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1. Introduction and main result

An important tool for making decisions about goodness-of-fit and lack-of-fit is the
residual-based empirical distribution function. This has been studied in many articles.
Stute (1997) and Khmaladze and Koul (2004, 2009), for example, test parametric hypo-
theses about the regression function in nonparametric models. Neumeyer and Van Kei-
legom (2010) study additivity tests in heteroskedastic nonparametric regression. Müller,
Schick and Wefelmeyer (2012) test for normal errors.

In this article we study the nonparametric regression model

Y = r(X) + ε,

with the error ε independent of the covariate vector X. Nonparametric models are par-
ticularly useful for residual-based inference because residuals constructed from them are
usually consistent. We are interested in the case where responses Y are missing, i.e. we
observe the sample (X1, δ1Y1, δ1), . . . , (Xn, δnYn, δn), where δ is an indicator variable
which equals one if Y is observed and zero otherwise. In practical applications most
datasets contain missing responses, so it is important to choose statistical methods that
ensure conclusions are not biased. We make the assumption that responses are missing
at random (MAR). This means that the probability that Y is observed depends only on
the covariates,

P (δ = 1|X,Y ) = P (δ = 1|X) = π(X).

We will refer to the model with responses missing at random as the MAR model. MAR
is a common assumption and is reasonable in many situations (see Little & Rubin, 2002,
Chapter 1). As an example, consider missing responses to a survey question about income.
If additional data (X) about medical conditions were available, we might see that the
response probabilities (π) are smaller for subjects diagnosed with depression. In this case
the missing mechanism is ignorable since π depends only on fully observed data X, i.e. it
can be estimated from the data. More examples of missing data can be found in Tsiatis
(2006), in Liang, Wang and Carroll (2007), in Molenberghs and Kenward (2007), and in
Efromovich (2011a, 2011b).

We show in this article that the residual-based empirical distribution function F̂c given
in equation (1.2) below is an efficient estimator of the unknown error distribution function
F . This estimator uses only the complete data pairs (X,Y ), i.e. the available residuals
ε̂j,c = Yj − r̂c(Xj), where r̂c is a suitable complete case estimator of the regression
function. Demonstrating this requires two steps. First we show that F̂c satisfies the
uniform stochastic expansion

sup
t∈R

∣∣∣F̂c(t)− 1
N

n∑
j=1

δj1(εj ≤ t)− f(t)
1
N

n∑
j=1

δjεj

∣∣∣ = op(n−1/2). (1.1)

Here f is the error density and N =
∑n

j=1 δj is the number of complete cases. Then
we show that an estimator of F that admits this expansion is asymptotically efficient
in the sense of Hájek and Le Cam. In Section 2 we derive, more generally, the efficient
influence function for estimating an arbitrary linear functional E{h(ε)}. This covers
F (t) = E{1(ε ≤ t)} as a special case. We conclude that an estimator F̂c with expansion
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(1.1) is indeed efficient for F .
The first part can be dealt with easily using the transfer principle for complete case

statistics in Koul, Schick and Müller (2012). This principle makes it possible to adapt
results for the model where all data are fully observed, the full model, to missing data
models. In particular, we can use the complete case version r̂c of the estimator r̂ proposed
by Müller, Schick and Wefelmeyer (2009). They obtain expansion (1.1) for the full model
(with all indicators equal to one) using a local polynomial smoother to estimate r. See
also Neumeyer and Van Keilegom (2010), who consider heteroskedastic nonparametric
regression.

In order to summarize the main result by Müller et al. (2009) (Theorem 1.1 below) we
introduce some notation. Let i = (i1, . . . , im) be a multi-index and write I(k) for the set
of multi-indices that satisfy i1 + · · ·+ im ≤ k. Müller et al. (2009) estimate r by a local
polynomial smoother r̂ of degree d. It is defined as the component β̂0 corresponding to
the multi-index 0 = (0, . . . , 0) of a minimizer

β̂ = arg min
β=(βi)i∈I(d)

n∑
j=1

{
Yj −

∑
i∈I(d)

βiψi

(Xj − x
cn

)}2
w
(Xj − x

cn

)
,

where

ψi(x) =
xi11
i1!
· · · x

im
m

im!
, x = (x1, . . . , xm) ∈ Rm,

w(x) = w1(x1) · · ·wm(xm) is a product of densities, and cn is a bandwidth.
The estimator r̂ permits the desired expansion if the assumptions of Theorem 1.1

(below) are satisfied. This requires, in particular, that the regression function r belongs
to the Hölder spaceH(d, γ), i.e. it has continuous partial derivatives of order d (or higher),
and that the partial derivatives of order d are Hölder with exponent γ. The choice of the
degree d of the local polynomial smoother will also depend on smoothness and moment
conditions on the error density, and on the dimension of the covariate vector. In our
simulation study in Section 3 we consider an infinitely differentiable regression function
r and a one-dimensional covariate X. This allows us to use a locally linear smoother.

Theorem 1 from Müller et al. (2009) is proved under the following assumption on the
covariate distribution.

Assumption (G) The covariate vector X is quasi-uniform on the cube [0, 1]m, i.e. X
has a density which is bounded and bounded away from zero on [0, 1]m.

Theorem 1.1 : (Müller, Schick and Wefelmeyer, 2009, Theorem 1)
Let assumption (G) be satisfied. Suppose that the regression function r belongs to H(d, γ)
with s = d + γ > 3m/2. Suppose further that the error variable has mean zero, a finite
moment of order ζ > 4s/(2s − m) and a density f that is Hölder with exponent ξ >
m/(2s−m). Consider the estimator r̂ from above with densities w1, . . . , wm that are (m+
2)-times continuously differentiable and have compact support [−1, 1]. Let the bandwidth
satisfy cn ∼ (n log n)−1/(2s). Then, with ε̂j = Yj − r̂(Xj),

sup
t∈R

∣∣∣ 1
n

n∑
j=1

{
1(ε̂j ≤ t)− 1(εj ≤ t)− εjf(t)

}∣∣∣ = op(n−1/2).
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We now apply the transfer principle for asymptotically linear statistics given by Koul
et al. (2012) to adapt the results from Theorem 1.1 for the MAR model. The complete
case estimator for F (t) is given by

F̂c(t) =
1
N

n∑
j=1

δj1(ε̂j,c ≤ t) =
1
N

n∑
j=1

δj1{Yj − r̂c(Xj) ≤ t}, (1.2)

where r̂c is the complete case version of r̂, i.e. the component β̂c0 of a minimizer

β̂c = arg min
β=(βi)i∈I(d)

n∑
j=1

δj

{
Yj −

∑
i∈I(d)

βiψi

(Xj − x
cn

)}2
w
(Xj − x

cn

)
. (1.3)

Using the transfer principle requires the conditional distribution of (X,Y ) given δ = 1 to
meet the assumptions on the (unconditional) joint distribution of (X,Y ) from Theorem
1.1. In our case it is easy to see that this affects only the covariate distribution G: the
MAR assumption combined with the independence of X and ε yield that ε and (X, δ)
are independent. Hence the parameters f and r stay the same when switching from the
unconditional to the conditional distribution. In particular, the complete case statistic
F̂c(t) is a consistent estimator for F (t) in the MAR model (since F remains unchanged).
Hence we can keep all but one of our assumptions: only assumption (G) must be restated.

Assumption (G1) The conditional distribution of the covariate vector X given δ = 1
is quasi-uniform on the cube [0, 1]m, i.e. it has a density which is bounded and bounded
away from zero on [0, 1]m.

The transfer principle says that the complete case version of the estimator from The-
orem 1.1 has the corresponding expansion (1.1). This expansion is equivalent to

sup
t∈R

∣∣∣ 1
n

n∑
j=1

δj
Eδ

{
1(ε̂j,c ≤ t)− 1(εj ≤ t)− εjf(t)

}∣∣∣ = op(n−1/2).

Hence we have, uniformly in t ∈ R,

F̂c(t) =
1
n

n∑
j=1

δj
Eδ

1(ε̂j,c ≤ t) + op(n−1/2) = F (t) +
1
n

n∑
j=1

b(δj , εj , t) + op(n−1/2),

with influence function b(δ, ε, t) = δ/Eδ {1(ε ≤ t) − F (t) + f(t)ε}. This is indeed the
efficient influence function for estimating F (t): see Corollary 2.3 in Section 2. This brings
us to the main result of this paper.

Theorem 1.2 : Consider the nonparametric regression model with responses missing at
random. Suppose the assumptions of Theorem 1.1 are satisfied, now with (G1) in place of
(G). Then the complete case estimator F̂c of the error distribution satisfies the stochastic
expansion (1.1), i.e.

sup
t∈R

∣∣∣ 1
N

n∑
j=1

δj
{
1(ε̂j,c ≤ t)− 1(εj ≤ t)− εjf(t)

}∣∣∣ = op(n−1/2).
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If the error density furthermore fulfills assumption (F), stated in section 2, then F̂c(t)
is asymptotically efficient in the sense of Hájek and Le Cam for estimating F (t), t ∈ R,
with influence function

b(δ, ε, t) =
δ

Eδ

{
1(ε ≤ t)− F (t) + f(t)ε

}
.

Remark 1: If the transfer principle were not available, the expansion in Theorem 1.2
could be derived by mimicking the (rather elaborate) proofs of Lemma 1 in Müller et
al. (2009) and of Theorem 2.2 in Müller, Schick and Wefelmeyer (2007), who estimate
the error distribution in a general semiparametric regression model. The arguments are
essentially the same – what is new now is the presence of indicators. The approach is as
follows. Analogously to Müller et al. (2009; see equation (1.4) in that paper), one derives
an approximation âc(x) of the difference r̂c(x)− r(x),

sup
x∈R
|r̂c(x)− r(x)− âc(x)| = op(n−1/2). (1.4)

Note that the statements ε̂j,c ≤ t and εj ≤ t+r̂c(x)−r(x) are equivalent. Now use this and
(1.4) and replace the two empirical distribution functions F̂c and N−1

∑n
j=1 δj1(εj ≤ t)

in the formula by expectations (cf. Müller et al., 2007, proof of Theorem 2.2). This gives

sup
t∈R

∣∣∣ 1
n

n∑
j=1

δj
Eδ
{1(ε̂j,c ≤ t)− 1(εj ≤ t)} − {Fâc

(t)− F (t)}
∣∣∣ = op(n−1/2),

where

Fa(t) = E
[ δj
Eδ

1{ε ≤ t+ a(X)}
]

= E[1{ε ≤ t+ a(X)}|δ = 1] =
∫
F{t+ a(x)}G1(dx)

with G1 denoting the conditional distribution of X given δ = 1; F (t) is the expectation
of the second term of the sum, i.e. F (t) = Fa(t) for a = 0. A Taylor expansion applied
to Fâc

(t)− F (t) in the above expansion yields

sup
t∈R

∣∣∣ 1
n

n∑
j=1

δj
Eδ

{
1(ε̂j,c ≤ t)− 1(εj ≤ t)

}
− f(t)

∫
âc(x)G1(dx)

∣∣∣ = op(n−1/2).

The desired expansion now follows from this combined with∫
âc(x)G1(dx) =

1
n

n∑
j=1

δj
Eδ

εj + op(n−1/2).

The last approximation is the complete case version of equation (1.3) in Müller et al.
(2009). It can be verified by inspecting the proof of Lemma 1 in that paper, where prop-
erties of locally polynomial smoothers are derived. Keep in mind that our estimators are
constructed from the complete cases (equation (1.3) above), which explains the indicators
in the above formula.
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Note that the uniform expansion implies a functional central limit theorem. Also note
that the efficiency property of our proposed simple estimator F̂c yields that competing
imputation type estimators will not be able to outperform it in large samples. In Section
3 we illustrate this result with simulations for two examples. The first example demon-
strates the efficiency of the complete case estimator F̂c by comparing it with a ‘tuned’
estimator using an imputation technique similar to one studied by González-Manteiga
and Pérez-González (2006). For our second example, we perform simulations similar to
those in Müller, Schick and Wefelmeyer (2012), who use a martingale transform approach
to test for normal errors in the full model. The test statistics involve the estimators from
the first example.

2. Efficiency

We now calculate the efficient influence function for estimating the functional E{h(ε)}
using observations (Xi, δiYi, δi), i = 1, . . . , n. We first follow the arguments of Müller,
Schick and Wefelmeyer (2006), who study efficient estimation of general differentiable
functionals with data of the above form. We summarize their main arguments and refer
to that paper for more details. We then focus on the functional E{h(ε)}, which Müller,
Schick and Wefelmeyer (2004) study in the full model. This allows us to adapt parts of
their proofs to the MAR model considered here.

We do not assume a parametric model for the regression function or for the distribution
of the observations. The parameter set Θ of the statistical model therefore includes a
family of covariate distributions G , a family of error distributions F , a set of regression
functions R, and a family of response probability distributions B. i.e. Θ = G×F×R×B.
We impose the following assumptions:

Assumption (F) The error density f is absolutely continuous with almost everywhere
derivative f ′ and finite Fisher information J =

∫
`2(z)f(z)dz, where ` = −f ′/f denotes

the score function.

Since the construction of the efficient influence function utilizes the directional infor-
mation in Θ, we will now identify the set Θ̇ of all perturbations related to the statistical
model, which may be thought of as directions. The joint distribution P (dx, dy, dz) de-
pends on the marginal distribution G(dx) of X, the conditional probability π(x) that δ
equals one given X = x, and the conditional distribution Q(x, dy) of Y given X = x.
Formally we have

P (dx, dy, dz) = G(dx)Bπ(x)(dz) {zQ(x, dy) + (1− z)δ0(dy)} ,

where Bp = pδ1 + (1 − p)δ0 denotes the Bernoulli distribution with parameter p and δt
the Dirac measure at t. Now consider perturbations Gnu, πnw and Qnv of G, π and Q,



February 27, 2013 14:45 eff23

J. Chown and U.U. Müller 7

respectively, that are Hellinger differentiable in the following sense:∫ {
n1/2

(
dG1/2

nu − dG1/2
)
− 1

2
udG1/2

}2
→ 0,∫ ∫ [

n1/2
{
dB

1/2
πnw(x) − dB

1/2
π(x)

}
− 1

2
{· − π(x)}w(x)dB1/2

π(x)

]2
G(dx)→ 0,∫ ∫ [

(n1/2
{
dQ1/2

nv (x, ·)− dQ1/2(x, ·)
}
− 1

2
v(x, ·)dQ1/2(x, ·)

]2
G1(dx)→ 0,

with G1 as the conditional distribution of X given that δ = 1. This requires that u
belongs to L2,0(G), i.e. u ∈ L2(G) and

∫
u dG = 0, that w belongs to

L2(Gπ) =
{
w ∈ L2(G) :

∫
w2(x)π(x){1− π(x)}dG(x) <∞

}
with Gπ(dx) = π(x){1− π(x)}G(dx), and that v belongs to

V0 =
{
v ∈ L2(Q⊗G1) :

∫
v(x, y)dQ(x, dy) = 0

}
.

Note that models for G1, π and Q will imply further restrictions on the perturbations in
order to satisfy those model assumptions. So u, w and v must be restricted to subspaces
of L2,0(G), L2(Gπ) and V0, respectively. In this paper no model assumptions on G and π
have been made, so we only have to identify the appropriate subspace V of V0. Since the
covariates and the errors are assumed to be independent, we may write Q(x, dy) = f{y−
r(x)}dy. With this notation the constraint on v ∈ V0 states

∫
v(x, y)f{y−r(x)}dy = 0. In

order to derive the explicit form of V we introduce perturbations s and t of the unknown
functions f and r and write

Qnv(x, dy) = Qnst(x, dy) = fns(y − rnt)dy,

where fns(z) = f(z){1 +n−1/2s(z)}, rnt(x) = r(x) +n−1/2t(x) for s ∈ S and t ∈ T . Here

S =
{
s ∈ L2(F ) :

∫
s(z)f(z)dz = 0,

∫
zs(z)f(z)dz = 0

}
,

which comes from the requirement that the perturbed density fns integrates to one and
has mean zero. We can take T = L2(G1) since we do not assume a parametric form for
r. In the following we write “ .=” to denote asymptotic equivalence, i.e. equality up to
an additive term of order op(n−1/2). As in Müller (2009), who considers a parametric
(nonlinear) regression function, we have

fns(y − rnt(x)) = f{y − rnt(x)}
[
1 + n−1/2s{y − rnt(x)}

]
= f{y − r(x)− n−1/2t(x)}

[
1 + n−1/2s{y − r(x)− n−1/2t(x)}

]
.= f{y − r(x)}

(
1 + n−1/2

[
s{y − r(x)}+ `{y − r(x)}t(x)

])
.
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Hence Qnst(x, dy) .= f{y − r(x)}
(

1 + n−1/2
[
s{y − r(x)}+ `{y − r(x)}t(x)

])
and V has

the form

V =
{
v(x, y) = s{y − r(x)}+ `{y − r(x)}t(x) : s ∈ S, t ∈ T

}
.

Thus we construct Θ̇ as the set containing all possible Hellinger perturbations of the
statistical model parameters, or just Θ̇ = L2,0(G)×S×L2(G1)×L2(Gπ). The perturbed
distribution Pnγ , with γ = (u, s, t, w) in Θ̇, of the observation (X, δY, δ) is then

Pnγ(dx, dy, dz) .= Gnu(dx)Bπnw(x)(dz) {zQnst(x, dy) + (1− z)δ0(dy)} .

It follows that Pnγ is Hellinger differentiable with tangent

dγ(X, δY, δ) = u(X) + δ{s(ε) + `(ε)t(X)}+ {δ − π(X)}w(X).

The efficient influence function of a differentiable functional is characterized by its
canonical gradient, which is defined as an orthogonal projection of a gradient onto the
tangent space. We take the tangent space T as the closure of the linear subspace formed
by dγ . Since dγ is a sum of orthogonal elements we can write

T = {u(X) : u ∈ L2,0(G)} ⊕ V ⊕ {(δ − π(X))w(X) : w ∈ L2(Gπ)}.

We are interested in the linear functional E{h(ε)}. In order to specify a gradient of
E{h(ε)} we need the directional derivative γh ∈ Θ̇ of E{h(ε)}, which is characterized by
a limit as follows. As in Müller et al. (2004) we have, for every s ∈ S,

lim
n→∞

n1/2
[ ∫

h(z)fns(z) dz − E{h(ε)}
]

= E{h(ε)s(ε)} = E{h0(ε)s(ε)},

with h0 given as the projection of h onto S,

h0(z) = h(z)−
∫
h dF − z

σ2

∫
xh(x) dF (x),

where σ2 denotes the error variance. Hence E{h(ε)} is differentiable with directional
derivative γh = (0, h0, 0, 0) and gradient h0(ε). By the convolution theorem (see, for
example, Schick (1993), Section 2), the unique canonical gradient g∗(X, δY, δ) is obtained
as the orthogonal projection of h0(ε) onto the tangent space T . Hence it must be of the
form

g∗(X, δY, δ) = u∗(X) + δ{s∗(ε) + `(ε)t∗(X)}+ {δ − π(X)}w∗(X) (2.1)

and is characterized by

E{h0(ε)s(ε)} = E{g∗(X, δY, δ)dγ(X, δY, δ)} (2.2)
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for every γ ∈ Θ̇. A straightforward calculation yields for the right-hand side of (2.2):

E{g∗(X, δY, δ)dγ(X, δY, δ)}

= E
{
u∗(X)u(X)

}
+ EδE

{
s∗(ε)s(ε)

}
+ E

{
`0(ε)s∗(ε)

}
E
{
π(X)t(X)

}
+ E

{
`0(ε)s(ε)

}
E
{
π(X)t∗(X)

}
+ JE

{
t∗(X)t(X)

}
+ E

[
π(X){1− π(X)}w∗(X)w(X)

]
,

where `0(ε) is the projection of `(ε) onto V, that is `0(ε) = `(ε)−ε/σ2. For convenience,
we introduce the quantity J0 which is calculated analogously to J as

J0 =
∫
`20 dF =

∫ {
`(z)− z

σ2

}2
dF (z) = J − 1

σ2
.

From (2.2) it is easy to see that u∗ = w∗ = 0. Setting u = t = w = 0 in (2.2) we obtain∫
h0s dF = Eδ

∫
ss∗ dF +

∫
`0s dF

∫
πt∗ dG

for all s. This gives s∗(z) = (Eδ)−1
{
h0(z) − `0(z)

∫
πt∗ dG

}
. Now set u = s = w = 0 in

(2.2) and insert s∗ to get

0 =
∫
`0s
∗ dF

∫
πt dG+ J

∫
πt∗t dG =

∫
`0s
∗ dFEδ

∫
t dG1 + JEδ

∫
t∗t dG1

=
∫
h0`0 dF

∫
t dG1 − J0Eδ

∫
t dG1

∫
t∗ dG1 + JEδ

∫
t∗t dG1

for all t ∈ L2(G1). Now consider L2(G1) written (as in Müller et al. (2004)) as an
orthogonal sum of functions with mean 0 and of constants, i.e. L2(G1) = L2,0(G1)⊕ [1],
which means that we can write t = (t −

∫
t dG1) +

∫
t dG1. The above equation now

becomes

0 = JEδ

∫ (
t−
∫
t dG1

)(
t∗−

∫
t∗ dG1

)
dG1 +

∫
h0`0 dF

∫
t dG1 +

Eδ

σ2

∫
t dG1

∫
t∗ dG1

for all t ∈ L2(G1). This yields

t∗ −
∫
t∗ dG1 = 0,

∫
t∗ dG1 = −σ2(Eδ)−1

∫
h0`0 dF,

and thus t∗ = −σ2(Eδ)−1
∫
h0`0 dF . Combining the above we obtain the following result:

Lemma 2.1: The canonical gradient of E{h(ε)} is g∗(X, δY, δ) and characterized by
(0, s∗, t∗, 0), where

s∗(z) =
1
Eδ

[
h0(z) + σ2E{h0(ε)`0(ε)}`0(z)

]
and t∗ = − σ

2

Eδ
E{h0(ε)`0(ε)},

with σ2 = E(ε2), h0(ε) = h(ε)−
∫
h dF − εσ−2

∫
zh(z) dF (z) and `0(ε) = `(ε)− ε/σ2.
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An estimator µ̂ of E{h(ε)} is efficient in the sense of Hájek and Le Cam if it is
asymptotically linear with influence function equal to the canonical gradient g∗(X, δY, δ)
that characterizes E{h(ε)}, i.e. if

n1/2
{
µ̂− E{h(ε)}

}
= n−1/2

n∑
i=1

g∗(Xi, δiYi, δi) + op(1).

A straightforward calculation using this combined with Lemma 2.1 and formula (2.1)
yields:

Corollary 2.2: Consider the nonparametric regression model with responses missing
at random. An efficient estimator µ̂ of E{h(ε)} must satisfy the expansion

n1/2
[
µ̂− E{h(ε)}

]
= n−1/2

n∑
i=1

δi
Eδ

[
h(εi)− E{h(ε)} − εiE{`(ε)h(ε)}

]
+ op(1).

Remark 2: Müller et al. (2004) construct residual-based estimators n−1
∑n

i=1 h(ε̂i) for
estimating E{h(ε)} in the full model. In their Section 2 they give conditions for the i.i.d.
representation

n−1/2
n∑
i=1

h(ε̂i) = n−1/2
n∑
i=1

[h(εi)− E{h′(ε)}εi] + op(1),

which characterizes an efficient estimator. (For simplicity we assume in this remark that h
is differentiable.) Note that E{h′(ε)} = E{`(ε)h(ε)}. Hence, using the transfer principle,
we see that the complete case versions of their estimators have the expansion from the
previous corollary. Hence they are efficient in the MAR model.

The function h(ε) = 1(ε ≤ t) is of particular interest since many statistical methods are
residual-based and require estimation of the error distribution function. Using Corollary
2.2 with this particular h(ε), we obtain an expansion for the residual-based empirical
distribution function:

Corollary 2.3: Consider the nonparametric regression model with responses missing
at random. An estimator F̂ of the error distribution function F is efficient if it satisfies
the expansion

n1/2
{
F̂ (t)− F (t)

}
= n−1/2

n∑
i=1

δi
Eδ

{
1(εi ≤ t)− F (t) + εif(t)

}
+ op(1).

This is the expansion of the complete case estimator F̂c from the previous section, which
completes the proof of Theorem 1.2.

3. Simulation results

To conclude we present a brief simulation study of the previous results. We also apply
a goodness-of-fit test for normal errors to the residuals. For both examples we assume
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Figure 1. r(x) = x3 − x2 + x+ cos
(

3π
2 x
)
, − 1 ≤ x ≤ 1, with N(0, 1) errors.

a nonparametric regression model as before, Y = r(X) + ε. In order to depict the non-
parametric nature of the regression function r, we choose for the simulations

r(x) = x3 − x2 + x+ cos
(3π

2
x
)
.

The covariates were generated from a uniform distribution and the errors from a normal
distribution, Xi ∼ U(−1, 1) and εi ∼ N(0, 1) for i = 1, . . . , n; see Figure 1 which shows
a scatterplot of a simulated dataset. Finally, the indicators δi have a Bernoulli(π(x))
distribution, with π(x) = P (δ = 1|X = x). For the simulations we use the logistic
distribution function for π(x), with a mean of zero and scale parameter 1,

π(x) =
1

1 + e−x
.

Therefore, the mean amount of missing data is around 50% and ranges between 27% and
73%. For the above choices the assumptions of Theorem 1.2 are satisfied. We work with
d = 1, the local linear smoother, with bandwidth cn = 1.25{n log(n)}−1/4.

3.1. Example 1: Simulation of asymptotic mean squared error

We consider two estimators of the error distribution function. The first estimator is the
proposed complete case estimator F̂c and the second is a ‘tuned’ version of F̂c that uti-
lizes an imputation technique. Similar to González-Manteiga and Pérez-González (2006),
we take the initial local polynomial complete case estimator r̂c (see equation (1.3)) to
produce the completed sample (Xi, Ŷi). We chose Ŷi = r̂c(Xi) for each i = 1, . . . , n. This
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is a variation of the approach of González-Manteiga and Pérez-González who work with
Ŷi = δiYi + (1− δi)r̂c(Xi), i.e. with a “partial imputation” technique. A new local poly-
nomial fit, r̂∗(·), is then constructed from the completed sample. If Y is observed we can
compute adjusted residuals of the form ε̂∗ = Y − r̂∗(X). Using these residuals we obtain
the new tuned estimator

F̂ι(t) = N−1
n∑
j=1

δj1
(
ε̂∗j ≤ t

)
.

From the previous sections we know that the complete case estimator F̂c is an (asymptot-
ically) efficient estimator of the error distribution function. The discussion in Remark 1
suggests that the tuned estimator F̂ι is also efficient, i.e. both estimators are asymptoti-
cally equivalent: we expect that F̂ι can be expanded in the same way as F̂c,

sup
t∈R

∣∣∣ 1
n

n∑
j=1

δj
Eδ

{
1(ε̂∗j ≤ t)− 1(εj ≤ t)

}
− f(t)

∫
â∗(x)G1(dx)

∣∣∣ = op(n−1/2),

where â∗(x) is now an approximation of the difference r̂∗(x)− r(x) (cf. equation (1.4) in
Remark 1). The term involving the integral can be written as

f(t)
∫
â∗(x)G1(dx) = f(t)

∫
âc(c)G1(dx) + f(t)

∫
{â∗(x)− âc(c)}G1(dx),

with the last term being asymptotically negligible since â∗(x) − âc(c) approximates the
difference r̂∗(x)−r̂c(x) of two consistent estimators of r(x). The arguments from Remark 1
then yield

sup
t∈R

∣∣∣ 1
N

n∑
j=1

δj
{
1(ε̂∗j ≤ t)− 1(εj ≤ t)− εjf(t)

}∣∣∣ = op(n−1/2),

i.e. both F̂c and F̂ι have the same asymptotic expansion.
In order to further check the conjecture that both estimators are asymptotically equiv-

alent, we conducted a simulation study using 1000 trials. We considered four sample sizes
and five different values of t at which the error distribution function was evaluated. The
findings are summarized in Table 1. Note that we also implemented another estimator,
which uses partial imputation to complete the sample as suggested by González-Manteiga
and Pérez-González. Since our approach performed slightly better, we report only the
results for our version of F̂ι which is based on Ŷi = r̂c(Xi), i.e. all responses are im-
puted, and not just the missing ones. For the second smoothing step we chose the same
bandwidth as in the first step, cn = 1.25{n log(n)}−1/4.

These results show that the simulated MSE (multiplied by n) of our efficient estimator
is close to the true asymptotic MSE (which equals the asymptotic variance and can
be calculated using Corollary 2.3). We also see that the asymptotic MSE estimates of
F̂ι behave in a similar way to those of F̂c, in particular for large sample sizes. This
provides further evidence that the two approaches are indeed asymptotically equivalent.
The simulated MSE’s of F̂ι, however, more closely match the true asymptotic MSE across
values of t at low sample sizes. This could be a second order effect and we believe the
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Asymptotic mean squared error (MSE)
t = −1.5 t = −1 t = 0 t = 1 t = 1.5

n F̂c F̂ι F̂c F̂ι F̂c F̂ι F̂c F̂ι F̂c F̂ι
50 0.1141 0.0987 0.2705 0.2087 0.1702 0.1884 0.2865 0.2220 0.1179 0.1009

250 0.1018 0.0930 0.1800 0.1634 0.2021 0.2071 0.2022 0.1972 0.1201 0.1165
1000 0.0991 0.0945 0.1668 0.1625 0.1865 0.1997 0.1706 0.1780 0.1000 0.1008

10000 0.0925 0.0920 0.1567 0.1537 0.2068 0.2274 0.1690 0.1752 0.0953 0.0975
true 0.0911 – 0.1498 – 0.1816 – 0.1498 – 0.0911 –

Table 1. Simulated and true asymptotic MSE

most likely explanation is that F̂ι can be regarded as an enhanced version of F̂c. However,
when t = 0 both estimators F̂ι and F̂c perform very similarly for all sample sizes. Since
this value of t is also the mode of the distribution, we believe that the tuning technique
using imputation is least helpful in this case.

3.2. Example 2: Simulating a goodness-of-fit test for normal errors

We now consider a test proposed by Müller et al. (2012) for the full model with multi-
variate covariates. This test was also examined by Koul et al. (2012) in the MAR model
with a one-dimensional covariate, but without simulations. Both articles study versions
of a martingale transform test developed by Khmaladze and Koul (2009). Under the null
hypothesis, these tests tend in distribution to sup0≤t≤1 |B(t)|, with B(t) the standard
Brownian motion, i.e. they are asymptotically distribution free. This is very useful since
the corresponding complete case statistics have the same limiting distributions in this
case, which is a consequence of the transfer principle. This means that the decision rule
remains unchanged in the MAR model. For example, setting the level of the test to 0.05,
we reject H0 if the test statistic exceeds 2.2414, the upper 5% quantile of the distribution
of sup0≤t≤1 |B(t)|.

Writing φ(x) for the density of the N(0, 1) distribution and σ2 for the error variance,
the null hypothesis of normal errors is

H0 : ∃σ > 0 f(x) =
1
σ
φ
(x
σ

)
, x ∈ R.

In order to introduce the test statistic Tc set h(x) = (1,−φ′(x)/φ(x),−(xφ(x))′/φ(x))T

and

H(t) =
∫ t

−∞
hT (x)Γ−1(x)φ(x)dx,

with Γ(x) =
∫∞
x h(z)hT (z)φ(z)dz (see Müller et al. (2012) and Koul et al. (2012) for an

explicit form of Γ(x) and for more details). Following Koul et al. (2012) we have the test
statistic

Tc = sup
t∈R

∣∣∣ 1√
N

n∑
j=1

δj
{
1(Ẑj,c ≤ t)−H(t ∧ Ẑj,c)h(Ẑj,c)

}∣∣∣.
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Test for normal errors
N(0, 2) χ2

1 − 1 t4 Laplace(0, 2)
n Tc Tι Tc Tι Tc Tι Tc Tι

50 0.022 0.025 0.489 0.535 0.099 0.108 0.095 0.119
200 0.030 0.028 1.000 1.000 0.457 0.463 0.459 0.483

Table 2. Simulated level, given by N(0,2) figures, and power for Tc and Tι.

Note that this statistic is based on our proposed estimator F̂c but with scaled residuals
Ẑj,c = ε̂j,c/σ̂c, where σ̂c is the complete case version of the residual-based empirical
estimator, i.e. σ̂c =

√
σ̂2
c with

σ̂2
c =

1
N

n∑
j=1

δj ε̂
2
j,c =

1
N

n∑
j=1

δj{Yj − r̂c(Xj)}2.

Under the MAR assumption ε and δ are independent. Hence σ̂2
c is a consistent estimator

of Var(ε|δ = 1) = Var(ε) = σ2.
We are interested in studying the performance of Tc in the MAR model, and also wish

to compare it with the corresponding statistic Tι that is based on the tuned estimator
F̂ι, i.e. Tι has exactly the same form as Tc but with all ε̂j,c replaced by the adjusted
residuals ε̂∗j = Yj − r̂∗(Xj).

For the simulations we consider the same scenario as in the previous example, but
now also admit some other models for the error distribution. First we look at the N(0, 2)
distribution to allow verification of the (5%) level of the test. For the power considerations
we generated errors from a mean shifted χ2(1) distribution, a t(4) distribution and a
Laplace distribution with mean 0 and variance 2. The simulation study is based on 1000
runs and samples of size 50 and 200.

Table 2 shows that when the errors are normally distributed (and the null hypothesis
is true), the test using Tc rejects the null hypothesis 2.2% of the time for samples of
size 50, and 3% of the time for samples of size 200. This indicates that the test using
Tc is slightly conservative. Turning to Tι we see similar conservative behavior: here the
hypothesis of normality is rejected 2.5% and 2.8% of the time for sample sizes 50 and
200, respectively. When the null hypothesis is not true, the power figures are fairly close
for both tests. The test using Tι seems to be more powerful for low sample sizes. The
differences are less pronounced for the larger sample size of 200, suggesting that the two
tests are asymptotically equivalent – which is what we would expect given the discussion
and the simulation results in the previous example. Summing up, both test procedures
have similar performance. The test based on Tc appears to be the better choice for
moderately large (or large) samples, as it is easier to implement.
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