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Abstract

We consider nonparametric regression models in which the regression function is a
step function, and construct a convolution estimator for the response density that has
the same bias as the usual estimators based on the responses, but a smaller asymptotic
variance.

1 Introduction

We consider the nonparametric regression model Y = r(X) + ε, where ε has mean zero
and X and ε are independent random variables with densities g and f . We assume that
the regression function is a step function with unknown jump points and jump heights.
For simplicity we assume that m, the number of jump points, is known. If f and g are
positive and absolutely continuous, we can estimate the jump points with rate n−1 and the
jump heights with rate n−1/2. This follows from results for more general stepwise linear
and stepwise smooth and parametric regression functions. For deterministic covariates,
Yao and Au (1989) estimate a step regression function for known and for bounded m.
Piecewise linear regression functions are studied by Quandt (1958, 1960), Hinkley (1969),
Farley and Hinich (1970), Bai and Perron (1998), Koul and Qian (2002), and Koul, Qian
and Surgailis (2003). For piecewise polynomial regression functions see Robison (1964), and
for piecewise nonlinear regression functions see Feder (1975a, 1975b), Liu, Wu and Zidek
(1997), Ciuperca (2004, 2009, 2011), Ciuperca and Dapzol (2008), and Launay, Philippe
and Lamarche (2012). Our result extends to the case of an unknown but bounded number
of jump points. An estimator for this number is obtained in Section 4 of Ciuperca (2011).

The estimators for the jump points and the jump heights determine an estimator r̂ for
the regression function r. We can use it to estimate the errors εi = Yi − r(Xi) by residuals
ε̂i = Yi− r̂(Xi), and to estimate the error density f by a residual-based kernel estimator f̂ .
We show in Lemma 1 that f̂ differs by a term of order n−1/2 from the kernel estimator based
on the true errors εi. There are similar results for the case that r is not a step function
but smooth; see Schick and Wefelmeyer (2012) and (2013). Here the regression function
has jumps, and the proof is different. In Theorem 1 we show that the residual-based kernel
estimator f̂ is asymptotically normal with the same mean and variance as the error-based
kernel estimator.
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Assume for simplicity that the heights bj are pairwise different. Then the response
density has a convolution representation

h(y) =
∑

f(y − bj)P (r(X) = bj)

and can be estimated by a convolution estimator

ĥ(y) =
∑

f̂(y − b̂j)p̂j

with estimators b̂j and p̂j for bj and P (r(X) = bj). We show in Lemma 2 that it differs by a
term of order n−1/2 from the estimator with known covariate density and regression function.
In Theorem 2 we show that the convolution estimator ĥ has the same rate and asymptotic
bias as the kernel estimator based only on the responses, and that it is asymptotically
normal with the same mean, but with a considerably reduced variance.

This differs from results for the case that r(X) is not discrete but has a smooth density.
Then the corresponding convolution estimator can have the rate n−1/2 of an empirical
estimator; see again Schick and Wefelmeyer (2012) and (2013).

We show in Remark 1 that corresponding results hold when the covariate is discrete
(and r is arbitrary). Estimators for the regression function in this case are considered in
particular by Bierens and Hartog (1988), Rahbar and Gardiner (1995) and Ouyang, Li and
Racine (2009).

2 Results

Let Y = r(X) + ε, where X and ε are independent random variables with positive and
absolutely continuous densities g and f , and Eε = 0 and Eε2 < ∞. We assume that the
regression function is a step function

r = b11(−∞,a1) +
m∑

j=2

bj1[aj−1,aj) + bm+11[am,∞)

with unknown jump points a1 < · · · < am and unknown heights b1, . . . , bm+1, and known
m. We observe independent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ). By Ciuperca (2009),
there are estimators âj for aj with n(âj − aj) bounded in probability, and estimators b̂j
for bj with n1/2(b̂j − bj) bounded in probability. They are obtained by minimizing, for an
appropriate convex function %, the process

∑n
i=1 %(Yi− r(Xi)) in the parameters a1, . . . , am

and b1, . . . , bm+1 of r. This is an M-estimator for r. For the choice %(y) = y2 it is a
least squares estimator. The minimizing values âj and b̂j determine an estimator for the
regression function,

r̂ = b̂11(−∞,â1) +
m∑

j=2

b̂j1[âj−1,âj) + b̂m+11[âm,∞).
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It can be used to estimate the errors εi by residuals ε̂i = Yi − r̂(Xi), and the error density
f by a residual-based kernel estimator

f̂(x) =
1
n

n∑
i=1

Kb(x− ε̂i)

with Kb(x) = K(x/b)/b, where K is a kernel and b a bandwidth.
In order to show that f̂(x) is asymptotically normal, we compare it first with the kernel

estimator based on the true errors,

f̄(x) =
1
n

n∑
i=1

Kb(x− εi).

Lemma 1 shows that f̂(x) differs from f̄(x) by a term of order Op(n−1/2). The proof is in
Section 3.

Lemma 1. Let g be positive and absolutely continuous, and let f be twice continuously
differentiable at x. Choose a kernel K with bounded support that is twice differentiable
with second derivative fulfilling a Lipschitz condition, and a bandwidth b with b → 0 and
n1/4b→∞. Then

f̂(x) = f̄(x) + f ′(x)
m+1∑
j=1

pj(b̂j − bj) + op(n−1/2).

Denote by Kr the bounded functions K on the real line that vanish ouside a compact
set, and that are (signed) kernels of order r, i.e.,

∫
K(t) dt = 1,

∫
tjK(t) dt = 0 for j =

1, . . . , r − 1, and
∫
trK(t) dt 6= 0.

Let f be r times continuously differentiable at x and K ∈ Kr. The following results
are well known, also under mixing conditions and for linear processes. See Parzen (1962),
Chanda (1983), Bradley (1983), Tran (1992), Hallin and Tran (1996) and Lu (2001). A
convenient reference is Müller and Wefelmeyer (2014), Lemma 1 and Proposition 1. Set

µr =
(−1)r

r!

∫
trK(t) dt, σ2 =

∫
K2(t) dt.

If b→ 0, then
b−rE(f̄(x)− f(x))→ f (r)(x)µr.

If nb→∞, then
nbVar f̄(x)→ f(x)σ2.

The optimal rate is achieved by a bandwidth of the form b = cn−1/(2r+1) for some constant
c. We absorb the factor c as a scale factor into K and work with b = n−1/(2r+1). With this
bandwidth,

nr/(2r+1)(f̄(x)− f(x))⇒ N(f (r)(x)µr, f(x)σ2).

Since b̂j − bj = Op(n−1/2) is asymptotically negligible, nr/(2r+1)(f̂(x)− f(x)) has the same
asymptotic distribution as nr/(2r+1)(f̂(x) − f(x)). Together with Lemma 1 we obtain the
following result.
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Theorem 1. Let g be positive and absolutely continuous, and let f be positive and r times
continuously differentiable at x for an r ≥ 2. Let K ∈ Kr with K ′′ Lipschitz. Set b =
n−1/(2r+1). Then nr/(2r+1)(f̂(x)− f(x)) is asymptotically normal with mean f (r)(x)µr and
variance f(x)σ2.

We turn now to estimation of the response density h. A simple estimator is the kernel
estimator based on the responses,

h̃(y) =
1
n

n∑
i=1

Kb(y − Yi).

If h is r times continuously differentiable at y, then we obtain as above, for K ∈ Kr and
b = n−1/(2r+1),

nr/(2r+1)(h̃(y)− h(y))⇒ N(h(r)(y)µr, h(y)σ2).

A better estimator than h̃ can be based on the convolution representation

h(y) =
∫
f(y − r(x))g(x) dx =

m+1∑
j=1

f(y − bj)pj

with pj = P (r(X) = bj). Here we have assumed for notational simplicity that the heights
b1, . . . , bm+1 are pairwise different. Then r(X) is supported by b1, . . . , bm+1, with probabil-
ities

p1 = P (r(X) = b1) =
∫ a1

−∞
g(x) dx,

pm+1 = P (r(X) = bm+1) =
∫ ∞

am

g(x) dx,

pj = P (r(X) = bj) =
∫ aj

aj−1

g(x) dx, j = 2, . . . ,m.

We estimate the pj empirically,

p̂1 = #{i : −∞ < Xi < â1}/n,
p̂m+1 = #{i : âm ≤ Xi <∞}/n,

p̂j = #{i : âj−1 ≤ Xi < âj}/n, j = 2, . . . ,m.

From âj−aj = Op(n−1) it follows that p̂j−pj = Op(n−1/2). The convolution representation
for the response density h now suggests the convolution estimator

ĥ(x) =
m+1∑
j=1

f̂(y − b̂j)p̂j .

Similarly as for f̂ , we compare ĥ first with the convolution estimator based on the true
jump points aj and heights bj and on the true probabilities pj ,

h̄(y) =
m+1∑
j=1

f̄(y − bj)pj .
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As in Lemma 1 we now obtain that ĥ(y) differs from h̄(y) by a term of order Op(n−1/2).

Lemma 2. Let f be positive and twice continuously differentiable at y − b1, . . . , y − bm+1.
Take g, K and b as in Lemma 1. Then

ĥ(y) = h̄(y)−
m+1∑
j=1

(
f ′(y − bj)− h′(y)

)
pj(b̂j − bj) +

m+1∑
j=1

f(y − bj)(p̂j − pj) + op(n−1/2).

Since b̂j − bj and p̂j − pj are of order Op(n−1/2) and therefore asymptotically negligible,
nr/(2r+1)(ĥ(y)− h(y)) has the same asymptotic distribution as nr/(2r+1)(h̄(y)− h(y)). For
large enough n, the supports of Kb(·−bj) are disjoint, and hence f̄(y−bj) use disjoint subsets
of ε1, . . . , εn for different j. Together with the representation h̄(y) =

∑m+1
j=1 f̄(y− bj)pj this

implies Var h̄(y) =
∑m+1

j=1 p2
j Var f̄(y − bj). Lemma 2 and Theorem 1 therefore give the

following.

Theorem 2. Let f be positive and r times continuously differentiable at y−b1, . . . , y−bm+1.
Take g, K and b as in Theorem 1. Then nr/(2r+1)(ĥ(y) − h(y)) is asymptotically normal
with mean h(r)(y)µr and variance

∑m+1
j=1 f(y − bj)p2

jσ
2.

From the convolution representation of h it follows that h and f are smooth of the same
order. The corresponding mean for the kernel estimator h̃(y) = 1

n

∑n
i=1Kb(y − Yi) based

on the responses only is again h(r)(y)µr, but the variance is

h(y)σ2 =
m+1∑
j=1

f(y − bj)pjσ
2,

while the convolution estimator ĥ(y) has p2
j in place of pj . This is a variance reduction.

It is noticeable if no weight is close to one, and it is considerable if there are many small
weights. In particular, if r(X) is uniformly distributed, so that pj = 1/(m+1), the variance
is reduced by the factor 1/(m+ 1).

Remark 1. Our approach also works when the covariate X is discrete, say with values
a1, . . . , am in an arbitrary space. Then the regression function r may be arbitrary, because it
enters the model only through the values bj = r(aj). Again we assume that m is known, and
that the bj are pairwise different. Then r(X) is discrete with values bj having probabilities

P (r(X) = bj) = P (X = aj) = pj .

The values a1, . . . , am are eventually observed and need not be estimated. We estimate pj

empirically, by
p̂j = Nj/n with Nj = #{i : Xi = aj}.

An estimator for bj is

b̂j =
1
Nj

∑
i:Xi=aj

Yi.
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The response density has the representation

h(y) =
m∑

j=1

f(y − bj)pj .

The error εi = Yi − r(Xi) is estimated by the residual ε̂i = Yi − b̂j if Xi = aj . Let
f̂(x) = 1

n

∑n
i=1Kb(x − ε̂i) denote the residual-based kernel estimator. The convolution

estimator for h(y) is

ĥ(y) =
m∑

j=1

f̂(y − b̂j)p̂j .

Under the same assumptions on f , K and b as before, the above results continue to hold,
with m in place of m+ 1.

3 Proofs

Proof of Lemma 1. In a first step we show that asymptotically it makes no difference if
we replace the âj by aj . We simplify the notation by writing

A1 = (−∞, a1), Am+1 = [am,∞), Aj = [aj−1, aj) for j = 2, . . . ,m.

We write Âj if the aj are replaced by âj . We write r̃ for the estimator obtained from r̂

by replacing âj by aj , i.e., r̃ =
∑m+1

j=1 1Aj b̂j . We define the residuals associated with r̃ by
ε̃j = Yj − r̃(Xj) and set

f̃(x) =
1
n

n∑
i=1

Kb(x− ε̃i) =
m+1∑
j=1

1
n

n∑
i=1

1Aj (Xi)Kb(x− εi + b̂j − bj).

With A the complement of the union of the intervals Âj ∩ Aj , j = 1, . . .m + 1, we can
express

f̂(x) =
1
n

n∑
i=1

Kb(x−ε̂i) =
1
n

n∑
i=1

1A(Xi)Kb(x−ε̂i)+
m+1∑
j=1

1
n

n∑
i=1

1Âj∩Aj
(Xi)Kb(x−εi+b̂j−bj).

Note that N =
∑n

i=1 1A(Xi) is bounded in probability. Indeed, for positive constants B
and C and Dn = nmax1≤j≤m |âj − aj |, we have

P (N > B) ≤ P (Dn > C) + P
( m∑

j=1

n∑
i=1

1[aj−C/n,aj+C/n](Xi) > B
)

≤ P (Dn > C) +
m∑

j=1

nP (aj − C/n ≤ X ≤ aj + C/n)/B

≤ P (Dn > C) + sup
y
g(y)2mC/B.
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It is now easy to see that

(3.1) sup
x
|f̂(x)− f̃(x)| ≤ 2 sup

y
|Kb(y)|N/n = Op((nb)−1) = op(n−1/2).

In a second step, we replace b̂j by bj . For Xi ∈ Aj , a Taylor expansion yields

∣∣∣Kb(x− ε̃i)−Kb(x− εi)− (b̂j − bj)K ′b(x− εi)−
1
2

(b̂j − bj)2K
′′
b (x− εi)

∣∣∣ ≤ L|b̂j − bj |3

6b4
,

with L the Lipschitz constant of K ′′. Hence

f̃(x) = f̄(x) +
m+1∑
j=1

(b̂j − bj)
1
n

n∑
i=1

1Aj (Xi)K ′b(x− εi)

+
1
2

m+1∑
j=1

(b̂j − bj)2
1
n

n∑
i=1

1Aj (Xi)K
′′
b (x− εi) + op(n−1/2)

holds in view of n−3/2b−4 = op(n−1/2). For the second term in the expansion of f̃(x) we use

E1Aj (X)K ′b(x− ε) = P (X ∈ Aj)
∫
K ′b(x− y)f(y) dy

= pj

∫
K(t)f ′(x− bt) dt→ pjf

′(x)

and
Var 1Aj (X)K ′b(x− ε) ≤ E(K

′
b(x− ε)2) = b−3

∫
f(x− bt)(K ′(t))2 dt.

Since n−1b−3 → 0, we obtain

1
n

n∑
i=1

1Aj (Xi)K ′b(x− εi) = pjf
′(x) + op(1).

Similarly,
1
n

n∑
i=1

1Aj (Xi)K
′′
b (x− εi) = pjf

′′
(x) + op(1) +Op(n−1/2b−5/2).

The assertion follows.

Proof of Lemma 2. The proof follows along the lines of the proof of Lemma 1. We
continue using the notation introduced there. Write

f̃(y − b̂j) =
1
n

n∑
i=1

Kb(y − ε̃i − b̂j) =
1
n

n∑
i=1

Kb(y − εi − bj + r̃(Xi)− r(Xi)− (b̂j − bj))

=
m+1∑
k=1

1
n

n∑
i=1

1Ak
(Xi)Kb(y − εi + b̂k − bk − (b̂j − bj)).
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By the same Taylor expansion as in the proof of Lemma 1,

f̃(y − b̂j) = f̄(y − bj) +
m+1∑
k=1

(b̂k − bk)pkf
′(y − bj)− (b̂j − bj)f ′(y − bj) + op(n−1/2).

Using (3.1), we obtain

ĥ(y) =
m+1∑
j=1

f̂(y − b̂j)p̂j =
m+1∑
j=1

f̃(y − b̂j)p̂j + op(n−1/2)

=
m+1∑
j=1

f̃(y − b̂j)pj +
m+1∑
j=1

f̃(y − b̂j)(p̂j − pj) + op(n−1/2)

=
m+1∑
j=1

f̄(y − bj)pj +
m+1∑
j=1

f ′(y − bj)pj

m+1∑
k=1

pk(b̂k − bk)−
m+1∑
j=1

f ′(y − bj)pj(b̂j − bj)

+
m+1∑
j=1

f(y − bj)(p̂j − pj) + op(n−1/2).

The assertion now follows with

m+1∑
j=1

f ′(y − bj)pj = h′(y).
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