i.e., 1N(x) = 1 for positive integers x, eλ denotes again the

expectation of aλ. For the proof we use the following Lemma which can be verified using

standard properties of probability measures (see 11, Lemma 7.3, for a proof).
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Lemma 1 Let (Xn)n∈N be a sequence of nonnegative integer valued random variables and

(un)n∈N an arbitrary vector valued sequence (un ∈ Rm,m ∈ N). Assume E(Xn) = µn ∈
[ε,∞), 0 < ε ≤ 1, and V ar(Xn) ≤ µn for all n ∈ N. Consider a function g : [0,∞)×Rm →
R, (X,u) 7→ g(X,u), which is continuously differentiable in the first component on (0,∞).

Let r be some nonnegative integer. If

µr ·
∣∣∣ ∂
∂µ
g(µ, un)

∣∣∣ ≤ c for each n ∈ N and µ ≥ ε (c > 0)

then for the asymptotics n→∞ holds

1N(Xn) ·
(
g(Xn, un)− g(µn, un)

)
= Op(

1
µr−1/2

).

Since (µ̂nj+)n is a sequence of Poisson variables with expected value µnj+ ∈ [ε,∞), we can

apply Lemma 1 with r = 0 to establish (13). The function ∂eλ/∂θs corresponds with function

g from Lemma 1. We only must show that for every j, k, n holds

| ∂
∂µ

∂

∂θs
eλ(µ, πnjk(θ

n
0 ))| ≤ const for all µ ≥ ε.

By definition of eλ, this holds if

| ∂

∂µnj+

∂

∂θs
eλ(µnj+, π

n
jk(θ

n
0 ))| ≤ const for all µnj+ ≥ ε.

The proof can be done by differentiating eλ(µnj+, π
n
jk(θ

n
0 )) = E(aλ(Xn

jk, µ
n
j+π

n
jk)) and applying

further auxiliary results about the order of Poisson expectations, such as (8), combined with

all bounding conditions concerning the probabilities and row expectations (RC2, RC3, MD0).

This gives (9) and thus (10). Inserting in (5) yields

Znλ (µ̂n·+, θ̂
n) = Znλ (µ̂n·+, θ

n
0 ) +DθZ

n
λ (µn·+, θ

n
0 ) · (θ̂n − θn0 ) +

Jn∑
j=1

Op
(
(
µnj+
µn++

)1/2
)
.

Now we approximate the gradient by its expected value,

DθZ
n
λ (µn·+, θ

n
0 ) · (θ̂n − θn0 ) = E(DθZ

n
λ (µn·+, θ

n
0 )) · (θ̂n − θn0 ) +Op(1).

This follows from (LC2), n1/2(θ̂n − θn0 ) = Op(1), and

n−1/2(DθZ
n
λ (µn·+, θ

n
0 )−E(DθZ

n
λ (µn·+, θ

n
0 ))) = n−1/2(DθSD

n
λ(µn·+, θ

n
0 )− E(DθSD

n
λ(µn·+, θ

n
0 )))

= Op(1),

which is shown by simple calculations and applying Chebyshev’s inequality. We used, in

particular, that the variance of DθSD
n
λ has the order n which is another auxiliary result

about Poisson expectations (cf. (8)) and needs the bounding conditions (RC2),(RC3) and

(MD0). Further calculations show that the covariance cnλ(µn·+, θ
n
0 ) between SDn

λ and the
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score vector Un (see Sec. 4) equals the negative expectation −E(DθZ
n
λ (µn·+, θ

n
0 )). Hence we

have

DθZ
n
λ (µn·+, θ

n
0 )(θ̂n − θn0 ) = −cnλ(µn·+, θ

n
0 )(θ̂n − θn0 ) +Op(1). (14)

We now replace the estimator in (14) through information matrix and score vector. This is

possible by assumption (LC3), i.e., (θ̂n − θn0 ) = In(µn·+, θ
n
0 )−1Un(θn0 ) +Op(1/n). We obtain

cnλ(µn·+, θ
n
0 )(θ̂n − θn0 ) = cnλ(µn·+, θ

n
0 )In(µn·+, θ

n
0 )−1Un(θn0 ) +Op(1). (15)

The error term in the formula is stochastically bounded since the order of cnλ computes to

cnλ = O(Jn), using the same bounding conditions as above. Already the meaning of Jn as

the number of filled groups asserts Jn/n = O(1). Using (14) and (15) we can rewrite (9):

Znλ (µ̂n·+, θ̂
n) = Znλ (µ̂n·+, θ

n
0 )− cnλ(µn·+, θ

n
0 )In(µn·+, θ

n
0 )−1Un(θn0 )

+Op(1) +
Jn∑
j=1

Op
(
(
µnj+
µn++

)1/2
)
. (16)

Finally, we want to exchange the first term of the right-hand side of (16), Znλ (µ̂n·+, θ
n
0 ), by

Znλ (µn·+, θ
n
0 ). This step is crucial: Since we replace the estimated marginal distribution of the

covariate groups by their true distribution, we have to regard the bias that arises. The idea

is as follows. We treat SDλ and its expectation mλ separately. For mλ, which is simpler to

handle, we obtain

mn
λ(µ̂n·+, θ

n
0 ) = mn

λ(µn·+, θ
n
0 ) +Op

( Jn∑
j=1

(µnj+)−1/2
)
. (17)

This follows by analogous arguments as in the proof of (12), i.e., we apply Lemma 1 and

use the same bounding conditions. Let us now consider the transition from SDn
λ(µ̂n·+, θ

n
0 ) to

SDn
λ(µn·+, θ

n
0 ). Using the positive homogeneity of aλ and writing briefly µnjk = µnj+π

n
jk(θ

n
0 ),

we have

SDn
λ(µ̂n·+, θ

n
0 )− SDn

λ(µn·+, θ
n
0 ) =

Jn∑
j=1

K∑
k=1

(
aλ(Xn

jk, µ̂
n
j+π

n
jk(θ

n
0 ))− aλ(Xn

jk, µ
n
jk)
)

=
Jn∑
j=1

K∑
k=1

(
aλ(Xn

jk, µ̂
n
j+ ·

µnjk
µnj+

)− aλ(Xn
jk, µ

n
jk)
)

=
Jn∑
j=1

K∑
k=1

µnjk

(
aλ(

Xn
jk

µnjk
,
µ̂nj+
µnj+

)− aλ(
Xn
jk

µnjk
, 1)
)
.

The key idea now is a second order Taylor expansion of the difference of the two aλ’s in

both components around (1, 1). Since aλ has the appealing property that its first partial

derivatives and aλ itself vanish in (1, 1), we obtain

SDn
λ(µ̂n·+, θ

n
0 )− SDn

λ(µn·+, θ
n
0 ) = −

Jn∑
j=1

(µ̂nj+ − µnj+)2

µnj+
+Op

( Jn∑
j=1

(µnj+)−1/2
)
. (18)
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The proof of (18), particularly the computation of the order of the approximation error,

requires some work: The distance function aλ is differentiable only on (0,∞) × (0,∞).

Hence we have to consider the case Xjk = 0 separately. For reasons of brevity, we refer to

11, Lemma 5.8. The proof particularly requires assumption (RC2) and (MD0), i.e., the cell

expectations must be bounded away from zero. Let us now consider the leading term of the

expansion, Pearson’s χ2 Statistic for the row sums,

Jn∑
j=1

(µ̂nj+ − µnj+)2

µnj+
=

Jn∑
j=1

(Xn
j+ − µnj+)2

µnj+
=

Jn∑
j=1

a1(Xn
j+, µ

n
j+),

more carefully. This statistic obviously has the same order as SDn
λ(µn·+, θ

n
0 ), for instance

SDn
1 (µn·+, θ

n
0 ) =

∑Jn

j=1

∑K
k=1 a1(Xn

jk, µ
n
jk) =

∑Jn

j=1

∑K
k=1(Xn

jk−µnjk)2/µnjk. Hence it represents

the bias that arises since we estimate the marginal covariate distribution. It cannot be

ignored but must be part of an approximation of the test statistic.

In conclusion, Eq. (17) and (18) give

Znλ (µ̂n·+, θ
n
0 ) = Znλ (µn·+, θ

n
0 )−

Jn∑
j=1

a1(Xn
j+, µ

n
j+) +

Jn∑
j=1

Op
(
(µnj+)−1/2

)
. (19)

Inserting in (16) and writing explicitly SDn
λ −mn

λ instead of Znλ , we have the desired sum of

independent variables which does not depend on estimators anymore:

SDn
λ(µ̂n·+, θ̂

n)−mn
λ(µ̂n·+, θ̂

n)

= SDn
λ(µn·+, θ

n
0 )−mn

λ(µn·+, θ
n
0 )−

Jn∑
j=1

a1(Xn
j+, µ

n
j+)− cnλ(µn·+, θ

n
0 )In(µn·+, θ

n
0 )−1Un(θn0 )

+Op(1) +
Jn∑
j=1

Op(1)
(
(
µnj+
µn++

)1/2 + (
1
µnj+

)1/2
)
. (20)

6.2 Limiting normality of the approximated statistic

We derive the limiting normal distribution of the approximated statistic from (20). Let the

stochastic terms be denoted by Ψn
λ+, i.e.,

Ψn
λ+ = SDn

λ(µn·+, θ
n
0 )−

Jn∑
j=1

a1(Xn
j+, µ

n
j+)− cnλ(µn·+, θ

n
0 )(In(µn·+, θ

n
0 ))−1Un(θn0 )

=
Jn∑
j=1

Ψn
λj

with

Ψn
λj =

K∑
k=1

aλ(Xn
jk, µ

n
j+π

n
jk(θ

n
0 ))− a1(Xn

j+, µ
n
j+)− cnλ(µn·+, θ

n
0 )(In(µn·+, θ

n
0 ))−1Unj (θn0 ).

Since E(SDn
λ) = mn

λ, E(
∑Jn

j=1 a1(Xn
j+, µ

n
j+)) = Jn and E(Un) = 0, the expected value of

Ψn
λ+ is mn

λ − Jn. Note that we called this expectation m∗nλ in Theorem 1, i.e., m∗nλ =
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E(Ψn
λ+) = mn

λ−Jn. Hence, using this notation and adding Jn to both sides of (20), we have

SDn
λ(µ̂n·+, θ̂

n)−m∗nλ (µ̂n·+, θ̂
n)

= SDn
λ(µ̂n·+, θ̂

n)−mn
λ(µ̂n·+, θ̂

n) + Jn

= Ψn
λ+ − E(Ψn

λ+) +Op(1) +
Jn∑
j=1

Op(1)
(
(
µnj+
µn++

)1/2 + (
1
µnj+

)1/2
)
. (21)

Let σn2
λ denote the variance of the approximation, i.e., σnλ = σnλ(µn·+, θ

n
0 ) = (V ar(Ψn

λ+))1/2.

The explicit formula can be derived by straightforward calculus and is given in Theorem 1.

The limiting normal distribution of Ψn
λ+,

Ψn
λ+ − E(Ψn

λ+)
σnλ

L−→ N(0, 1), (22)

follows from the central limit theorem if Ljapounov’s condition is satisfied, i.e.,

Jn∑
j=1

E(|Ψn
λj − E(Ψn

λj)|2+δ)/(σnλ)2+δ −→ 0 (δ > 0).

We verify the condition for δ = 2 (cf. 11, Sec. 6). Since we assume (VC), Jn/σn2
λ = O(1),

we only must show

Jn∑
j=1

E
((

Ψn
λj − E(Ψn

λj)
)4)

= o((Jn)2).

Using obvious inequalities, this holds if

Jn∑
j=1

E

(( K∑
k=1

aλ(Xn
jk, µ

n
jk)− a1(Xn

j+, µ
n
j+)−

( K∑
k=1

E(aλ(Xn
jk, µ

n
jk))− 1

))4)
= o((Jn)2),

‖cnλ(µn·+, θ
n
0 ) · (In(µn·+, θ

n
0 ))−1‖4

Jn∑
j=1

E
(
‖Unj (θn0 )− E(Unj (θn0 ))‖4

)
= o((Jn)2).

The first statement follows from the fact that the fourth moments of aλ are bounded, which

is another auxiliary result about Poisson expectations, such as (8), and requires that all cell

expectations are bounded away from zero (RC2,MD0) (see 11, Sec. 4).

Let us consider the second equation. Condition (LC1) immediately yields In(µn·+, θ
n
0 )−1

= O(n−1). In the last section we already used cnλ(µn·+, θ
n
0 ) = O(Jn) for the proof of (15).

This, together with µn++/n = O(1), gives

‖cnλ(µn·+, θ
n
0 ) · In(µn·+, θ

n
0 )−1‖4 = O

(
(
Jn

n
)4
)

= O
(
(
Jn

µn++

)4
)
.

Condition (RC2), (RC3) and E(Xn
jk − µnjk)4 = O((µnjk)

2) yield

E
(
‖Unj (θn0 )− E(Unj (θn0 ))‖4

)
= E

(
‖

K∑
k=1

(Xn
jk − µnjk)DT

θ log πnjk(θ
n
0 )‖4

)
= O

( K∑
k=1

(µnjk)
2
)
.
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Hence we have the desired result,

‖cnλ(µn·+, θ
n
0 ) · (In(µn·+, θ

n
0 ))−1‖4

Jn∑
j=1

E
(
‖Unj (θn0 )− E(Unj (θn0 ))‖4

)

= (
Jn

µn++

)4
Jn∑
j=1

K∑
k=1

(µnjk)
2 ·O(1)

= O(Jn)2 ·
(Jn)2∑Jn

j=1

∑K
k=1(µnjk)

2

(µn++)4

= O((Jn)2) · o(1).

The last equality holds due to the conditions concerning the marginal distribution (MD1,

MD2) which require Jn/µn++ → 0 (see end of Sec. 5) and since
∑Jn

j=1

∑K
k=1(µnjk)

2 < (µn++)2.

Hence Ljapounov’s condition is verified.

6.3 Consistency of the variance estimation

We finally need the consistency of σn2
λ (µ̂n·+, θ̂

n) as an estimator for σn2
λ (µn·+, θ

n
0 ), i.e.,

σn2
λ (µ̂n·+, θ̂

n)− σn2
λ (µn·+, θ

n
0 )

σn2
λ (µn·+, θn0 )

= op(1). (23)

By assumption (VC), the variance σn2
λ increases with order Jn. Hence, it suffices to show

σn2
λ (µ̂n·+, θ̂

n)− σn2
λ (µn·+, θ

n
0 ) = op(Jn). (24)

Write vn2
λ for the variance of the difference between SDn

λ and Pearsons’s χ2 Statistic for the

row sums,

vn2
λ (µn·+, θ

n
0 ) = V ar

(
SDn

λ(µn·+, θ
n
0 )−

Jn∑
j=1

a1(Xn
j+, µ

n
j+)
)
.

Then, by definition,

σn2
λ (µn·+, θ

n
0 ) = vn2

λ (µn·+, θ
n
0 )− cnλ(µn·+, θ

n
0 )In(µn·+, θ

n
0 )−1cnλ(µn·+, θ

n
0 )T .

The main part of the proof of (24) is to show

cnλ(µ̂n·+, θ̂
n) = cnλ(µn·+, θ

n
0 ) + op(Jn), (25)

vn2
λ (µ̂n·+, θ̂

n) = vn2
λ (µn·+, θ

n
0 ) + op(Jn), (26)

In(µ̂n·+, θ̂
n) = In(µn·+, θ

n
0 ) + op(n). (27)

The proofs of these statements are very technical and, to some extent, similar to those carried

out in Sec. 6.1, thus considering the transitions from θ̂n to θn0 and from µ̂n·+ to µn·+ separately.

We omit details and refer to 11, Sec. 6.2.
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The consistency of the variance estimator now follows from (25), (26), cnλ(µn·+, θ
n
0 ) = O(Jn)

(compare Sec. 6.1) and from

In(µ̂n·+, θ̂
n)−1 = In(µn·+, θ

n
0 )−1 + op(n−1).

The last statement holds by Eq. (27), combined with assumption (LC1), n−1In(µn·+, θ
n
0 ) −→

I∞ positive definite. This gives (24),

σn2
λ (µ̂n·+, θ̂

n)− σn2
λ (µn·+, θ

n
0 ) = vn2

λ (µ̂n·+, θ̂
n)− vn2

λ (µn·+, θ
n
0 )

−cnλ(µ̂n·+, θ̂
n)In(µ̂n·+, θ̂

n)−1cnλ(µ̂n·+, θ̂
n)T

+cnλ(µn·+, θ
n
0 )In(µn·+, θ

n
0 )−1cnλ(µn·+, θ

n
0 )T

= op(Jn) + op
((Jn)2

n

)
= op(Jn).

We further used that Jn is smaller than n.

6.4 Summary

Our limit theorem, Theorem 1, now follows from the results given in Sec. 6.1 through

6.3. There we used all conditions given in Sec. 5, except of both conditions concerning

the marginal distribution,

(MD1)
Jn∑
j=1

( µnj+
µn++

)1/2
= o((Jn)1/2) and (MD2)

Jn∑
j=1

(µnj+)−1/2 = o((Jn)1/2).

These we did not yet need in full strength. We will, however, need them now for our final

conclusions.

In Section 6.1 we derived an approximation of the goodness-of-fit statistic (see (21)),

SDn
λ(µ̂n·+, θ̂

n)−m∗nλ (µ̂n·+, θ̂
n)

= Ψn
λ+ − E(Ψn

λ+) +Op(1) +
Jn∑
j=1

Op(1)
(
(
µnj+
µn++

)1/2 + (
1
µnj+

)1/2
)

with

Ψn
λ+ = SDn

λ(µn·+, θ
n
0 )−

Jn∑
j=1

a1(Xn
j+, µ

n
j+)− cnλ(µn·+, θ

n
0 )(In(µn·+, θ

n
0 ))−1Un(θn0 ),

E(Ψn
λ+) = E(SDn

λ(µn·+, θ
n
0 ))− E

( Jn∑
j=1

a1(Xn
j+, µ

n
j+)
)

= mn
λ(µn·+, θ

n
0 )− Jn = m∗nλ (µn·+, θ

n
0 ).

Note that the centering term involves not only the expectation of SDn
λ , namely mn

λ, but also

the number of rows Jn which is the expectation of Pearson’s χ2 Statistic for the row sums.
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The limiting normal distribution of the standardized approximation was shown in Section

6.2, Eq. (22),

Ψn
λ+ − E(Ψn

λ+)
σnλ

L−→ N(0, 1)

where σnλ denotes the standard error of Ψn
λ+

, σnλ = (V ar(Ψn
λ+))1/2. For the test statistic we

need an estimator of σnλ and take σnλ(µ̂n·+, θ̂
n). Summing up, we have

SDn
λ(µ̂n·+, θ̂

n)−m∗nλ (µ̂n·+, θ̂
n)

σnλ(µ̂n·+, θ̂n)

=
Ψn
λ+ − E(Ψn

λ+)

σnλ(µ̂n·+, θ̂n)
+
Op(

∑Jn

j=1(µnj+/µ
n
++)1/2) +Op(

∑Jn

j=1(µnj+)−1/2) +Op(1)

σnλ(µ̂n·+, θ̂n)
(28)

The asymptotic normality of Ψn
λ+

stated above, combined with the consistency of the variance

estimation,

σnλ(µn·+, θ
n
0 )

σnλ(µ̂n·+, θ̂n)
P−→ 1,

(Sec. 6.3, Eq. (23)) gives or the leading term in (28)

Ψn
λ+ − E(Ψn

λ+)
σnλ(µn·+, θn0 )

·
σnλ(µn·+, θ

n
0 )

σnλ(µ̂n·+, θ̂n)
L−→ N(0, 1).

Hence, in order to establish Theorem 1, i.e., the asymptotic normality of the statistic in the

left-hand side of (28), it remains to show that the approximation error in the right-hand side

disappears in the limit. Rewriting gives

Op(
∑Jn

j=1(µnj+/µ
n
++)1/2) +Op(

∑Jn

j=1(µnj+)−1/2) +Op(1)
(Jn)1/2

· (Jn)1/2

σnλ(µn·+, θn0 )
·
σnλ(µn·+, θ

n
0 )

σnλ(µ̂n·+, θ̂n)
.

The two last terms are clearly (stochastically) bounded due to our variance condition (VC),

i.e., Jn/σn2
λ (µn·+, θ

n
0 ) = O(1), and the consistency of the variance estimation. The first term is

crucial: it involves the approximation errors due to the estimation of the unknown covariate

distribution (compare (9) and (19)) and must tend to zero so that our stated normality

holds. We formulated this requirement separately for the two sums of the ratio and called

the resulting two conditions (MD1) and (MD2). This completes the proof.

7 Application and discussion

We illustrate our method by a real application with published data. A suitable data set is

provided by Karn and Penrose 13, who reported on a study on infant mortality. They are

from records of U.C.H. Obstetric Hospital for the years 1935 – 46 and contain information

on 13 730 infants (7037 male, 6693 female, no twins) and their mothers. We are interested

here only in parts of the data (Table 1 from Karn and Penrose) which relate non-survival at

28 days (including stillbirth), regarded as a response, to the following variables:
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• birth weight W , recorded in 25 classes: 1.0 (0.5) 13.5 lb.,

• gestation time T , recorded in 41 classes: 155 (5) 355 days,

• gender G of infant, recorded as a factor: 1 = male, 2 = female.

Karn and Penrose fitted a linear logistic model (to the survival rate) separately for males

and females, using the model

1 +W +W 2 + T + T 2 +W.T

with S = 6 parameters (for the symbolic notation see McCullagh and Nelder 15, Sec. 3.4).

We investigate the fit of this model only for the female infants in more detail. These data

have also been analyzed by Osius 14 for binomial sampling.

Focusing on the values λ = 1 and λ = 0, which give the traditional Pearson and Likeli-

hood Ratio Statistic (deviance), we also examine the intermediate value λ = 2/3 suggested

by Cressie and Read 2. The three statistics SDλ are given in Table 2a. They obviously differ

considerably and the corresponding “classical” p–levels based on an asymptotic χ2 distribu-

tion with 339 degrees of freedom vary from 68.81% (deviance) to 0.99% (Pearson). Since the

data are sparse, the χ2 distribution may not be reliable. Therefore we computed the asymp-

totic expectation and variance of SDλ and the corresponding standardized statistic Tλ (cf.

Table 2a). The p–levels based on the asymptotic normal distribution of Tλ are 2.66% (λ = 0),

1.59% (λ = 2/3) and 30.65% (λ = 1). Although for each statistic the p–levels based on the

different asymptotic distribution differ dramatically, it is not obvious which one is more reli-

able. This provoked us to investigate the assumptions (MD1) and (MD2). We computed the

sample means M1 = 19.40, M1/2 = 9.7368 and M−1/2 = 3.1316. This gives M1/M1/2 = 1.99

which is not really large but not too small either. The ratio M−1/2/J , however, computes to

0.0091 which is far from being large, in contrast to (MD2). To find out whether the normal

p–levels are reliable in this situation, we computed a p–level via parametric bootstrap. On

the basis of the estimated expected values µ̂jk we generated 10000 Poisson resamples of the

study. The results are given in Table 2b. Although the bootstrapped p–levels for Tλ are

much closer to those based on the normal than those based on the χ2 approximation, the

difference is still too large to be satisfactory. The reason becomes evident by considering the

simulated moments of Tλ in Table 2b. The expectation (which should be 0) is not sufficiently

small (except for λ = 2/3) and the variance is much smaller than 1. This leads to smaller

bootstrapped p–levels in comparison to the normal approximation. Looking at the third

and fourth standardized cumulants of Tλ, only the deviance has fairly small bootstrapped

values (which should be close to zero for a normal distribution). Pearson’s statistic, however,

shows considerable skewness and kurtosis. This and the large variance is explained by the

fact that very small expected cell counts (in the denominator) make a large contribution to

the statistic if the observed value is 1. We obtained similar results for the uncommon values
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Table 2: Goodness–of–fit results for Karn and Penrose data (females)

a) Statistics with asymptotic moments and p–levels

Distance (λ) sum d.f. χ2 expected variance statistic normal

SDλ p–level value m∗λ σ2
λ Tλ p–level

Deviance (0) 325.74 339 68.81 % 284.11 463.98 1.93 2.66 %

Cressie-Read (2/3) 344.64 339 40.47 % 276.12 1018.08 2.15 1.59 %

Pearson (1) 402.59 339 0.99 % 345.00 12963.90 0.51 30.65 %

b) Results of parametric bootstrap (10000 resamples): p–levels, moments and standardized

cumulants of Tλ

Distance (λ) p–level expectation variance stand. 3rd stand. 4th

of Tλ cumulant cumulant

Deviance (0) 0.66 % -0.34 0.77 0.19 0.04

Cressie-Read (2/3) 2.05 % 0.09 0.87 1.24 10.01

Pearson (1) 9.85 % -0.13 0.56 9.60 255.73

c) Results of parametric bootstrap (10000 resamples): p–levels and moments of SDλ

Distance (λ) p–level expectation variance

of SDλ

Deviance (0) 0.02 % 250.3 397.1

Cressie-Read (2/3) 0.33 % 250.8 756.3

Pearson (1) 2.02 % 291.4 5143.3

λ = 1.5, 2 and 2.5, and this effect increased with λ. Summing up, the bootstrapped p–levels

of the deviance (p = 0.66%) and the Cressie–Read Statistic (p = 2.05%) do not indicate a

very satisfactory fit (which still may be acceptable taking the very large sample size into

account). Pearson’s statistic (p = 9.85%), and other statistics with λ > 1, in view of their

large variance, do not seem to be powerful enough to detect this.

We note that it is important to bootstrap the statistic Tλ (which is pivotal by Theorem

1) rather than the sum SDλ. Bootstrapping SDλ would, in fact, give much smaller but

less reliable p–levels (cf. Table 2c). One can, however, never be sure whether Tλ is pivotal

in the situation of a particular (sparse) data set. Especially in the example of the Karn &

Penrose data some caution is needed, as indicated by our above results. The alternative to

bootstrapping Tλ would be to bootstrap SDλ. The sum SDλ, however, may be regarded

pivotal only on the basis of its asymptotic χ2 distribution. For the Karn & Penrose data this

is even harder to believe. In fact, our bootstrapped moments of SDλ given in Table 2c show
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a considerable deviation from the χ2 expectation (d.f. = 339) and variance (2× d.f. = 678)

for all three statistics. Hence the standardized version Tλ of SDλ seems to be more reliable

for bootstrapping, although its bootstrapped expectations respectively variances given in

Table 2b are not close to 0 respectively 1 for all values of λ.

In conclusion, the above data appear to be too sparse (27% of all row sums are 1) even

for our normal approximation. The value of M−1/2 in comparison to J is small but should

be large according to (MD2). However, bootstrapping Tλ (instead of SDλ) provides more

adequate p–levels and indicates that our asymptotic moments need further corrections when

data are very sparse.

8 Conclusions

In conclusion, it may be said that through the consideration of an “increasing cells” approach

a limiting normal distribution of SDλ for the important case of Poisson sampling could be

derived. Particularly in view of the fact that χ2 tests are often used in situations not covered

by standard asymptotic results, this result helps to gain insight about how the distribution

gets shifted when our asymptotic approach allowing small expectations applies. In particular,

we provided a basis for investigations of conditional Poisson models. In this context case-

control studies, i.e., column-multinomial sampling, are probably most interesting: Since the

distribution of the covariates is not given there and only associations shall be modeled,

one has to deal with an asymptotically infinite number of nuisance parameters, too. Besides

extensions to other distribution models, it is certainly desirable to derive more accurate tests

based on higher order approximations such as Edgeworth and saddle-point approximations.

Instead of relying on asymptotic distributional results, a goodness-of-fit test may also be

derived from its bootstrapped distribution. Since “in several respects the bootstrap does a

better job of estimating the distribution of a pivotal statistic than it does for a non pivotal

statistic” (Hall 16, Sec. 3.1) one should bootstrap the statistic Tλ (which is asymptotically

pivotal by Theorem 1) rather than the sum SDλ. Hence the asymptotic normality of Tλ
turns out to be important even if a test is based on the bootstrap. Such an approach was,

for example, carried out by Osius 14 for row-multinomial tables and would be advisable in

order to improve the tests derived.
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