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Suppose we observe a geometrically ergodic semi-Markov process and have a parametric model for the transition distribution
of the embedded Markov chain, for the conditional distribution of the inter-arrival times, or for both. The first two models
for the process are semiparametric, and the parameters can be estimated by conditional maximum likelihood estimators.
The third model for the process is parametric, and the parameter can be estimated by an unconditional maximum likelihood
estimator. We determine heuristically the asymptotic distributions of these estimators and show that they are asymptotically
efficient. If the parametric models are not correct, the (conditional) maximum likelihood estimators estimate the parameter
that maximizes the Kullback-Leibler information. We show that they remain asymptotically efficient in a nonparametric
sense.
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1. Introduction

For i.i.d. observations, Daniels [6] and Huber [20] show that the maximum likelihood estimator of a misspec-
ified parametric model estimates the parameter that maximizes the Kullback—Leibler (KL) information,
and determine its asymptotic distribution. Weaker conditions are given by Pollard [33]. For applications
see also White [35], Miiller [30], and Doksum, Ozeki, Kim and Neto [7]. Analogous results are obtained for
parametric Markov chain models by Ogata [31], for parametric time series by Hosoya [19] and by Andrews
and Pollard [1], and for parametric diffusion models by McKeague [28] and Kutoyants [25]. We refer also
to the monograph of Kutoyants [26]. Applications to time series models in econometrics are studied by
White [36] and Sin and White [34], and in the monograph of White [37].

Greenwood and Wefelmeyer [15] prove that the maximum likelihood estimator of a misspecified para-
metric Markov chain model is efficient in a nonparametric sense. Related efficiency results for misspecified
parametric time series are in Dahlhaus and Wefelmeyer [5]. Here we outline corresponding results for semi-
Markov processes. We consider both parametric and semiparametric misspecified models. The arguments
are heuristic; sufficient regularity conditions can be obtained as in the above references.

Suppose we observe a semi-Markov process Z;, t > 0, with values in an arbitrary measurable space F,
on a time interval 0 < ¢ < n. Let (Xo,Tp), (X1,7T1), ... denote the embedded Markov renewal process. Its
transition distribution factors as

S(x,dy,du) = Q ® R(z,dy, du) = Q(z,dy)R(z,y, du),
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where Q(x,dy) is the transition distribution of the embedded Markov chain Xy, X1, ..., and R(x,y,du) is
the conditional distribution of the inter-arrival time U; = T; — T;_1 given X; 1 = x and X; = y.

We assume that the embedded Markov chain is stationary. We write Py (dx), Pa(dz, dy) and P3(dz, dy, du)
for the stationary laws of X;_1, (X;_1,X}) and (X;_1, X}, Uj), respectively. Of course, P, = P} ® Q and
P;=P®R=P ®Q®R. Set N =max{j: T; < n}. We note that studying a semi-Markov process
is equivalent to studying the embedded Markov renewal process. The latter is a Markov chain. Observing
the semi-Markov process up to time n is equivalent to observing the embedded Markov renewal process
up to the random time .

Natural estimators for P;, P, and P3 are the empirical distributions

| N LN | X
=~ Z5Xj,1, Py = N 25(Xj,1,xj), =N Z (X;_1,X,;,U,)"
=1 =1 =1

where 0, denotes the Dirac measure at a point x.

Let © be an open subset of RY. We consider the following three models for the semi-Markov process. In
Model () we assume a parametric form @ = Qy, ¥ € O, of the transition distribution of the embedded
Markov chain. These models are also considered in Greenwood, Miiller and Wefelmeyer [11]. In Model R
we assume a parametric form R = Ry, ¥ € 0, of the conditional distribution of the inter-arrival times. In
Model S we assume parametric forms () = @y and R = Ry, ¥ € O, for both. Of course, the last model
covers the case that @ and R carry different parameters. We assume that Qy(z, dy) has a density gy(z,y)
with respect to some dominating measure pu(dy), and Ry(x,y, du) has a density ry(z,y,u) with respect to
some dominating measure v(du).

If Model Q holds, then the transition distribution of the semi-Markov process is semiparametric, S =
Qv x R, with R an infinite-dimensional nuisance parameter. A natural estimator of ) is the partial maximum
likelihood estimator ¥¢g, which maximizes

Pa(log go] = Zlogqﬁ -1, X5)-

Suppose that Model Q is misspecified, and that the true transition distribution of the embedded Markov
chain is @. Then P[log gy] is an empirical version of the KL information P»[loggy]. Let Kg(P») denote
the parameter that maximizes Ps[loggy]. We call Kg a KL functional. Note that the partial maximum
likelihood estimator is the empirical version of the KL functional, 99 = Kg(Ps). Since Model Q is mis-
specified, the semi-Markov model is nonparametric. The empirical distribution Py is efficient for P, in
a certain sense. If the KL functional is smooth, i.e. compactly differentiable in an appropriate sense, it
follows that ¥g = Kqg(P2) is efficient for Kq(F). We will not use this approach in this paper. Instead
we derive, in Section 3, a stochastic expansion of 1§Q, and determine its influence function. We also show
that the KL functional K¢ is pathwise differentiable, and determine its canonical gradient. To keep the
exposition simple, we do not give regularity conditions for these results. They can be adapted e.g. from
those of Greenwood and Wefelmeyer [15]. It turns out that the canonical gradient equals the influence
function of 19@. By the characterisation of efficient estimators in Section 2, this shows that @Q is efficient
in the nonparametric semi-Markov model. We also show that @Q remains efficient when Model Q is true.
The advantage of our approach is that we do not need to check compact differentiability of K¢y and a
corresponding efficiency property of Ps.

The other two models are treated analogously. If Model R holds, then the transition distribution of the
semi-Markov process is semiparametric, S = @ ® Ry, with ) an infinite-dimensional nuisance parameter.
A natural estimator of ¢ is the partial maximum likelihood estimator ¥k, which maximizes

Ps[logry| = Zlogm -1, X5,Uj).
] 1
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Suppose that Model Q) is misspecified, and that the true conditional distribution of the inter-arrival times is
R. Then P3[log ry| is an empirical version of Ps[logryg]. Again we call the latter KL information. We denote
by Kr(Ps) the parameter that maximizes Ps[logry], and we call Kr a KL functional. Then I = Kgr(P3).
In Section 4 we derive a stochastic expansion of 9 r and the canonical gradient of K and show that 9 R
is efficient in the nonparametric semi-Markov model. We also show that U remains efficient when Model
R is true.

If Model S holds, then the transition distribution of the semi-Markov process is parametric, Sy = Qy®Ry.
Set

Sﬁ(ﬂ?,y,u) = qﬁ(x,y)m(x,y,u).

A natural estimator of ¥ is the mazimum likelihood estimator g, which maximizes

N

N
1
P3[log sy] = P2[log gy] + Ps[logry] = NZ 0g qy(Xj-1, X;) Zlogm i-1, X5, Uj).
: ] 1

Suppose that Model Q is misspecified, and that the true transition distribution of the embedded Markov
renewal process is S = @ ® R. Then Ps[log sy] is an empirical version of Ps[log sy|. Again we call the
latter KL mformatwn We denote by Kg(Ps3) the parameter that maximizes Ps[log 319] and we call Kg a
KL functional. Then 195 =K 5(|P3) In Section 5 we derive a stochastic expansion of 195 and the canonical
gradient of Kg and show that 195 is efficient in the nonparametric semi-Markov model. We also show that
1§5 remains efficient when Model S is true. Section 6 contains some additional comments.

2. Characterization of efficient estimators

We assume that the embedded Markov chain is positive Harris recurrent and geometrically ergodic in
Ls(P,). We make the usual assumption that the conditional distribution of the inter-arrival times does
not charge zero. We also assume that the mean inter-arrival time m = EUj is finite. Then

n/N —m a.s. (1)

For a function f € Ly(P3) we have the strong law of large numbers

| X

NZ Xj1,X;,Uj) — B3[f] as. (2)
For a function f € Ly(P3) with Sf = 0 we have the martingale central limit theorem

N
nTV2YF(Xe1, X5 Up) = mT R (B[] RY, (3)

J=1

where Y denotes a standard normal random variable.

In order to characterize efficient estimators for functionals of semi-Markov models, we consider a family
Qs, 0 € A, of transition distributions of the embedded Markov chain, and a family Rs, § € A, of conditional
distributions of the inter-arrival time. Here A is a possibly infinite-dimensional set, the parameter space.
We fix § € A and set Q = Qs, R = Rs and

V:{UGLQ(PQ) :QUZO}, WZ{’UJELQ(Pg) :R’UJ:O}.
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Note that V and W can be viewed as orthogonal subspaces of Ly (P3). We assume that the parametrization
is smooth in the following sense. There is a linear space K, the tangent space of A, and a bounded linear
operator D = (Dg,Dg) : K — V x W, and for each k € K there is a sequence d,; in A such that
Qni = Qs,, is Hellinger differentiable at @) with derivative Dgk € V,

1 2
[/ (dQ1/2 40?2 — §n_1/2DQk:dQ1/2> } 0,
and R, = Rs,, is Hellinger differentiable at R with derivative Drk € W,
1 2
Py [/ (afy? = dRY? = S~ 2Dk dRY?) | —o.

Now write M, for the distribution of Z;, 0 <t < n, if Q and R are in effect, and M, if Q,; and R, are.
By Taylor expansion and (2) and (3), we obtain local asymptotic normality:

N
dM,
log TM”’“ =n"12Y " (Dok(X; 1,X;) + Drk(X;_1,X;,U;)) — m™ ' (P2[Dyk] + P3[Dyk]) + 0p(1)  (4)

and

N
n 2N " (Dok(X;j-1, X;) + Drk(X;-1,X;,Uj)) = m™'/2(Py[D3k] + Ps[DRk))Y2Y. (5)
j=1

For Markov chains, different proofs are in Penev [32], Bickel [2] and Greenwood and Wefelmeyer [13]; see
also Bickel and Kwon [4]. For Markov step processes see Hopfner, Jacod and Ladelli [18] and Hopfner
[16,17]. A proof for nonparametric semi-Markov models is in Greenwood and Wefelmeyer [14].

We want to estimate a d-dimensional functional  : A — R? of the parameter §. We call o differentiable
at § with gradient (vy,w,) if v, € v, Wy, € W, and

nV2(p(dnk) — (8)) — m~ (Palvg Dok + Pslw,Drk]), k€ K. (6)

The canonical gradient (vy,, wy,) of ¢ is the componentwise projection of (v,, w,) onto the closure of (DK )e
in (La(P3))%. If DK is closed in Ly(P3), we can write (v}, w}) = (Dgky, Drk,) for some k, € K. This
will be the case in Sections 3-5.

An estimator ¢ is called regular for ¢ at § with limit L if L is a d-dimensional random vector such that

n'2(¢p — p(0ur)) = L under My, keK.
The convolution theorem says that
L=A+m 2P|+ Pslwiws )Yy,
with Yy a d-dimensional standard normal random vector, and A a d-dimensional random vector independent

of Yy. This justifies calling o efficient for <,0 at § if nt/ 2(g0 ©(9)) is asymptotically normal under M,, with
covariance matrix m~ (PQ[ . *T] + Pswy, *T])

An estimator ¢ is called asymptotzcally lmear for ¢ at § with influence function (a,b) ifa € V¢, b€ W4,
and

”1/2(@ _1/22 Xj-1,X;5) + b(X;-1, X;,Uj)) + op(1).
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We have the following characterization. An estimator ¢ is regular and efficient for ¢ at § if and only if it
is asymptotically linear with influence function equal to the canonical gradient,

N
n'2 (@ = p(8) =n 2D (X1, Xp) + wh(Xj o1, X5, Uj) + op(1).
j=1

For proofs of the convolution theorem and the characterization we refer to Bickel, Klaassen, Ritov and
Wellner [3].

To prove asymptotic linearity of estimators in misspecified models, we need the following martingale
approximation. Set Lo o(P2) = {f € La(P%) : P2[f] = 0}. The potential G of the embedded Markov chain
is defined by

Gf=> Q'f, f€Ly(Py)
=0

For f € LQ(PQ) set

(e}

Af(z,y) = G(f = P[f])(y) — QG(f = Pa[f]) (=) = > _(Q'f(y) — Q" ().

=0

Then QAf =0 and
B[(Af)?) = Po[f?] = (B[ f])* +2 ) Po[(f — Pa[fDQ'f]-
i=1

Let f € Ly(P3) and set fo = f — Rf. Then we obtain the stochastic expansion

N N
n V2N (F(Xo1, X, Up) = Pelf]) = n7 V2 (ARF(X; 1, X5) + fo(Xj-1, X5, Up)) + 0p(1).  (7)
j=1 j=1

Note that QARf = 0 and Sfy = 0. Hence ARf(X;_1, X;) and fo(X;—1,X;,U;) are orthogonal martingale
increments. For discrete-time processes, the martingale approximation (7) is due to Gordin [9] and Gordin
and Lifsic [10]. It was discovered independently by Maigret [27], Diirr and Goldstein [8] and Greenwood
and Wefelmeyer [13]. See also Section 17.4 in the monograph of Meyn and Tweedie [29]. The martingale
approximation (7) and the martingale central limit theorem (3) imply that

N
n VST (F(Xjo1, X5, Up) = Pslf]) = mT V2 (R[(ARF)] + Bs[(f — Rf)?)V?Y.
j=1

To calculate canonical gradients of functionals in misspecified models, we need the following perturbation
expansion, due to Kartashov [21-23],

n'’(Pyu[f] = Po[f]) = P2[Dok - Af], ke K. (8)

Here Py, denotes the distribution of (X;_1, X;) if Q@ is in effect. This pathwise version of the perturbation
expansion suffices for our purposes. Greenwood and Wefelmeyer [13] show that it follows also from the
martingale approximation (7).
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3. Model Q

In Model Q we assume a parametric model gy, ¥ € © C RY, for the p-density of the transition distribution
of the embedded Markov chain, and consider the conditional inter-arrival time distribution as unknown.
Suppose the model is misspecified, and the true transition distribution is ). Then the KL functional

Kq(P>) maximizes P»[loggy], and the partial maximum likelihood estimator ¥g maximizes Pa[log gy].
Write

xo(z,y) = g log gy (z,y)

for the d-dimensional vector of partial derivatives of log gy(x,y). Then Kqg(P,) solves Py[xy] = 0, and 19@
solves Py[xy] = 0. Heuristically, by Taylor expansion,

0= XﬁQ ZXﬁQ =1 )

N
1 - _
N E XKqo( P2 Xj—1,X E XKQ Pz Xj-1, j)(ﬂQ - KQ(PQ)) + Op(” 1/2)- (9)

Here xy(x,y) is the d x d matrix of partial derivatives of xy(x,y). With (1) and (2) we obtain
n'?(Dq — Ko(P2)) = —m(Pa[Xxo(pyl)'n 2 ZXKQ P (X1, Xj) + 0p(1). (10)

If Model Q is correctly specified and @ = Qy, then Kg(P») = 1. We also have the following relations,
which are well-known in the i.i.d. case,

0= 0pQy (-, E) = Quxy, 0= 09Quxo = Quxoxy + QuXo-

In particular, the partial Fisher information matrix for Model Q is Iy = —Pa[xy] = P» [X,gxg]. Hence, for
the correctly specified model, the partial maximum likelihood estimator ¥g has the stochastic expansion

N
n'?(Dg —9) = mI;'n™ 2 " xg(Xo1, X5) + 0p(1).
j=1

This means that 19@ is asymptotically linear with influence function mI;*(xy,0), and n'/ 2(1§Q — ) is
asymptotically normal with covariance matrix mly L
If the model is misspecified, then Xy, (p,) is not in Ve We apply the martingale approximation (7)

to (10) and see that 1§Q is asymptotically linear with influence function —m(Ps [XKQ(pz)])_l(AXKQ(p2), 0).
Hence n'/2(dg — Ko(P)) is asymptotically normal with covariance matrix

m(Pa[Xreo(p)]) " PelAX Ko (P A X Ko () (P2 XK () ™

Let us now prove efficiency of 19@, first for the correctly specified model. For ¢ € R? set ¥, = 9 4+n"12¢.
Assume that ¢,. = ¢y, is Hellinger differentiable at ¥,

[ [ (@26 - @) - 0% (o)) *(@.0)) uid)Pr(da) —o. ()
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Let R denote the set of all conditional inter-arrival distributions. For w € W choose a sequence R, in R
that is Hellinger differentiable at R,

Py [/ (dR}Z{UQ — dRV? - %n_l/Qw de/Q)z} - 0. (12)

Then the assumptions of Section 2 hold with A =@ x R, K = R? x W, Dg(c,w) = ¢' x9, Dr(c,w) = w.
The functional to be estimated is ¢(J, R) = ¢. By orthogonality of V' and W, its canonical gradient is
obtained from (6) as (cj x9,0) with d x d matrix ¢y determined by

c= m_lc;—Pg[XgX;—]c = m_lc;grflgc, c € R,
ie. cy =mly ! Hence the canonical gradient of ¥ is mI 9 I(Xﬁ, 0) and equals the influence function of 19,
which is therefore efficient for the correctly specified model.
Suppose now that the model is misspecified, and let @ be the set of all transition distributions of the

embedded Markov chain. Let ) denote the true transition distribution. For v € V' choose a sequence Qp,
in O that is Hellinger differentiable at @),

P, [/ (dQu? - Q"2 ~ %n—l/% dQl/Q)Z] — 0. (13)

Then the assumptions of Section 2 hold with A = Q xR, K =V x W, Dg(v,w) = v, Dr(v,w) = w. The
functional to be estimated is ¢(Q, R) = Kqg(P). Heuristically,

0= Pono[Xitq (P = PomoDica ()] + PonolXicq (p)) (K@ (Pano) = K@(Pa)) + 0p(n /%),

With Pono[Xk, ()] — P2[XK,(p,)] We obtain
KQ(Pony) — Ko(P2) = —(P2[Xko(p)) ™ Ponv[X ko (Py)] + 0p(n ).
The perturbation expansion (8) yields
n'/2 Py XKo(P)] = n'/?(Payy — Po)[XKko(p)] = P2lvAXK,(Py)]- (14)
Hence
n'2(Kq(Pany) — Kq(P2)) — —(Pa[XKo(py)))  P2lvAx Ky (), vEV,

and the canonical gradient of K is obtained from (6) as —m(P2[X ko (p)]) " (AX Ko (p,),0) and equals the
influence function of @Q, which is therefore efficient for the misspecified model.

4. Model R

Model R is completely analogous to Model Q, with interchanged roles of the transition distribution ) of
the embedded Markov chain, and the conditional inter-arrival time distribution R. Specifically, in Model
R we assume a parametric model 7y, 9 € © C RY, for the v-density of the conditional inter-arrival time,
and consider the transition distribution of the embedded Markov chain as unknown. Suppose the model is
misspecified, and the true conditional inter-arrival time distribution is R. Then the KL functional Kr(Ps)
maximizes Ps[logry|, and the partial maximum likelihood estimator 1§Q maximizes Pg[log ry]. Write

Qﬂ(xaya U) = 819 IOgTﬁ(ﬂf,y, U)
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for the d-dimensional vector of partial derivatives of logry(x,y,u). Then Kg(Ps) solves P3loy] = 0, and
Ur solves P3[py| = 0. Heuristically, by Taylor expansion,

N
1
0="Psloy,] =+ > 05, (Xm0, X5, Up)
j=1

N
Z 2(Py)(Xj—1, X5, Uj) NZQKR(Pg -1, X5, Uj)(Or — Kr(Ps)) + 0p(n™1/?).  (15)

Here gy(z,y,u) is the d x d matrix of partial derivatives of gy(x,y,u). With (1) and (2) we obtain

n'2(Ig — Kr(Py)) = —m(Ps[og,(py)) """ ZQKR Py (Xj—1, X5, Uj) + 0p(1). (16)

If Model R is correctly specified and R = Ry, then Kr(Ps) = ¢. We also have the following relations,
0=0pRy(-,-,R) = Ryoy, 0 =0yRy09 = Ryosoy + Rooy-

In particular, the partial Fisher information matrix for Model R is Jy = —P3[oyg] = P3[Q19Q;g]. Hence, for
the correctly specified model, the partial maximum likelihood estimator ¥r has the stochastic expansion

N
nt2(Hp —0) = mJ;ln_l/2 Z 09(Xj—1,X;,Uj) + op(1).
j=1

This means that Jp is asymptotically linear with influence function mJy 1(0, 09), and n'/ 2(19 rR— V) is
asymptotically normal with covariance matrix m.J, L
If the model is misspecified, then g (p,) is not in W<, We apply the martingale approximation (7) to

(16) and see that U is asymptotically linear with influence function
—m(Ps[oxcp(py)]) " (AROK (Py)» 0K n(Py) — ROK(Py))-

Hence n'/2(9r — Kr(P3)) is asymptotically normal with covariance matrix

m(PS[@KR(Ps)])_IER(P?)[@KR(Pg)])_17

where
Sk = Py[ARok ,(p,) A" Rok,(py] + Psl(0kn(py) — ROKn(Py)) (0kn(py) — ROKn(py) ]

Let us now prove efficiency of ) R, first for the correctly specified model. For ¢ € R? set 0, = ¥ +n"1/2c.
Assume that r,. = ry__ is Hellinger differentiable at 1,

1 2
// 1/2 (z,y,u —ré/Z(a:,y,u) o 12T og(2,y, u)r 1/2(:L‘,y,u)> v(du)Py(d(x,y)) — 0. (17)

Let Q denote the set of all transition distributions of the embedded Markov chain. For v € V choose a
sequence @, in Q that is Hellinger differentiable (13) at (). Then the assumptions of Section 2 hold with
A=09x0,K=V xR Dg(v,c) =v, Dr(v,c) = ¢ gy. The functional to be estimated is ¢(Q, ) = ¥
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By orthogonality of V and W, its canonical gradient is obtained from (6) as (0, ¢} 09) with d x d matrix
cy determined by

c= m_lcgl]ﬁc, ceR,
Le. cy = mdy ! Hence the canonical gradient of ¥ is mdJy 1(0, 09) and equals the influence function of 19,
which is therefore efficient for the correctly specified model.
Suppose now that the model is misspecified, and let R be the set of all transition distributions of the
embedded Markov chain. Let R denote the true transition distribution. For w € W choose a sequence R,
in R that is Hellinger differentiable (12) at R. Then the assumptions of Section 2 hold with A = Q x R,

K =V x W, Dg(v,w) = v, Dgr(v,w) = w. The functional to be estimated is ¢(Q,R) = Kgr(Ps).
Heuristically,

0= Pgnvw[QKR(PSnvw)] = P3"UW[QKR(P3)] + P3m;w[@KR(P3)](KR(P3m)w) — Kp(P3)) + Op(n_1/2)-
With Psnow [0k, (p,)] — P3[0k,(p,)] We obtain
KR(Pgm}w) B KR(P?’) - _(P?’[QKR(Ps)])_lPBnUw [QKR(Ps)] + Op(n_1/2)'

Write Pspyw = Pony @ Rnw and apply the perturbation expansion (14) to obtain
n2(KR(Psnvw) — Kr(P3)) — —(Pslox,py)) ™" (P2 [VARQK ,(py)] + P [UJQKR(Ps)])
—(Ps[oxcapy]) " (P2 [VARQK ,(p,)] + P3lw(0k,(py) — RQKR(P:;))])’
and the canonical gradient of Ky is obtained from (6) as
—m(P3[05c,(p,)]) T (ARQK 1 (Py) Ok n(Py) — ROK ()

and equals the influence function of ) Rr, which is therefore efficient for the misspecified model.

5. Model S

While Models Q and R are semiparametric, Models S is parametric. In Model S we assume parametric
models gy and 79, ¥ € © C R?, for the p-density of the transition distribution of the embedded Markov
chain and for the v-density of the conditional inter-arrival time. We have sy(z,y,u) = qo(x, y)rg(z, y, u).
Hence the KL functional Kg(P3) maximizes P3[log sy] = Pa[log gg] + Ps[logry], and the partial maximum
likelihood estimator g maximizes Ps[log sy] = Pa[log gg] + Ps[log ry]. Write

Uﬁ(xa yvu) =0y lOg sﬂ('rvyv u) = Xﬂ(x7y) + Qﬁ(xa Z/,U)

for the d-dimensional vector of partial derivatives of log sy(x,y,u). Then Kg(Ps3) solves Ps[oy] = Palxs] +
Ps[p9] = 0, and Jg solves P3[oy] = Pa[xs] + P3]og] = 0. Taylor expansions analogous to (9) and (15) imply

N
1
O—|P3(719 _NZ glanaU)

7201(5 Ps X1, X;,U5) + — ZUKS Ps) (Xj—lan,Uj)(igs — Kg(P3)) —f-Op(n_l/Z),
] 1



November 7, 2007 15:38 Stochastics: An International Journal of Probability and Stochastic Processes cindy06

10 Ursula U. Miiller, Anton Schick and Wolfgang Wefelmeyer

where oy (z,y,u) = x9(z,y) + 09(x,y,u) is the d x d matrix of partial derivatives of oy(z,y,u). We obtain
N

n'2 (s — Ks(P3)) = —m(Ps[bcpy))) 02 Y oeapy (X1, X5, Us) + 0p(1). (18)
j=1

If Model S is correctly specified with @ = Qg and R = Ry, then Kg(P3) = 9. From Sections 3 and 4 we
obtain the Fisher information matrix for Model S as Iy + Jy. Hence, for the correctly specified model, the
maximum likelihood estimator ¥g has the stochastic expansion

N
n'?(0g = 9) =m(Iy + Jg) "0 2 " 09(X; 1, X;,Uj) + op(1).
Jj=1

This means that g is asymptotically linear with influence function m(Iy+Jy)~*(xy, 09), and nl/2 (55 —1)
is asymptotically normal with covariance matrix m(Iy + Jy) L.
If the model is misspecified, then X (p,) is not in V¢ and o Ks(P,) 1 not in W¢e. We apply the martingale

approximation (7) to (18) and see that g is asymptotically linear with influence function
(P[0, () (AXkes(py) + AROK (Py)s 0K o(P) — ROk (Py))-
Hence n'/2(dg — Kg(Ps)) is asymptotically normal with covariance matrix

m(Ps[0 5y py)]) S (Pa[oxy ()7,

where
Ys = P[A(XKs(py) + RQKS(PJ))AT(XKS(PS) + Rorg(py))] + Psl(0ks(p) — Roks(py) Ok s(py) — RQKS(Ps))T]'

Let us now prove efficiency of 195, first for the correctly specified model. For ¢ € R? set 9, = 9 +n"1/2¢.
Assume that ¢, = ¢y, is Hellinger differentiable (11) at ¥, and r,,. = 7y, is Hellinger differentiable (17) at
9. Then the assumptions of Section 2 hold with A = ©, K = R¢, Dgc = ¢"xg, Drc = ¢! py. The functional
to be estimated is () = ). The canonical gradient is obtained from (6) as m(Iy+Jy) "' (x9, 09). It equals
the influence function of 195, which is therefore efficient in the correctly specified model.

Suppose now that the model is misspecified. Let Q be the set of all transition distributions of the
embedded Markov chain, and let R be the set of all transition distributions of the embedded Markov
chain. For v € V choose a sequence @, in Q that is Hellinger differentiable (13) at Q. For w € W
choose a sequence Ry, in R that is Hellinger differentiable (12) at R. Then the assumptions of Section
2 hold with A = O xR, K =V xW, Dg(v,w) = v, Dr(v,w) = w. The functional to be estimated is
»(Q, R) = Kg(P3). Similarly as in Section 4,

0 = P3TLU’LU[QKS(P3",UH,)] = P?)TZI}?.U[QKS(P3)] + P3nvw[QKS(P3)]<KS(P3nUw) — KS(P3)) -+ Op(nil/Q)’
Ks(Ph) ~ K(25) = ~(Piorc ) Pl o] + o),

and therefore
n'/2(Ks(Pyw) —Kr(P3)) = —=(Psloxc.(py)) " (Pz [v(AX ks (P T ARCK (PP [w(QKs(Ps)—RQKS(Ps))])-
Hence by (6) the canonical gradient of Kg is obtained as

—m(P3[0 ko (py))) T (AXks(py) + AROK . (Py)s 0K o (Py) — ROk (Py))
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and equals the influence function of '193, which is therefore efficient for the misspecified model.

6. Remarks

In this section we comment on examples and possible extensions of our results.

1. If the distribution of the inter-arrival times charges only 1, so that R(z,y,du) = d1(du), then the
semi-Markov process reduces to a Markov chain with transition distribution @), and for Model QQ we recover
the results of Greenwood and Wefelmeyer [15].

2. Our results carry over to observations (Xg, Tp), . - ., (X, T5) of the embedded Markov renewal process.
Just replace N by n. In particular, instead of the central limit theorem (3) with random summation index
N, use

nEST (X1, X, Uy) = (R[22,
j=1

and replace m by 1 everywhere.

In some examples we can describe the KL functional more explicitly.

3. Suppose the embedded Markov chain is a linear autoregressive model of order 1, i.e. X; = 9.X;_1 +¢;,
where ¥ € R and the innovations €; are i.i.d. with mean 0, finite variance, and known density f. Then
Model Q holds with Q(z,dy) = f(y — dx)dy, and xy(z,y) = zl(y — Yz) with £ = —f'/ f. Hence the KL
functional solves E[Xol(X1 — 9Xp)] = 0. If f is the density of 7Y for some 7 > 0, then /(z) = 7~2x and
E[Xol(X1 — 9Xo)] = 77 2(E[X0X1] — YE[XE]). Hence the KL functional is Kg(P2) = E[XoX1]/E[X?],
and the partial maximum likelihood estimator for 1 is the least squares estimator

N
> i1 Xj1X;

19Q = KQ(P2) = ZN 1X2 ;
J= J—

9

a ratio of two empirical estimators.
4. Suppose the inter-arrival time U; given X;_1 = x and X; = y is exponentially distributed with mean
1/A(z) not depending on v,

R(z,y,du) = A(z) exp(—u(x))du.

Then the semi-Markov process is a Markov step process. If the mean is constant, A(z) = ¢, ¥ > 0, then
Model R holds with Ry(x,y,du) = ¥ exp(Yu), and og(z,y,u) = 9~! — u. Hence the KL functional solves
Eloy(Xo, X1,U1)] =971 — E[U1] = 0, and we obtain Kg(Ps) = 1/E[U;]. The partial maximum likelihood
estimator for 9 is

. 1 X
ﬁRzl/Nj;Uj,

a function of an empirical estimator. Efficiency of empirical estimators in Markov step processes is studied
in Greenwood and Wefelmeyer [12].

The models Q, R and S are described in terms of the conditional distributions Q(z,dy) and R(x,y,du).
It is occasionally reasonable to model instead the marginal distributions P;, P> or P3. Results for these
three models differ considerably among each other and from Models Q, R and S.
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5. Suppose we have a parametric model for the p-density p1y of Pi. The marginal mazimum likelihood
estimator ¥, maximizes

P1[log p1y) = Zlogpw i-1)-

It estimates the KL functional K(P;), the parameter that maximizes P [logpiy]. Note that the marginal
maximum likelihood estimator is an empirical version of the KL functional, J; = K (Py).

However, U1 is not efficient for ¥ when the marginal model is correctly specified. The reason is that
the specification p1y of the marginal density implies a constraint on the conditional distribution @ of
the embedded Markov chain, but the marginal maximum likelihood estimator does not use this informa-
tion. An efficient estimator for ¥ is difficult to construct. See Kessler, Schick and Wefelmeyer [24] for an
efficient estimator of ¥ in a Markov chain model with a (correctly specified) parametric model for the
(one-dimensional) marginal density. On the other hand, D1 is efficient for K (Py) in a nonparametric sense
when the marginal model is misspecified.

We note that, in this respect, semi-Markov processes and Markov chains are different from the i.i.d.
case. Suppose we have i.i.d. observations (X;,Y;) with joint distribution piy(z)dz Q(z,dy), where @ is
unknown. Then @ is not constrained by the marginal model pyy, and the marginal maximum likelihood
estimator is efficient for ¢ if the marginal model is correctly specified, and also efficient for K (P;) if the
marginal model is misspecified.

6. Suppose we have a parametric model for the p2-density pay of Py. The marginal mazimum likelihood
estimator Y9 maximizes

N
1
P2[log pay] = NZ og p29(Xj-1, Xj).

It estimates the KL functional K(Py), the parameter that maximizes Ps[log pag], and ¥y = K (P3). The
perturbation expansion (8) suggests that maximizing Pa[log poyg] is asymptotically equivalent to solving
P2[Axs] = 0, and the martingale approximation (7) suggests that this is asymptotically equivalent to
solving P2[xs] = 0. Hence the marginal maximum likelihood estimator Dy is asymptotically equivalent to
the conditional maximum likelihood estimator 19@ and therefore efficient in the correctly specified model
poyg. The reason is that poy(x,y) = pry(x)gy(z,y), and gy(x,y) determines p1y, which therefore does not
contain additional information about .

This is again different from the i.i.d. case. Suppose we have i.i.d. observations (X}, Y;) with joint density
p19(x)qy(z,y). Then p1y contains, in general, additional information about .

7. Suppose we have a parametric model for the 12 @v-density psy of P3. The marginal mazimum likelihood
estimator Y3 maximizes

N
1
Ps[log psy] = NZ og p3o(Xj—1, X, Uj).

It estimates the KL functional K (Ps), the parameter that maximizes Ps[log psy], and U3 =K (P3). We can
write psy(z,y,u) = pog(x,y)r9(z,y,u). Now ry(x,y,u) carries additional information about 1, similarly
as in the i.i.d. case.

8. Remark 5 tells us in particular the following, rather obvious, fact. If a parametric estimator is efficient
in a nonparametric sense, then the reason is not that it is efficient in a parametric model. Rather, an
estimator usually is nonparametrically efficient because it is a smooth function of an empirical estimator.
We can illustrate this also with Model S. Suppose we have parametric models gy and ry for the densities of
@ and R. Let ¥g = Kqg(P2) be the conditional maximum likelihood estimator based on the model gy alone.
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In general, 1§Q will not be efficient for ¥ when model S is correctly specified, because 19@ does not use the

information about ¢ in the model ry. But if both gy and ry are misspecified, 79@ will be nonparametrically
efficient for Kq(P,), which is the KL functional for Model Q but not for Model S.
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