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Abstract: A subthreshold signal may be detected if noise is added to the
data. The noisy signal must be strong enough to exceed the threshold at least
occasionally; but very strong noise tends to drown out the signal. There is an
optimal noise level, called stochastic resonance. We explore the detectability
of different signals, using statistical detectability measures.

In the simplest setting, the signal is constant, noise is added in the form of
i.i.d. random variables at uniformly spaced times, and the detector records
the times at which the noisy signal exceeds the threshold. We study the best
estimator for the signal from the thresholded data and determine optimal con-
figurations of several detectors with different thresholds.

In a more realistic setting, the noisy signal is described by a nonparametric
regression model with equally spaced covariates and i.i.d. errors, and the de-
tector records again the times at which the noisy signal exceeds the threshold.
We study Nadaraya–Watson kernel estimators from thresholded data. We de-
termine the asymptotic mean squared error and the asymptotic mean average
squared error and calculate the corresponding local and global optimal band-
widths. The minimal asymptotic mean average squared error shows a strong
stochastic resonance effect.
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1 Introduction

Stochastic resonance is a nonlinear cooperative effect in which large-scale stochastic fluc-
tuations (e.g., “noise”) are entrained by an independent, often but not necessarily periodic,
weak fluctuation (or “signal”), with the result that the weaker signal fluctuations are am-
plified; see Gammaitoni et al. (1998) and the recent monograph of Anishchenko et al.
(2002) for reviews. The termstochastic resonancewas introduced by Benzi et al. (1981)
in the context of a model describing the periodic recurrence of ice ages. Major climate
changes leading to ice ages on the earth were modeled as transitions in a double-well
potential system pushed by a signal, the earth’s orbital eccentricity, which causes small
variations of the solar energy influx. Since this periodic forcing for switching from one
climate state to the other is very weak, it must be assisted by other factors such as short
term climate fluctuations which were modeled as noise. There is not so much noise that
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the transitions become independent of the frequency of the periodic signal, but sufficient
noise to assist the periodic transitions, i.e. stochastic resonance occurs.

Classical stochastic resonance in physical systems such as the earth’s climate or elec-
trical circuits has been generalized to include noise-enhanced signal detection exhibited
by a wide variety of information processing systems, including living ones. For exam-
ple, it has been demonstrated that models of excitable systems with one stable state and
a threshold to an unstable excited state, such as model neurons, exhibit this generalized
form of stochastic resonance, as observed by Collins et al. (1996b) and Longtin (1993,
1997). With suitable tuning of the noise, a model neuron can be so sensitive that it can
detect a weak constant signal which elicits on average only a single additional spike.
This provides a mechanism for speedy neural response to such signals (Stemmler, 1996).
Moreover, the generalized form of stochastic resonance has also been demonstrated to ex-
ist in a variety of living systems, including networks of neurons (Gluckman et al., 1996).
Some researchers have speculated that stochastic resonance is a fundamental and general
principle of biological information processing (e.g., Plesser and Tanaka, 1996).

The study of systems that exhibit stochastic resonance has been made easier by the
demonstration that a simple thresholded detector also exhibits stochastic resonance (e.g.,
Wiesenfeld et al., 1994). Such a detector has simple dynamics and fires a pulse each time
its input exceeds a threshold. If the noise is very large, the probability of an exceedance is
close to one half. On the other hand, if the noise is small, the probability of an exceedance
is close to zero. Clearly, there will be an optimal amount of noise at which the exceedance
times will most closely reflect the variations in the signal intensity. This noise level is
called the stochastic resonance point.

Since stochastic resonance is an aspect of the detectability of a signal in thresholded
data, not of the dynamics that cause it (Moss et al., 1994), studying simple thresholded
detectors is sufficient for many purposes. Indeed, the simplest model of a neuron is just
such a simple thresholded detector (McCulloch and Pitts, 1943). Note that the threshold
creates a significant nonlinearity in the response of the system to inputs. This nonlinear-
ity mimics the nonlinearities characteristic of bistable and resonant systems and allows
stochastic resonance to be studied separately from the dynamics.

In this paper we review three studies of simple thresholded detectors that show sto-
chastic resonance. In Section 2, based on Greenwood et al. (1999), we calculate the Fisher
information about a constant signal that can be obtained from the time series of occasions
at which the noisy signal exceeds the threshold of the detector. In Section 3, based on
Müller (2000), we describe a generalization of the approach to the case of time-varying
noisy signals, written as a nonparametric regression model with independent errors. In
Section 4, based on M̈uller and Ward (2000), we describe computer simulations in which
the efficacy of the nonparametric regression approach is explored across various signal
types.

2 Fisher Information of Constant Signals

Stochastic resonance can be exhibited using almost any method of detecting or recon-
structing a subthreshold signal from the information contained in the exceedances of the
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threshold of the detector by the signal plus noise. If the signal isperiodicand observed
over a relatively long time interval, then it is common to do a Fourier analysis of the ex-
ceedance times and to measure the information thus gained about the signal as the ratio
of the power spectral density at the signal frequency to that generated by noise at nearby
frequencies (the signal-to-noise ratio) (see Wiesenfeld and Moss, 1995; Gingl et al., 1995;
Jung, 1995; Loerincz et al., 1996). Another way to analyse threshold data, related to the
way neural activity is analysed, is to investigate the (empirical) residence-time probability
distribution, or interspike interval histogram (see Zhou et al., 1990; Longtin et al., 1991;
Bulsara et al., 1994). If anaperiodicsignal is observed over a relatively long time interval,
then goodness of signal reconstruction has been measured by a correlation measure; see
Collins et al. (1995a,b, 1996a) and Chialvo et al. (1997). Unfortunately, if a signal is to be
reconstructed without much delay, then the identification must be based on observations
over a relatively short time interval, in which the signal may be nearly constant. In this
situation, the model reduces to a parametric one, and the signal-to-noise ratio and corre-
lation measures break down. Fortunately, for such models information measures such as
the Fisher information can still be used to measure signal reconstruction. See Levin and
Miller (1996); Bulsara and Zador (1996); Collins et al. (1996b); Heneghan et al. (1996);
Neiman et al. (1996), and in particular Stemmler (1996) and Chapeau-Blondeau (1997).

The inverse of the Fisher information is the same as the minimal asymptotic variance
of any regular estimator (see Bickel et al., 1998, Sections 2.1 to 2.3). In this section we
show how optimal estimators of a constant signal can be constructed in several simple
situations. We then explore the Fisher information of these signal estimators in a system
with one or more detectors. In the case of several detectors, we assume that the same
noise is fed into each detector. This is always true for external noise but may also happen
if the noise is internal, e.g., when neurons receive background noise from other neurons.
Different detectors may well have different thresholds, or a detector may have more than
one threshold (see Gammaitoni, 1995a,b; Chapeau-Blondeau and Godivier, 1997). We
determine optimal configurations of detectors, varying the distances between the thresh-
olds and the signal, as well as the noise level. We study the simplest possible model of
signal plus noise. The signals is constant over some time interval, say[0, 1]. At uni-
formly spaced timesti = i/n, independent and identically distributedεi are introduced.
The noisy signal iss + εi, i = 1, . . . , n.

If the signal is observed over a longer time interval, or if the noise has “higher fre-
quency” in the sense that the timesti are more densely spaced, or if there are several de-
tectors each of which receives internal noise independently of the others, then the number
n of observations is increased, and the variance of the estimator for the signal is reduced
correspondingly. For largen, the signal can be estimated well for a large range of noise
variances. This effect of the law of large numbers was first observed in a different setting
by Collins et al. (1995b) asstochastic resonance without tuning; see also Chialvo et al.
(1997); Neiman et al. (1997); Gailey et al. (1997). We come back to this point for varying
signals in Section 3.

Our approach differs from the previous literature on stochastic resonance in that we
study estimation of the signal from a statistical point of view. In particular, this means
that we are concerned with optimal reconstruction of the signal from the data in terms
of the variance ofrescaledestimators for the signal, i.e. ofn1/2(ŝ − s) rather than of
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ŝ. By the central limit theorem, the variance ofn1/2(ŝ − s) is about the same for all
(sufficiently large)n, whereas the variance of̂s tends to zero as1/n. This is why we
see stochastic resonance for arbitrarily largen in the present context, whereas stochastic
resonance diminishes with increasingn in the previous treatments. Stochastic resonance
without tuning is an aspect of the diminishing effect. A similar deficiency of the correla-
tional approach to measuring reconstruction of a varying signal is mentioned in Section 3.
Thus we see that the stochastic resonance effect depends heavily on the choice of measure
of information transmission. A discussion is in Tougaard (2000, 2002) and Ward et al.
(2002).

In this section, we compare four different types of observation of the noisy signal:
1. The noisy signalXi = s + εi is fully observed. We need the information in the

noisy signal itself to measure how much information is lost when the noisy signal is not
completely observed but only causes “firing” of the detector.

2. Those timesti are recorded at which the noisy signals + εi exceeds a single
threshold,a > 0. The observations are then the indicatorsXa

i = 1(s + εi > a). This
scheme was proposed by McCulloch and Pitts (1943) as a minimal model of a neuron. It
corresponds to the standard thresholded detector.

3. It is recorded when and which of a finite number of thresholds0 < a1 < · · · < ar

are exceeded. LetA = {a1, . . . , ar} denote the set of thresholds. The observations can
then be written as

XA
i =





0, s + εi ≤ a1,
j, aj < s + εi ≤ aj+1 for j = 1, . . . , r − 1,
r, s + εi > ar.

Such observations arise withr detectors with different thresholds, and common back-
ground or internal noise.

4. Whenever the single thresholda is exceeded, the noisy signal itself is observed.
Then the observations are

X>a
i = (s + εi)1(s + εi > a).

Case 4 is approximated by case 3 for a large number of closely spaced thresholds
abovea.

2.1 One Threshold

Let a be a threshold ands a constant signal. We think ofs as being nonnegative and below
the threshold, but the calculations will not depend on this assumption. Letε1, . . . , εn be
independent with distribution functionF . Write Ps for the distribution ofXi = s + εi.
We assume that the only information we have about the signal is whether it exceeds the
thresholda. Equivalently, we observe

Xa
i = 1(s + εi > a), i = 1, . . . , n. (1)

The observations are independent Bernoulli random variables with probabilities

ps = P (Xa
i = 1) = Ps(a,∞) = 1− F (a− s). (2)
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In this section, we consider a single thresholda and suppressa in the notation. Indeed,
by choosing an appropriate scale, we may takea equal to 1.

We can write the signal as a function ofps,

s = a− F−1(1− ps).

The usual estimator forps is the empirical estimator

p̂ =
1

n

n∑

i=1

Xa
i =

n̂

n
(3)

with n̂ = #{i : Xa
i = 1}. The estimator̂p is unbiased and consistent forps. The

standardized errorn1/2(p̂ − ps) is asymptotically normal with varianceps(1 − ps). The
estimator for the signal as a function of the empirical estimator is

ŝ = a− F−1(1− p̂). (4)

This estimator is not unbiased. Sinceŝ is a continuous function of̂p, however, the esti-
matorŝ is a consistent estimator fors. Sinceŝ is a continuously differentiable function of
p̂, it follows thatn1/2(ŝ− s) is also asymptotically normal, with variance

vs =
ps(1− ps)

f(F−1(1− ps))2
=

F (a− s)(1− F (a− s))

f(a− s)2
, (5)

wheref is the probability density function corresponding to the distribution functionF .
It is well known and easy to check thatp̂ is regular and efficient forps. Since continuously
differentiable functions of regular and efficient estimators are again regular and efficient,
the estimator̂s is regular and efficient for the signal, andvs is the minimal asymptotic
variance of regular estimators ofs.

As mentioned above, the minimal asymptotic variancevs can be calculated as the
inverse of the Fisher information fors,

Ia
s =

f(a− s)2

F (a− s)(1− F (a− s))
= v−1

s .

This Fisher information is also given in Stemmler (1996), relation (5.1). The Fisher infor-
mation has been used as a measure of the transmitted information in related models; see
Paradiso (1988); Seung and Sompolinsky (1993); Stemmler (1996).

In order to ascertain whether the expression for the Fisher information exhibits sto-
chastic resonance, we allow the standard deviationσ of the noise distribution to vary.
Then the noise density and distribution function becomef((a−s)/σ)/σ andF ((a−s)/σ),
respectively. For normal noise distribution with varianceσ2, we have

Ia
sσ =

ϕ(a−s
σ

)2

σ2Φ(a−s
σ

)(1− Φ(a−s
σ

))
, (6)

with ϕ(x) = (2π)−1/2 exp(−x2/2) andΦ(x) =
∫ x
−∞ ϕ(y) dy denoting the density and

distribution functions of the standard normalN(0, 1) distribution.Ia
sσ is a unimodal func-

tion of σ with a very pronounced stochastic resonance point. The function is symmetric
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Figure 1: Fisher informationI1
sσ.

in a− s. Hence a superthreshold signal produces the same stochastic resonance property
as a subthreshold signal. Figure 1 showsI1

sσ as a function ofs andσ. The optimalσ
decreases with the distance from the signal to the threshold; at the same time the maximal
Fisher information goes to infinity. For example, ifa = 1 and the signal is low,s = 0,
then the optimalσ is 0.63500, and the maximal value ofI1

0σ is 0.60842.
How much information is lost by observing the threshold exceedances only, rather

than the noisy signals + εi? Greenwood et al. (1999) derive the expression for the ratio
of Fisher information in the exceedances,Ia

sσ, to that in the noisy signal itself,Iσ. When
the noise distribution is normal with varianceσ2, the ratio is

Ia
sσ/Iσ = R

(a− s

σ

)
,

where

R(u) =
(
∫∞
u xϕ(x)dx)2

Φ(u)(1− Φ(u))
=

ϕ(u)2

Φ(u)(1− Φ(u))
.

The functionR is unimodal and symmetric, andR(0) = 0.636620. HenceXa
i retains

almost two thirds of the available information if the signal is at the threshold, and consid-
erably less if it is above or below andσ is small. Figure 2 showsI1

sσ/Iσ = R((1− s)/σ)
as a function ofs andσ. Notice the discontinuity wheres = a = 1 in the figure; this is
whereR(0) = 0.636620.

2.2 Several Thresholds

Consider a system in which there arer thresholds,0 < a1 < · · · < ar, a constant signal
s, and a noisy signals + εi, with ε1, . . . , εn independent with distribution functionF and
densityf . This could be, for example, a neural network in which several neurons with
different thresholds are exposed to the same signal and noise and then converge to drive
a single higher-order neuron. The output of the higher-order neuron depends on how
many of the neurons converging on it are activated above their thresholds; it simply sums
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Figure 2: Proportion of information,I1
sσ/Iσ, retained byX1

i .

the activities of the converging neurons. Thus, its firing indicates which thresholds are
exceeded by the noisy signal. Equivalently, we observe

XA
i =





0, s + εi ≤ a1,
j, aj < s + εi ≤ aj+1 for j = 1, . . . , r − 1,
r, s + εi > ar.

HereA stands for the set of thresholds,{a1, . . . , ar}. The observationsXA
1 , . . . , XA

n are
independent, with probabilities

ps0 = P (XA
i = 0) = F (a1 − s),

psj = P (XA
i = j) = F (aj+1 − s)− F (aj − s) for j = 1, . . . , r − 1,

psr = P (XA
i = r) = 1− F (ar − s).

The observations follow a distribution on{0, . . . , r}, with a one-dimensional param-
eter s. For r = 1, the family of distributions consists ofall distributions on{0, 1},
and an efficient estimator fors is obtained as a function of the empirical estimator for
ps = Ps(a1,∞); see Subsection 2.1. Forr > 1, we do not get such a simple efficient
estimator, but the maximum likelihood estimator is, of course, still efficient.

Again, Greenwood et al. (1999) derive an expression for the maximum likelihood
estimator of the signal for any set of thresholdsA. Here we will consider only the simple
case of multiple thresholds in which we have two thresholds,0 < a < b and a signals <
a. As in Subsection 2.1, we assume that the noise distribution is normal with varianceσ2.
In this case, the Fisher information in observing which of the two thresholds is exceeded
by the noisy signal is

Iab
sσ =

1

σ2

(
ϕ(a−s

σ
)2

Φ(a−s
σ

)
+

(
ϕ( b−s

σ
)− ϕ(a−s

σ
)
)2

Φ( b−s
σ

)− Φ(a−s
σ

)
+

ϕ( b−s
σ

)2

1− Φ( b−s
σ

)

)
.

Suppose in particular thata = 1. We have seen in Subsection 2.1 thatX1
i retains the

most information, as a function ofs, at s = 1, whereR(0) = 0.636620. The value does
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Figure 3: Proportion of information,I1b
11/I1, retained by two thresholds, at 1 andb, for

noise variance 1.

not depend on the noise varianceσ2, so we may takeσ = 1. Now we add a second
threshold,b > 1. We can calculate the ratio ofIab

sσ to Iσ under these assumptions, giving
the proportion of information retained by two thresholds. Figure 3 shows the results of
such calculations for a range of second threshold values. The maximum is 0.75957 which
is attained forb = 1.98.

Let us return to the situation where we have only a single thresholda. So far we have
studied the situation where we observe only whether or not the noisy signal exceeds the
threshold. Suppose now that we also observe thesizeof the noisy signal whenever it
exceeds the threshold. The observations are thenX>a

i = (s + εi)1(s + εi > a). They
contain more information about the signal than the indicatorsXa

i = 1(s + εi > a).
Greenwood et al. (1999) derive an expression for the Fisher information,I>a

sσ , in these
observations; it is of course true thatI>a

sσ < Iσ, the maximum amount of information
in a fully observed noisy signal. For a normal noise distribution with varianceσ2, the
proportion of information retained byX>a

i is

I>a
sσ

Iσ

= R>
(

a− s

σ

)
,

where

R>(u) =

(∫ u
−∞ xϕ(x)dx

)2

Φ(u)
+

∫ ∞

u
x2ϕ(x)dx

=
ϕ(u)2

Φ(u)
+ 1− Φ(u) + uϕ(u).

If the signal is at the threshold,s = a, thenI>a
sσ /Iσ = R>(0), which is independent

of the noise varianceσ. If the signal is below the threshold,s < a, we expectI>a
sσ /Iσ

to be large for largeσ because theX>a
i are most informative if the noisy signal is with

high probability above the threshold. For the same reason,I>a
sσ /Iσ is large forsmallσ if

s > a. Under these conditions we haveR>(0) = 0.818310. HenceX>a
i retains about
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Figure 4: Proportion of information,I>1
sσ /Iσ, retained byX>1

i .

four fifths of the information if the signal is at the threshold, considerably less if it is
below andσ is small, and most of the information ifs > a andσ is small. Figure 4 shows
I>1
sσ /Iσ = R>((1− s)/σ) as a function ofs andσ.

Suppose we fix a lowest thresholda and add more and more thresholds abovea such
that in the limit they become dense abovea. We expect that the information in observing
which thresholds are exceeded by the noisy signal converges to the information in seeing
the noisy signal above the threshold. To see this, choose thresholdsa1, . . . , an > a such
that the gaps between them tend to zero and their maximum tends to infinity withn. The
thresholds partition(a,∞) into n + 1 intervalsB1, . . . , Bn+1. Greenwood et al. (1999)
show thatIAn

sσ , the Fisher information for exceedances of then thresholds, converges
to I>a

sσ , the Fisher information in the part of the noisy signal that exceeds the threshold.
Thus, in the limit of dense thresholds, the model of a set of simple thresholded detectors
is the same as a model of thresholded detector that accurately represents the entire above-
threshold part of the noisy signal.

3 Nonparametric Regression Model for Varying Signals

The model of a simple thresholded detector outlined above works well for a constant sig-
nal. In fact, it has been applied in a biological setting as a minimal model of the paddlefish
using its electrosense to captureDaphniaplankton (Greenwood et al., 2000). A version
of this model is also used for edge detection in images observed with vibrating vision
systems (Hongler et al., 2002). Greenwood et al. (1999) suggest that signal estimation
from thresholded data is also possible if the noisy signal is described by a nonparametric
regression model with independent errors. Such a model is more realistic in many biolog-
ical systems. This suggestion is realized in Müller (2000). The noisy signal is written as
X(ti) = s(ti) + ε(ti), with independent mean zero error variablesε(ti). We observe

Xa(ti) = 1(s(ti) + ε(ti) > a) = 1(X(ti) > a), i = 1, . . . , n, (7)
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as in (1). The exceedance probabilities are now

E(Xa(ti)) = p(ti) = P (Xa(ti) = 1) = P (s(ti) + ε(ti) > a). (8)

Assuming that the distribution function ofε(ti), sayFti, is known and has an inverse, we
use the transformation

s(ti) = a− F−1
ti

(1− p(ti))

to estimate the signals(ti) employing a kernel estimator forp(ti).
If the noise is artificially generated, then it is reasonable to assume that the distribution

function Fti is completely known. If the noise is background noise, we may at least
know theform of the distribution. It may, for example, be plausible to assume that the
errors are normally distributed. However, we cannot identify the noise amplitude from
theXa(ti). One way of dealing with this problem is to get information about the noise
from elsewhere, for example by using a second detector with a different threshold, as in
Subsection 2.2 for constant signal. A second is to note that even if the noise distribution
is known up to a scale parameter, the signal can still be identified up to a one-parameter
family of transformations. Hence most of the information is retained, unless, of course,
the signal is constant.

Our criterion for bandwidth selection is the asymptotic mean average squared error of
the estimator ofs, which we derive. A formula for the asymptotically optimal bandwidth
can then be written. It contains unknown quantities which must be estimated. Our ap-
proach is similar to that of Ruppert et al. (1995), who derive an asymptotically optimal
bandwidth for the classical setting, i.e. fully observed data. The main difference between
the present derivation and their article is the nonlinear link occurring here, in particular
in the mean squared error expression. Through the linearization of this expression, the
calculation of the optimal bandwidth becomes similar to the standard case, and familiar
results can be utilized.

We use the Nadaraya-Watson (kernel) estimator

p̂h(t) =

∑n
i=1

1
h
K( t−ti

h
) ·Xa(ti)∑n

i=1
1
h
K( t−ti

h
)

(9)

for the exceedance probabilityp(t) in (7), and estimate the signals(t) by ŝh(t) = a −
F−1

t (1 − p̂h(t)). In nonparametric regression theory, generally accepted measures of the
goodness of the estimation are the mean squared errorE(ŝh(t) − s(t))2 and the mean
average squared errorn−1 ∑n

i=1 E(ŝh(ti)− s(ti))
2. We take these quantities as criteria for

an asymptotically optimal local bandwidth and an asymptotically optimal global band-
width. The general approach taken by Müller (2000) is to derive a Taylor approximation
for the mean squared error, which immediately gives the approximation for the mean av-
erage squared error. The bandwidthh that minimizes the leading term of the expansion is
then calledoptimal. The distinguishing characteristic of this model is that it involves the
nonlinear transformations(t) = a− F−1

t (1− p(t)) of the exceedance probabilityp(t).
The main theorem proved by M̈uller (2000) is about the signal estimatorŝh. It gives

the asymptotic mean squared error (local—for each time point), the asymptotic mean av-
erage squared error (global—over all time points) and the respective optimal bandwidths
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asn →∞ andh → 0, nh3 →∞:

AMSE(h, t) = 1
f(F−1(p(t)))2

(
1

nh
R(K)p(t)(1− p(t)) + h4

4
µ2(K)2p′′(t)2

)
, (10)

AMASE(h) = 1
n

∑n
i=1

(
1

nh
R(K) p(ti)(1−p(ti))

f(F−1(p(ti)))2
+ h4

4
µ2(K)2 p′′(ti)2

f(F−1(p(ti)))2

)
, (11)

with kernel constantsR(K) =
∫

K2(u)du andµ2(K) =
∫

u2K(u)du. The asymptoti-
cally optimal local and global bandwidths derived from these approximations are

hopt(t) = n−1/5

(
R(K)p(t)(1− p(t))

µ2(K)2p′′(t)2

)1/5

, (12)

hopt = n−1/5

(
R(K)

∑n
i=1

p(ti)(1−p(ti))
f(F−1(p(ti)))2

µ2(K)2
∑n

i=1
p′′(ti)2

f(F−1(p(ti)))2

)1/5

. (13)

The approximate mean squared error (10) has two terms, the approximate variance (first
term) and squared bias (second term) ofp̂h(t). In particular, the characteristic variance-
bias trade-off is evident.

With the optimal asymptotic bandwidthhopt at hand, we may now write the minimal
value ofAMASE(h) as

AMASE(hopt) =
5

4
n−4/5

(
µ2(K)2 1

n

n∑

i=1

p′′(ti)2

f(F−1(p(ti)))2

)1/5

(
R(K)

1

n

n∑

i=1

p(ti)(1− p(ti))

f(F−1(p(ti)))2

)4/5

.

This value depends on the squared second derivativesp′′(t)2. Smooth signals will, in
general, lead to small values ofp′′(t)2 and thus to small values ofinfh>0 AMASE(h).
Furthermore, this formula shows the influence of the kernelK, which appears only in the
expressionµ2(K)2/5 ·R(K)4/5. The (second order) kernel with support[−1, 1] that min-
imizes this term and thus the approximate mean average squared error under the further
constraintK ≥ 0, is the Epanechnikov kernel

K(u) =
3

4
(1− u2)1[−1,1](u).

The optimal kernel is not much better than other kernels, for example the Gaussian kernel
(see Wand and Jones, 1995). What is really crucial is the correct choice of the bandwidth
h. A method of data-driven bandwidth selection is necessary since we do not know what
the optimal bandwidth is for an unknown signal.

In data from simulations or experiments, the stochastic resonance effect is often as-
sessed in simulated data, and in data from experimental systems, by comparing the esti-
mator for the exceedance probabilities with the signal using the Pearson product-moment
correlation coefficient or modifications thereof, usually called the “normalized power
norm” or “cross-correlation coefficient”, namely

C =
1
n

∑n
i=1(s(ti)− s)(p̂(ti)− p̂)

(
1
n

∑n
i=1(s(ti)− s)2

)1/2(
1
n

∑n
i=1(p̂(ti)− p̂)2

)1/2
.
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Figure 5: Realizations of the Pearson product-moment correlation coefficientC (circles)
between the sinusoids(t) = sin(2πt) and its estimateŝsh(t), for σ = 0.5, 1, . . . , 3 and
n = 100.

Here p̂(t) is an estimator of the exceedance probabilityp(t), ands = 1
n

∑n
i=1 s(ti) and

p̂ = 1
n

∑n
i=1 p̂(ti) denote averages. In several papers (Collins et al., 1995b,a; Heneghan

et al., 1996; Chialvo et al., 1997) a box kernel was used to estimate the probability of an
exceedance. This kernel corresponds to the ones used in our more sophisticated estimator
p̂h(t) but with a fixed bandwidth. Clearly,̂ph is not consistent ifh is kept fixed andn
tends to infinity.

In studies such as those just cited, researchers usually report the results of elaborate
simulation studies and obtain empirical estimates of the mean and standard error ofC. In
particular, they often plot a curve of the estimated mean as a function of noise variance.
This curve is often concave downward, indicating stochastic resonance. However, as men-
tioned in Section 2, there are some problems with the use ofC as a measure of goodness
of estimation. As an example, Figure 5 shows, for normal noise distribution with standard
deviationσ = 0.5, 1, . . . , 3, five realizations of the Pearson product-moment correlation
coefficient betweens and our estimator̂sh (estimated as described above for a sinusoid)
for n = 100. Stochastic resonance appears in the figure since forσ = 1 the five values
of C are all close to one whereas for smaller and largerσ, the correlation is not always
high. However, when the same simulation is done forn = 1, 000 time points, the values
of C are close to one for all realizations; no stochastic resonance is apparent. This obser-
vation illustrates well a phenomenon first observed by Collins et al. (1995b) in a different
setting, called “stochastic resonance without tuning”, which we mentioned in Section 2:
Since the variance of the signal estimator and hence the variance ofC decreases withn,
the correlation is high for a broad range ofσ’s. Although there is stochastic resonance,
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i.e. an optimal level of noise, the Pearson product-moment correlation coefficient does not
reflect it if the time points are too densely spaced.

4 Stochastic Resonance for Varying Signals

In this section we explore further the applicability of the thresholded nonparametric re-
gression model as a simple model of a neuron. We consider the neuron to be embedded in
a neural network. It is exposed to “noise” consisting of rapidly varying, unsynchronized
inputs from perhaps a thousand other neurons. The signal is assumed to have longer time
scale variations in the input of one specific neuron (or a few synchronized ones), and to be
by itself insufficient to drive this neuron. Nonetheless, the output of the neuron could be-
come synchronized with the variations in the input of the subthreshold signaling neurons
through the mechanism of stochastic resonance, with the noise “amplifying” the signal.

Although a simple thresholded detector such as that described in Section 2 can exhibit
stochastic resonance, it still lacks one other important property of neurons that is pos-
sessed by the next-most-simple model neuron, the integrate-and-fire neuron (e.g., Collins
et al., 1996a). This model integrates its inputs over a moving time window of lengthτ .
In real neurons,τ varies from about 100ms for sensory neurons, to 40–60ms for inputs
to the soma of pyramidal interneurons, and can be as short as 10ms for inputs to the
apical tufts of dendrites of pyramidal neurons in the prefrontal cortex (Seamans et al.,
1997). Neurons with larger time windows act as integrators, while those such as apical
tufts, with smaller time windows, act as coincidence detectors (König et al., 1996). The
value ofτ is set by the time courses of various processes that affect the electrochemical
state of the neuron. At any time there is a complex balance of electrochemical forces
influenced by synaptic and internal events with specific decay rates, and constant dif-
fusion of ions caused by electrical and concentration gradients and active pumps. The
time-varying instantaneous firing rate of the neuron (1, 000/∆t, where∆t is the interval
between two successive action potentials inms) reflects the momentary strengths of all
of these forces, which are represented in integrate-and-fire models by the exponentially
decaying influence of previous inputs.

A kernel estimator can mimic temporal integration of input. Previous studies imple-
menting numerical smoothing of model excitable system outputs with a box-type kernel
or of thresholded data with a Gaussian kernel were done by Collins et al. (1996a) and
Fakir (1998), respectively. However, both previous studies computed the correlation be-
tween smoothed system outputs and signals rather than applying the mean squared error
criterion to estimators of the signal, as we do here. The limitations of the correlational
approach were described at the end of Section 3.

4.1 Model and Estimation

The model is that described in (8). In the case of modeling a neuron, the bandwidth (13)
of the kernel can be considered to represent the window of temporal integration of the
neuron. Although the Epanechnikov kernel is optimal, other kernels would do nearly as
well, for example the Gaussian kernel. In particular, an asymmetric kernel would be more
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appropriate to model the time integration behavior of actual neurons. We can speculate,
however, on the basis of some pilot work, that as long as the kernel covers sufficiently
many time points and weights them according to a reasonable function, considerable in-
formation about the behavior of the subthreshold signal can be recovered from the ex-
ceedances alone. In the case of neurons, we expect that the asymmetric kernel might be a
negative exponential function with rate such that inputs over the previous 10–100msor so
would receive noticeable weight in the output. This is in the range of temporal integration
times observed in actual neurons, as mentioned earlier.

The bandwidth formulas (12) and (13) are both of the formn−1/5 times a factor which
depends on the exceedance probability. For good performance in the finite sample situa-
tion the factor should be estimated suitably. Müller and Ward (2000) use plug-in methods,
i.e. they estimate the exceedance probability and substitute into the bandwidth formulas.
This approach has been shown, in the classical setting with fully observed data, to per-
form more reliably than standard methods such as cross-validation (see, for example,
Chiu, 1991).

Our procedure is applicable to all signals of arbitrary shape. Here we demonstrate it
for three characteristic examples,s1(t) = t2, s2(t) = sin(2πt) ands3(t) = sin(10πt) (see
Figures 6a – 6c), for optimal noise levels from a normal error distribution andn = 10, 000
time points. In the examples we use thresholda = 1 throughout.

Figure 6: Ten realizations of the estimation procedure for (a)s1(t) = t2 with σ = 0.59,
average estimated bandwidthh = 0.16, and theoretically optimal bandwidth (13)hopt =
0.16; (b) s2(t) = sin(2πt) with σ = 1.08, average bandwidthh = 0.09, andhopt = 0.08;
(c) s3(t) = sin(10πt) with σ = 1.08, average bandwidthh = 0.03 andhopt = 0.02; and
(d) s1(t) = t2 as in (a) but withσ = 4.0. The signal and estimated signals are shown by
thick continuous and thin broken lines respectively.
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Figure 7: Signal estimation ofs4(t) = 0.8 − 0.025 sin(10πt2)/t2 with σ = 0.76 and
estimated bandwidthh = 0.10. Signal and estimated signals are shown by continuous
and broken lines respectively.

These examples illustrate several properties of the estimation technique. One is that
estimation is noticeably worse for parts of the signal that are far from threshold than for
parts near threshold. This is because the bandwidth used is globally optimal, and can not
give equally good performance for all parts of a signal whose distance from the threshold
varies widely. Another property of the technique is that estimation is worse for parts of
signals where the second derivative is large.

We also consider a signals4(t) = 0.8 − 0.025 sin(10πt2)/t2. A single realization
of this signal is shown in Figure 7. The distance of the signal from the threshold varies
widely, and the signal also contains considerable high frequency information, albeit only
in the part nearest the threshold. In a sense this signal is a mixture of several types of
signal. It resembles signals that might be of biological importance, for example that of
an approaching predator who “holds” at an attack launch point. The estimation technique
does a good job of capturing the low frequency content, but fails to estimate the signal
accurately at the high frequency end. Again, this is because we use a globally optimal
bandwidth,h = 0.10, which is near that ofs2(t) and does well for the components near 1
Hz.

4.2 Stochastic Resonance

So far we have described estimation of a noisy subthreshold signal without mentioning
stochastic resonance. This section discusses the stochastic resonance effect in the context
of the nonparametric kernel regression model.

Consider the global criterionAMASE(h), equation (11), as a function of noise vari-
ance. With the optimal bandwidthhopt, equation (13), inserted, it can be rewritten in terms
of the signal functions. Restricting attention to the normalN(0, σ2) error distribution and
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Figure 8: Plot ofn4/5 infh AMASE(h) versusσ for (a) s1(t) = t2, and (b)s2(t) =
sin(2πt) (dots) ands3(t) = sin(10πt) (open squares).

the Epanechnikov kernel, we obtainµ2(K) = 1/5 andR(K) = 3/5, and hence

AMASE(hopt) =
5

4
n−4/5

(
1

25n

n∑

i=1

(a− s(ti)

σ2
s′(ti)2 + s′′(ti)

)2
)1/5

·
(

3

5n

n∑

i=1

σ2Φ( s(ti)−a
σ

)Φ(a−s(ti)
σ

)

ϕ( s(ti)−a
σ

)2

)4/5

. (14)

Notice that (14) consists of the product of two factors. The first factor of the product
varies likeσ−4/5, which is monotonic inσ. Since stochastic resonance curves are not
monotonic, if stochastic resonance emerges, then it is because of the second term.

A noise levelσ that is optimal with respect toAMASE depends on the signal func-
tion s. An explicit general formula obviously cannot be given. Instead, we compute the
optimalσ for each signal by minimizingAMASE numerically.

In Figure 8 we have plottedAMASE as given in (14), multiplied by the convergence
raten4/5, for s1(t) = t2 (Figure 8a), ands2(t) = sin(2πt) ands3(t) = sin(10πt) (Figure
8b). For our calculations we chose a thresholda = 1 andn = 10, 000. Since the sums
in (14) approximate integrals, the curves are the same for all sufficiently largen. In
particular, they have a sharp minimum at their respective stochastic resonance points,
namelyσ = 0.59 for signals1 andσ = 1.08 for both signals2 ands3. We already used
the optimal noise levels for our simulated estimation examples in Subsection 4.1.

The stochastic resonance effect should, of course, occur not only in reference to the
theoretical functionAMASE. In addition, the noise level should strongly influence the
quality of the estimator obtained using the procedure of Subsection 4.1. To demonstrate
this, we consider again signals1. We estimate the signal for10 additional realizations
of signal plus noise but this time we use the theoretically bad valueσ = 4.0. These are
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Figure 9: (a) The local asymptotic mean squared error maximized overs′ ands′′ both hav-
ing the range[−1, 1] (dots),[−2, 2] (open squares),[−5, 5] (open diamonds) and[−10, 10]
(open triangles) respectively. (b) Determination of the globally uniformly optimal noise
levelσ∗∗ = 1.45 for the ranges ofs2(t) = sin(2πt) and its first and second derivative.

plotted in Figure 8d (compare with Figure 8a). As expected, the estimates are significantly
worse. In particular, a large increase of the variance over realizations becomes evident.

4.3 Choosing the Noise Level

As seen in the previous section, the optimal noise level depends on the signal and its
derivatives and cannot be determined without prior knowledge. In this section we deter-
mine noise levelsσ∗ andσ∗∗ that are locally and globally uniformly optimal in the sense
that the estimator for the signal behaves well for a given range of the signal and its first
and second derivatives near a fixed time pointt and in a fixed time interval, respectively.
Again we takeN(0, σ2) as error distribution and use the Epanechnikov kernel.

Fix t. Write AMSE(hopt(t), t) as a functionAMSE(s, s′, s′′, σ) of s = s(t), s′ =
s′(t), s′′ = s′′(t), and the error varianceσ2:

AMSE(s, s′, s′′, σ) =
5

4
n−4/5

(
1

25

(a− s

σ2
s
′2 + s′′

)2
)1/5(

3

5

σ2Φ( s−a
σ

)Φ(a−s
σ

)

ϕ( s−a
σ

)2

)4/5

.

Determine the error varianceσ2 = σ2
∗ that minimizes

max
s′∈[c1,d1],s′′∈[c2,d2]

AMSE(s, s′, s′′, σ).

In Figure 9a this maximum, multiplied by the convergence raten4/5, is plotted as a func-
tion of σ for both s′ ands′′ in the ranges[−1, 1], [−2, 2], [−5, 5] and [−10, 10], respec-
tively, with s = 0 anda = 1. For these intervals we obtain the locally uniformly optimal
noise levels 0.76, 0.79, 0.83, and 0.85, respectively.



66 Austrian Journal of Statistics, Vol. 32 (2003), No. 1&2, 49-70

If restrictions ons′ ands′′ can be assumed to hold uniformly fort in some time inter-
val, say[0, 1], one can, analogously, derive a globally uniformly optimal noise levelσ∗∗,
given a lower boundc0 for the signal. This is the error varianceσ2 = σ2

∗∗ that minimizes

max
s∈[c0,a],s′∈[c1,d1],s′′∈[c2,d2]

AMSE(s, s′, s′′, σ).

As an illustration we derive such a globally uniformly optimalσ∗∗ under the constraints
s ∈ [−1, 1], s′ ∈ [−6.28, 6.28], s′′ ∈ [−39.48, 39.48]. These are the ranges ofs2(t) =
sin(2πt) and its derivatives. For this example (see Figure 9b) we obtain a globally uni-
formly optimal noise levelσ∗∗ = 1.45 which is larger than the noise levelσ = 1.08
that is optimal for the signalsin(2πt) (see Subsection 4.2, Figure 8b). We expect this
phenomenon since “worse” signals fit into these ranges, for examples(t) = −1 which
clearly needs more noise in order to guarantee sufficiently many threshold crossings.
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