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Abstract

Heteroscedastic regression models are commonly used when the error variance
differs across observations, i.e. when the error distribution depends on covariate
values. We consider such models with responses possibly missing at random and
show that functionals of the conditional distribution of the response given the
covariates can be estimated efficiently using complete case analysis. We pro-
vide a formula for the efficient influence function in the general semiparametric
heteroscedastic regression model and discuss special cases and examples.
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1. Introduction

Missing data are common in applied research studies, and numerous methods
are used to deal with this challenge, e.g. maximum likelihood estimation, single
value imputation and multiple imputation. The simplest approach is probably
complete case analysis, also known as listwise deletion, i.e. a statistical analysis
that uses only cases that are completely observed, and ignores those with one
or more missing entries.
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Here we consider the situation when certain variables Y are possibly missing,
but other variables X are always observed, i.e. our observations are independent
copies (X1, δ1Y1, δ1), . . . , (Xn, δnYn, δn) of a base observation (X, δY, δ), where
the indicator variable δ equals 1 if Y is observed, and 0 otherwise. We assume
that the variables Y are missing at random (MAR), i.e. the probability that Y
is observed depends only on data X that are always available,

P (δ = 1|X,Y ) = P (δ = 1|X) = π(X).

For further reading on missing data models and on methods for handling those
data we refer to the books by Little and Rubin (2002), Tsiatis (2006), and
Kim and Shao (2013). The MAR assumption makes it possible to draw valid
statistical conclusions from the data without using auxiliary information from
other sources. The (unknown) function π(·) is sometimes called the “propensity
score”. In order to exclude the case that no Y is observed we assume

E[δ] = E[π(X)] > 0.

We will use a result by Müller and Schick (2016) (MS for short), the efficiency
transfer for regression models with responses missing at random, and specialize
it to semiparametric heteroscedastic regression. In MS the authors showed that
under the above MAR assumption (the “MAR model”) general functionals τ(Q)
of the conditional distribution Q ∈ Q of Y given X can be estimated efficiently
by an estimator that uses only the completely observed cases. More precisely,
complete case versions of least dispersed regular estimators of such functionals in
the full model remain least dispersed regular in the corresponding MAR model.
Although the complete case analysis is known to suffer from bias problems, this
is not the case when one is interested in functionals of this type.

To explain the results in MS more rigorously, let

Tn = tn(X1, Y1, . . . , Xn, Yn)

denote an efficient estimator in the “full model” with no missing data. The
complete case version of Tn is

Tn,c = tN (Xi1 , Yi1 , . . . , XiN , YiN ),

with N =
∑n

j=1 δj denoting the number of complete cases and {i1, . . . , iN} ⊂
{1, . . . , n} the indices of the complete cases. Write G ∈ G for the distribution
of the covariate X and G1 for the conditional distribution of X given δ = 1.
Then G⊗Q is the joint distribution of the pair (X,Y ), while G1⊗Q is the joint
distribution of (X,Y ) given δ = 1 under the MAR assumption. Suppose Tn is
semiparametrically efficient (as laid out in Bickel et al., 1998) for estimating the
functional τ(Q) in the full model, i.e. it is asymptotically linear with efficient
influence function γG(X,Y ),

Tn = τ(Q) +
1

n

n∑
j=1

γG(Xj , Yj) + oP (n−1/2). (1.1)
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Then its complete case version Tn,c is efficient in the MAR model, with influence
function δγG1(X,Y )/E[δ],

Tn,c = τ(Q) +
1

n

n∑
j=1

δj
E[δ]

γG1(Xj , Yj) + oP (n−1/2), (1.2)

provided G1 belongs to the model G . Of course, the efficient influence function
γG depends also on the transition distribution Q, and a more precise notation
would be γG⊗Q. As we only encounter changes in the marginal distribution,
from G to G1, we have chosen to suppress the dependence on Q for the sake of
simplicity in notation, here and in the following. For example, we shall write
EG instead of EG⊗Q to denote the expectation associated with the distribution
G⊗Q and EG1

for the expectation associated with G1 ⊗Q.
The efficiency transfer was derived in two steps. The first step uses the

transfer principle for complete case statistics by Koul, Müller and Schick (2012),
which states in particular that the complete case version of an asymptotically
linear estimator with (not necessarily efficient) influence function γG has expan-
sion (1.2) in the MAR model if G1 belongs to the model G . The second step
establishes that if γG is the efficient influence function of the original estimator
then δγG1(X,Y )/E[δ] is the efficient influence function of the complete case
estimator in the MAR model. Together these two steps show that efficiency
is preserved by complete case analysis. This finding simplifies the derivation
of efficient estimators considerably: it suffices to find an efficient estimator in
the full model and to verify that the assumptions for that estimator are also
satisfied with G replaced by G1.

Sections 2 and 3 of MS prove the efficiency transfer outlined above for general
functionals of the conditional distribution and general random vectors (X,Y )
that satisfy the MAR assumption. Section 4 of MS provides the specific details
for the important case of a homoscedastic semiparametric regression model, i.e.
when Y is a response variable that is linked to a covariate vector X via

Y = r(X,ϑ, %) + ε,

where the errors ε and X are independent. This covers parametric and nonpara-
metric regression as important examples, namely when the regression function r
is specified by a finite-dimensional parameter ϑ or by an infinite-dimensional pa-
rameter %. The efficient influence for homoscedastic semiparametric regression
models is provided in Theorem 4.1 of MS.

In this paper we work out the specific details of the efficiency transfer for
the heteroscedastic semiparametric model, i.e. for the above model without the
assumption that the error ε and the covariate X are independent. This situation
is quite common in applications. We consider functionals of the regression
parameters ϑ and % only. This differs from the homoscedastic case, where we
studied functionals of these regression parameters and the error density. The
analogue would be to consider functionals that also include the conditional error
density given the covariate, but functionals of this quantity are typically not
estimable at the root-n rate.
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This article is organized as follows. We present our main results, the efficient
influence functions for general functionals of the conditional distributionQ in the
full heteroscedastic regression model and under the MAR assumption in Section
2. In Example 1 and Example 2 we specialize the influence function for two
functionals of interest: the finite-dimensional parameter and linear functionals
of the regression function. In Section 3 we study parametric regression and
nonparametric regression as special cases. Section 4 discusses four examples
of semiparametric regression functions: partially linear regression, single index
models, partially linear random coefficient models and partially linear single
index models. In this section we only consider estimation of the finite parameter
ϑ, which is of particular interest for applications. The proofs are in Section 5.

2. Main results

We consider the semiparametric heteroscedastic regression model

Y = r(X,ϑ, %) + ε, E[ε|X] = 0,

where r is a known function of the covariate vector X, ϑ is a p-dimensional
parameter, and % is an infinite-dimensional parameter. In addition to our as-
sumption that the errors are conditionally centered, we assume that ε given
X = x has a conditional density y 7→ f(y|x), which has a finite variance σ2(x)
and finite Fisher information J(x) for location. We also require that σ2(x) and
J(x) are bounded and bounded away from zero.

We write `f (·|x) = −f ′(·|x)/f(·|x) for the score function of the density f(·|x)
and denote the distribution of X by G. Let F denote the transition distribution
defined by F (x, dy) = f(y|x) dy. Note that F (X, ·) is the conditional distribu-
tion of ε given X.

In this model the conditional distribution of Y given X = x is

Q(x, dy) = Qϑ,%,f (x, dy) = f(y − r(x, ϑ, %)|x) dy.

For the efficiency considerations including notation we refer to MS Section 2.
In MS the efficient influence function for a general functional of the conditional
distribution Q of Y given X in the MAR model (without assuming a regression
structure) is derived as a projection of any gradient of the functional onto the
tangent space. MS follows the approach described in Chapter 3 of Bickel et al.
(1998), which is suitable for estimating such general functionals; see also Tsiatis
(2006) on estimating the finite-dimensional parameter. In this special case the
more familiar method that projects the score function of the parameter onto the
nuisance tangent space can be used to obtain the efficient score function, which
is also Tsiatis’ approach.

The MAR model contains the full model as a special case, with π(·) = 1 and
G in place of G1. We therefore only need to determine the efficient influence
function for the heteroscedastic regression model with fully observed data. This
suffices thanks to the efficiency transfer, as explained in the introduction.
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The tangent space in MS is written as an orthogonal sum of subspaces.
Since we are interested in functionals of the conditional distribution Q, we limit
our attention to the subspace that is relevant for estimating such functionals,
namely the tangent space V (G) of the model M (G) = {G ⊗ R : R ∈ Q}
at G ⊗ Q. It consists of functions v that satisfy

∫
v(x, y)Q(x, dy) = 0 and∫

v2(x, y)G(dx)Q(x, dy) <∞, and for which there is a sequence Qnv in Q such
that∫∫ (

n1/2(dQ1/2
nv (x, ·)− dQ1/2(x, ·))− 1

2
v(x, ·)dQ1/2(x, ·)

)2
G(dx)→ 0. (2.1)

As in Schick (1993), the set V (G) consists of the functions

v(X,Y ) = [a>h(X) + b(X)]`f (ε|X) + c(X, ε) (2.2)

where a belongs to Rp and comes in because we do not know ϑ, h is the L2(G)
derivative of t 7→ r(·, t, %) at ϑ, b belongs to some closed linear subspace B(G)
of L2(G) and comes in because r involves %, and c is a member of C (G), where

C (G) =
{
c ∈ L2(G⊗ F ) :

∫
c(x, y)f(y|x) dy =

∫
yc(x, y)f(y|x) dy = 0

}
.

From now on we abbreviate ϑ + n−1/2a by ϑna for a ∈ Rp. To guarantee that
(2.1) is met, we assume that for each b in B(G) there is a sequence %nb such
that∫ (

n1/2(r(x, ϑna, %nb)− r(x, ϑ, %))− a>h(x)− b(x)
)2
dG(x) = o(1) (2.3)

holds for all a ∈ Rp. Note that C (G) is the tangent space for the conditional
error densities. Indeed, for each c ∈ C (G), there is a sequence fnc of such
densities such that∫∫ (

n1/2(f1/2nc (y|x)− f1/2(y|x))− (1/2)c(x, y)f1/2(y|x)
)2
dy dG(x) = o(1).

(2.4)
We then have (2.1) if we take Qnv = Qϑna,%nb,fnc with v(X,Y ) as in (2.2).

We are interested in estimating a functional

τ(Qϑ,%,f ) = τ0(ϑ, %)

of the regression parameters ϑ and %. We assume that there is a sequence %nb
such that (2.3) is satisfied and, additionally, that the functional τ0 is differen-
tiable, i.e.

n1/2(τ0(ϑna, %nb)− τ0(ϑ, %))→ a>∗ a+

∫
bGb dG (2.5)

holds for all a ∈ Rp, b ∈ B(G) and for some a∗ ∈ Rp and bG ∈ B(G).
We will provide the efficient influence function in Theorem 1 below. To

describe it we need to introduce some additional notation. We let M denote the
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measure with density 1/σ2 with respect to G and let Π̄G denote the projection
operator onto B(G) in L2(M). Now introduce

hG = (h1 − Π̄Gh1, . . . , hp − Π̄Ghp)>,

where h1, . . . , hp are the components of the derivative h from above, and the
matrix

HG =

∫
hGh

>
G dM.

Theorem 1. Suppose conditions (2.3)–(2.5) are satisfied and the matrix HG is
positive definite. Then the efficient influence function for estimating τ0(ϑ, %) in
model M (G) is

γG(X,Y ) = kG(X)
ε

σ2(X)

with
kG(X) = (a∗ − αG)>H−1G hG(X) + Π̄G(σ2bG)(X)

and

αG =

∫
Π̄G(σ2bG)h dM.

The proof of Theorem 1 is in Section 5. Note that γG is simpler than
the corresponding influence function in Theorem 4.1 of MS for homoscedastic
regression. Its structure is similar to that in the homoscedastic case when the
error distribution happens to be normal. The structure of γG is explained by the
fact that the tangent space C (G) for the conditional error density is much larger
than the tangent space for the error density in the homoscedastic case. The
latter consists of functions of the error variable only, while the former consists
of all functions of ε and X that are orthogonal to {a(X)+b(X)ε : a, b ∈ L2(G)}.
Thus the efficient influence function needs to be of the form b(X)ε for some
b ∈ L2(G) which turns out to be kG/σ

2.
In order to formulate the corresponding result for the MAR model, we need

versions of (2.3)–(2.5) with G1 in place of G, i.e. we need to replace B(G) by
B(G1), C (G) by C (G1), dG(x) by dG1(x) and bG by bG1

, and set

HG1 =

∫
hG1h

>
G1
dM1 and αG1 =

∫
Π̄G1(σ2bG1)h dM1,

where M1 is now the measure with density 1/σ2 with respect to G1. Note that
G1 has density π/E[δ] with respect to G. If π is bounded away from zero then
L2(G1) equals L2(G) and (2.3)–(2.5) hold with G1 replacing G, B(G1) = B(G),
C (G1) = C (G), and bG1

the projection of E[δ]bG/π onto B(G1) in L2(G1). The
latter follows from the fact that

∫
bGb dG =

∫
(E[δ]bG/π)b dG1 for b in B(G).

If π is not bounded away from zero then L2(G) is a subset of L2(G1), B(G1)
contains B(G), C (G1) contains C (G), and (2.3) and (2.4) hold with dG(x)
replaced by dG1(x). Moreover, (2.5) is no longer guaranteed. Given Theorem 1
and the efficiency transfer explained in the introduction, we derive the following
corollary for the MAR model.
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Corollary 1. Suppose that assumptions (2.3)–(2.5) are satisfied with G1 replac-
ing G and that the matrix HG1 is positive definite. Then the influence function
for the MAR model is

δ

E[δ]
γG1(X,Y ) =

δ

E[δ]
kG1(X)

ε

σ2(X)

with
kG1

(X) = (a∗ − αG1
)>H−1G1

hG1
(X) + Π̄G1

(σ2bG1
)(X),

for some a∗ ∈ Rp and bG1 ∈ B(G1).

Remark 1. Constructing estimators with the above influence function typi-
cally requires an estimator of σ2(·). Estimators of the variance function are
unreliable if the dimension of the covariate vector is moderate to large. A com-
mon approach to overcome this difficulty is to model the variance function as a
function of a low-dimensional transformation of X,

σ2(X) = τ(ξ(X)).

Here τ is some unknown function and ξ some known transformation. Examples
are ξ(X) = ‖X‖ and ξ(X) = a>X for some known vector a; the latter covers the
case when ξ(X) denotes a fixed component of X. Working with dimension re-
ducing transformations is useful for practical applications since they bypass the
curse of dimensionality. However, under such a structural assumption the above
influence function is typically no longer the efficient one. We will demonstrate
this in Example 3 in Section 4.1.

The following two examples provide the efficient influence functions for two
special cases of functionals τ(Qϑ,%,f ) = τ0(ϑ, %), namely of the finite dimensional
parameter ϑ and of integrated regression functions.

Example 1. Estimating the finite-dimensional parameter. The functional

τ(Qϑ,%,f ) = a>0 ϑ,

for some a0 ∈ Rp, satisfies (2.5) with a∗ = a0 and bG = 0. Hence the efficient
influence function in model M (G) reduces to a>0 H

−1
G hG(X)ε/σ2(X). Thus the

influence function for estimating ϑ in this model is

H−1G hG(X)
ε

σ2(X)
.

The efficient influence function for estimating ϑ in the MAR model is therefore

δ

E[δ]
H−1G1

hG1
(X)

ε

σ2(X)
(2.6)

provided the matrix

HG1
= EG1

[hG1
(X)hG1

(X)>σ−2(X)] =

∫
hG1

h>G1
dG1

is positive definite.

7



Example 2. Estimating a linear functional of the regression function. We want
to estimate

τ(Qϑ,%,f ) = τ0(ϑ, %) =

∫
w(x)r(x, ϑ, %) dx,

for example a certain area under the regression curve if w is an indicator. For
this we assume that G has a density g and that w/g belongs to L2(G). With
the aid of (2.3) we obtain that

n1/2(τ0(ϑna, %nb)− τ0(ϑ, %)) =

∫
w(x)

g(x)
n1/2(r(x, ϑna, %nb)− r(x, ϑ, %)) dG(x)

converges to∫
w

g
(h>a+ b) dG =

(∫
w(x)h(x) dx

)>
a+

∫
w

g
b dG, a ∈ Rp, b ∈ B(G).

From this we see that (2.5) is satisfied with a∗ =
∫
w(x)h(x) dx and bG the

projection of w/g onto B(G) in L2(G). In Section 3 we provide explicit formulas
for the parametric and nonparametric heteroscedastic regression model, with
and without missing responses.

3. Special cases: parametric and nonparametric regression

In this section we treat two important special cases where either the infinite-
dimensional parameter % or the finite-dimensional parameter ϑ is absent.

3.1. Parametric regression function

Consider the parametric regression model Y = rϑ(X) + ε, where ε and X
are as before and rϑ(X) is a regression function that is known except for an
unknown parameter vector ϑ. One typically assumes that rt(x) is differentiable
in t with gradient ṙt(x). We will further require that∫

(rϑ+a − rϑ − a>ṙϑ)2 dG = o(|a|2)

and that the matrix

RG =

∫
ṙϑṙ
>
ϑ dG

is positive definite. This model does not involve %, so we write rϑ(X) instead
of r(X,ϑ, %). Hence we have

Q(x, dy) = Qϑ,f (x, dy) = f(y − rϑ(x)) dy,

and the functional of interest is

τ(Qϑ) = τ0(ϑ).
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For the efficiency considerations we need to assume τ0 is differentiable in the
sense that

n1/2(τ0(ϑna)− τ0(ϑ))→ a>∗ a

for all a ∈ Rp and some a∗ ∈ Rp. This is (2.5) for our special case without
the nonparametric part %. The tangent associated with the perturbed version
Qϑna,fnc

of Qϑ,f is
a>ṙϑ(X)`f (ε|X) + c(X, ε);

see (2.1) ff. Here a belongs to Rp and c to C (G). So we have h = ṙϑ, B(G) = {0}
and bG = 0. This implies that αG must be zero and that hG = h which is the
gradient ṙϑ in this model, i.e. h(X) = ṙϑ(X). This complies with the linear
regression model with regression function rϑ(X) = ϑ>h(X).

The efficient influence function for model M (G) from Theorem 1 here sim-
plifies to

a>∗

[ ∫
ṙϑṙ
>
ϑ

1

σ2
dG
]−1

ṙϑ(X)
ε

σ2(X)
.

From this we conclude, as in Example 1, that the efficient influence function for
estimating ϑ in the MAR model is

δ

E[δ]

[ ∫
ṙϑṙ
>
ϑ

1

σ2
dG1

]−1
ṙϑ(X)

ε

σ2(X)
.

Combining Example 2 and the above yields the efficient influence function
for
∫
w(x)rϑ(x) dx in the MAR model:

δ

E[δ]

∫
w(x)ṙ>ϑ (x) dx

[ ∫
ṙϑṙ
>
ϑ

1

σ2
dG1

]−1
ṙϑ(X)

ε

σ2(X)
.

The efficient influence function for estimating ϑ in the MAR model was already
derived by Müller and Van Keilegom (2012), who discuss a more general class
of models defined by conditional constraints, with the parametric regression
model as a special case. We refer to that paper for the construction of optimally
weighted least squares estimators. Their construction involves estimators of the
variance function σ2. A related conditionally constrained model was studied
by Robins and Rotnitzky (1995), who propose an inverse probability weighted
estimating equation. These authors work with a parametric model for π(X),
so their statistical model is structurally different from our model since we do
not assume a specific structure for π(X). Robins, Rotnitzky and Zhao (1994)
propose efficient estimators for ϑ in the parametric regression model, but also
work with a parametric model for π(X). Tsiatis (2006) considers parametric
regression as well. He proposes a weighted estimating equation for ϑ, which is
essentially the same approach as in Müller and Van Keilegom (2012), but he
considers only the full model. Thanks to the efficiency transfer it is now clear
that a complete case version of his estimator can be used in the MAR model to
efficiently estimate ϑ (which is the approach of Müller and Van Keilegom).
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In linear regression, i.e. rϑ(X) = ϑ>h(X), the efficient influence function in
the MAR model simplifies to

δ

E[δ]

[ ∫
hh>

1

σ2
dG1

]−1
h(X)

ε

σ2(X)
.

In the full model this is the influence function of the weighted least squares
estimator

ϑ̂WLSE =
( 1

n

n∑
j=1

h(Xj)h(Xj)
> 1

σ2(Xj)

)−1 1

n

n∑
j=1

h(Xj)Yj
1

σ2(Xj)

with known variance function. Carroll (1982) has shown that a plug-in estima-
tor, where σ2 is replaced by a kernel estimator, is asymptotically equivalent to
ϑ̂WLSE , i.e. it has influence function[ ∫

hh>
1

σ2
dG
]−1

h(X)
ε

σ2(X)

and is therefore efficient. Similar results with different estimators of the vari-
ance functions were obtained by Schick (1987), Robinson (1987), Müller and
Stadtmüller (1987). Complete case versions of these estimators are therefore
efficient, as long as the matrix

∫
hh>σ−2dG1 is positive definite. Schick (2013)

uses the empirical likelihood approach to obtain an efficient estimator in the
MAR model that does not require estimating σ2.

3.2. Nonparametric regression function

In this model we have no finite-dimensional parameter, i.e. the regression
function is r(X, %) = %(X) with % smooth, and the functional of interest is

τ(Q%,f ) = τ0(%).

In this model we have a∗ = 0, h = 0, αG = 0 and B(G) = L2(G). Thus the
projection Π̄G(σ2bG) equals σ2bG and the influence function from Theorem 1
for model M (G) reduces to

bG(X)ε.

Therefore, by the efficiency transfer, the efficient influence function in the MAR
model is

δ

E[δ]
bG1(X)ε.

The functional
∫
w(x)%(x) dx can be treated as a special case with bG1

= w/g1.
As in Example 2 we again assume that w/g1 belongs to L2(G1).

A candidate for an efficient estimator in the full model is the plug-in esti-
mator

∫
w(x)%̂(x) dx, where %̂ is a nonparametric estimator of the regression

function %, such as a kernel estimator or a locally linear smoother. The proof
for a locally linear smoother can be carried out along the lines of the proof of
Lemma 3.5 in Müller, Schick and Wefelmeyer (2007).
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4. Examples of semiparametric regression functions

In this section we discuss some specific semiparametric regression functions
and describe the efficient influence function for estimating the finite-dimensional
parameter. In the examples below, the set B(G) will consist of all functions
b(X) of the form

b(X) = k(W )>Z

where Z = t(X) and W = s(X) are fixed measurable functions of X into Rm

and k is a measurable function into Rm that varies subject to b belonging to
L2(G). In this case, hG(X) = h(X)− Π̄G[h(X)] is of the form

hG(X) = h(X)− EG[σ−2(X)h(X)Z>|W ](EG[σ−2(X)ZZ>|W ])−1Z (4.1)

provided the random matrix

EG[σ−2(X)ZZ>|W ]

is well defined and almost surely invertible. The matrix HG can only be singular
if there is a unit vector u and a function k such that P (u>h(X) = k(W )>Z) = 1.

4.1. Partially linear regression

In the partially linear regression model the covariate vector X is of the form
(U>, V >)> and the regression function is

r(X,ϑ, %) = ϑ>U + %(V ),

with ϑ a vector of the same dimension as U and % a smooth function. We assume
that EG[‖U‖2] is finite. To identify ϑ, we require, as in the homoscedastic case,
that

A(G) = EG[(U − EG[U |V ])(U − EG[U |V ])>]

is positive definite.
Here the differentiability assumption (2.3) on the regression function holds

with h(X) = U and b(X) of the form k(V ) with k in L2(Γ ) and Γ the distri-
bution of V . Thus (4.1), applied with W = V and Z = 1, implies hG(X) =
U − νG(V ) with

νG(V ) =
1

EG[σ−2(X)|V ]
EG[σ−2(X)U |V ].

Since A(G) is positive definite, so is

HG = EG

[
(U − νG(V ))(U − νG(V ))>

1

σ2(X)

]
.

Then the efficient influence function for estimating ϑ is

γG(X,Y ) = H−1G (U − νG(V ))
ε

σ2(X)
.
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This result was obtained in Ma, Chiou and Wang (2006).
We only required that A(G) is positive definite. Thus, if A(G1) is positive

definite, then the efficient influence function for the MAR model is

δ

E[δ]
H−1G1

(U − νG1
(V ))

ε

σ2(X)
,

with

νG1
(V ) =

1

EG1
[σ−2(X)|V ]

EG1
[σ−2(X)U |V ]

and

HG1
= EG1

[
(U − νG1

(V ))(U − νG1
(V ))>

1

σ2(X)

]
.

Estimators with influence function γG(X,Y ) have been constructed by Schick
(1996) and Ma et al. (2006). The latter authors do so under the assumption
σ2(X) = τ(ξ(X)) for some known transformation ξ. Since this is an additional
structural assumption, the estimator is typically no longer efficient. This can
be seen by means of the following example.

Example 3. Dimension reducing transformations and efficiency. Consider the
common situation where the variance depends on just one covariate, say on V ,
i.e. the transformation ξ(X) equals V . For simplicity we assume that U and V
have dimension one. Then the variance is σ2(X) = τ(V ) and hG(X) simplifies
to hG(X) = U − m(V ) with m(V ) short for mG(V ) = EG(U |V ). Under this
structural assumption on the variance function, we need to modify C (G) to
incorporate this information. In view of the identity E[ε2|X] = τ(V ), we have

EG[ε2(z(X)− EG[z(X)|V ])] = 0, z ∈ L2(G),

and thus need to impose the constraints

EG[c(X, ε)ε2(z(X)− EG[z(X)|V ])] = 0, z ∈ L2(G),

on members c of C (G). The tangents are now of the form

[aU + b(V )]`f (ε|X) + c(X, ε),

where a ∈ R, b ∈ L2(Γ ) and c ∈ C̄ (G), which are the members of C (G) that
also satisfy the additional constraints. For the case where the third and fourth
conditional moments of ε given X are also functions of V only, i.e. EG[εk|X] =
µk(V ), k = 3, 4, we were able to get an explicit form for the influence function
for estimating ϑ,

γ̄G(X,Y ) =
U −m(V )

EG[(U −m(V ))2w(V )]

[ ε

τ(V )
− µ3(V )

τ(V )∆(V )

(
ε2−τ(V )− µ3(V )

τ(V )
ε
)]
,

where

∆(V ) = µ4(V )− τ2(V )− µ2
3(V )

τ(V )
= EG

[(
ε2 − τ(V )− µ3(V )

τ(V )
ε
)2∣∣∣X]

12



and

w(V ) =
1

τ(V )
+

µ2
3(V )

τ2(V )∆(V )
;

see Section 5 for the derivation. This influence function equals our influence
function

γG(X,Y ) =
U −m(V )

EG[(U −m(V ))2/τ(V )]

ε

τ(V )

for the original model only if µ3(V ) is zero. The asymptotic variance of an
estimator with influence function γG is

1

EG[(U −m(V ))2/τ(V )]
,

and the asymptotic variance of an estimator with influence function γ̄G is

1

EG[(U −m(V ))2w(V )]
,

which is smaller than the previous variance, unless µ3(V ) = 0.

4.2. Single index model

We now consider a single index model with

r(X,ϑ, %) = %(U + ϑ>V )

and X = (U, V >)>, where U is one-dimensional, V is p-dimensional, and % is a
smooth function that is not constant. To identify the p-dimensional parameter ϑ
we require that the matrix EG[XX>] is positive definite. Here one verifies that
(2.3) holds with h(X) equal to %′(U+ϑ>V )V and b(X) of the form k(U+ϑ>V )
for some k in L2(Γ ), where Γ is the distribution of the index U + ϑ>V . It
follows from (4.1) applied with Z = 1 and W = U + ϑ>V , that hG(X) is given
by

hG(X) = %′(W )(V − µG(W ))

with

µG(W ) =
1

EG[σ−2(X)|W ]
EG[σ−2(X)V |W ]

)
.

For the construction of estimators in single index models, we refer to Cui,
Härdle and Zhu (2011), who consider an extended class of single index models
and provide many references. Their model class covers the homoscedastic single
index, i.e. the model specified above but with constant variance, which is typ-
ically considered in the literature; see, for example, Powell, Stock and Stoker
(1989), and Härdle, Hall and Ichimura (1993). Cui et al. model heteroscedastic-
ity by assuming that the conditional variance is a known function of the mean
function. Hence their model is different from that above, since it has further
structural assumptions. For the construction of efficient estimators it will cer-
tainly make sense to incorporate some dimension reducing transformation to

13



estimate the variance function. However, this will have an impact on the form
of the influence function, which will be more complicated than the one consid-
ered here. Using (2.6), the efficient influence function for estimating ϑ in the
MAR model is

δ

E[δ]
H−1G1

hG1(X)
ε

σ2(X)

with
hG1(X) = %′(W )

(
V − τ(G1)EG1 [σ−2(X)V |W ]

)
and

HG1
= EG1

[hG1
(X)hG1

(X)>σ−2(X)].

This requires that the matrices HG1
and EG1

[XX>] are positive definite.

4.3. Partially linear random coefficient model

Another useful flexible semiparametric model is the partially linear random
coefficient model. Here we consider the version with regression function

r(X,ϑ, %) = ϑ>U + %(T )>V

and covariate vector X = (T,U>, V >)>. We assume that U and ϑ and also
V and %(T ) have matching dimensions, and that % is a smooth function. To
identify ϑ we have to rule out that for any unit vector v, v>U equals almost
surely k(T )>V for some function k. To identify % we impose that the eigenvalues
of the random matrix DG(T ) = EG[V V >|T ] fall into a compact subset of (0,∞).
We also require that ‖U‖ has a finite second moment. Then (2.3) holds true
with h(X) = U and b(X) of the form k(T )>V with EG[‖k(T )‖2] finite.

From (4.1) applied with W = T and Z = V we obtain

hG(X) = U − EG[σ−2(X)UV >|T ](EG[σ−2(X)V V >|T )−1V.

As before, we can insert this into formula (2.6) to obtain the efficient influence
function for estimating ϑ in the MAR model.

There is not much literature on efficient estimation in the partially linear
random coefficient model. The most pertinent reference seems to be Long,
Ouyang and Shang (2013), in which an efficient sequential estimation method
involving kernel estimators for the variance function is suggested. An early pa-
per treating this model is Ahmad, Leelahanon and Li (2005), who appear to be
the first to propose efficient (series) estimators. However, these authors demon-
strate efficiency for the special case when σ2(·) is constant, the “conditionally
homoscedastic” model, which is structurally different from our model.

4.4. Partially linear single index model

In this model the regression function is of the form

r(X,ϑ, %) = ϑ>1 U + %(T + ϑ>2 V ),
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with covariate vector X = (T,U>, V >)>, where U and V have the same di-
mensions as the components ϑ1 and ϑ2 of the partitioned parameter vector
ϑ = (ϑ>1 , ϑ

>
2 )>, respectively. Here we verify (2.3) with

h(X) =

(
U

%′(T + ϑ>2 V )V

)
and with b(X) of the form k(T +ϑ>2 V ). Thus, (4.1) applied with W = T +ϑ>2 V
and Z = 1 yields

hG(X) = h(X)− τG(W )EG[σ−2(X)h(X)|W ]

=

(
U − τG(W )EG[σ−2(X)U |W ]

%′(W )
(
V − τG(W )EG[σ−2(X)V |W ]

))
with τG(W ) = 1/EG[σ−2(X)|W ]. Again we can use (2.6) to obtain the efficient
influence function for estimating ϑ in the MAR model. There are not many
articles that consider the partially linear single index model with heteroscedas-
ticity to which we can refer here. Ma and Zhu (2013) discuss efficiency and
provide the same efficient influence function we do. However, as in Ma et al.
(2006), they use a dimension reducing transformation to make the estimation
of the variance function feasible. This is a structural constraint that typically
changes the efficient influence function; see Example 3 in Section 4.1. Lai, Wang
and Zhou (2014) also refer to Ma et al. (2006) and propose an estimation ap-
proach that is supposed to be efficient, but also involves a dimension reducing
transformation as in Ma et al. (2006).

5. Proofs

Here we give the proof of Theorem 1 and provide further details for Exam-
ple 3 in Section 4.1. For the proof of Theorem 1 we will repeatedly use the fact
that ∫

`f (y|x)f(y|x) dy = 0,

∫
y`f (y|x)f(y|x) dy = 1, (5.1)

and ∫
y2`f (y|x)f(y|x) dy = 0 (5.2)

hold for all x.

Proof of Theorem 1. We need to show that γG(X,Y ) belongs to the tangent
space V (G) and is a gradient. The latter means that

EG[γG(X,Y ){(a>h+ b(X))`f (ε|X) + c(X, ε)}] = a>∗ a+

∫
bGb dG (5.3)

must hold for all a ∈ Rp, b ∈ B(G), and c ∈ C (G).
Let K = {a>h+ b : a ∈ Rp, b ∈ B(G)}. Then the tangent space is

V (G) = {k(X)`f (ε|X) + c(X, ε) : k ∈ K, c ∈ C (G)}.
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Using (5.1) we see that the map (x, y) 7→ u(x)`f (y|x)−y/σ2(x) belongs to C (G)
for every u in L2(G). This and the fact that kG belongs to K show that

γG(X,Y ) = kG(X)
ε

σ2(X)
= kG(X)`f (ε|X)− kG(X)

(
`f (ε|X)− ε

σ2(X)

)
is a tangent. It is easy to see that γG(X,Y ) is orthogonal to c(X, ε) for every c
in C (G), i.e.

EG[γG(X,Y )c(X, ε)] = 0.

Using (5.1), we obtain

EG[γG(X,Y )k(X)`f (ε|X)] =

∫
kGk dM, k ∈ K.

By the definition of hG we have
∫
hGh

> dM = HG and
∫
hGb dM = 0 for all b

in B(G). Using these properties of hG we obtain∫
kGk dM = (a∗ − αG)>a+

∫
Π̄G(σ2bG)h>a dM +

∫
σ2bGb dM

= a>∗ a+

∫
bGb dG, k = a>h+ b ∈ K.

This shows that (5.3) holds. Consequently, γG(X,Y ) is the efficient influence
function.

Technical details for Example 3, Section 4.1. Here we show that the function
γ̄G(X,Y ) is the efficient influence function for estimating ϑ when U and V are
one-dimensional, σ2(X) = τ(V ), and EG[ε3|X] and EG[ε4|X] happen to be
functions of V only. The tangent space for this model is

V̄ (G) = {(aU + b(V ))`f (ε|X) + c(X, ε) : a ∈ R, b ∈ L2(Γ ), c ∈ C̄ (G)}.

Thus it suffices to show that γ̄G belongs to V̄ (G) and is a gradient,

EG[γG(X,Y ){(aU + b(V ))`f (ε|X) + c(X, ε)}] = a, (5.4)

for all a ∈ R, b ∈ L2(Γ ) and c ∈ C̄ (G).
To simplify notation, we abbreviate EG[(U −m(V ))2w(V )] by H̄. Then we

can write

γ̄G(X,Y ) =
U −m(V )

H̄

[ ε

τ(V )
− µ3(V )

τ(V )∆(V )

(
ε2 − τ(V )− µ3(V )

τ(V )
ε
)]
.

To see that γ̄G(X,Y ) is a tangent, we express it as

γ̄G(X,Y ) =
U −m(V )

H̄
`f (ε|X)− c0(X, ε)

with

c0(X, ε) =
U −m(V )

H̄

[
`f (ε|X)− ε

τ(V )
+

µ3(V )

τ(V )∆(V )

(
ε2 − τ(V )− µ3(V )

τ(V )
ε
)]
,
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and verify that c0 belongs to C̄ (G). Using (5.1) and (5.2) we obtain the identities∫
c0(x, y)f(y|x) dy = 0,

∫
c0(x, y)yf(y|x) dy = 0,

∫
c0(x, y)y2f(y, x) dy = 0,

from which we can conclude that c0 belongs to C̄ (G). These identities also yield

EG[γ̄G(X,Y )c(X, ε)] = 0, c ∈ C̄ (G).

Using (5.1) and (5.2) we obtain

EG[γ̄G(X,Y )b(V )`f (ε|X)] = EG

[U −m(V )

H̄
b(V )w(V )

]
= 0, b ∈ L2(Γ ).

Finally, we have

EG[γ̄G(X,Y )aU`f (ε|X)] =
a

H̄
EG[(U −m(V )Uw(V )]

=
a

H̄
EG[(U −m(V ))2w(V )] = a, a ∈ R.

The last three identities show that (5.4) holds. This completes the proof.
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