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Abstract

This article considers linear and nonlinear regression with a response variable
that is allowed to be “missing at random”. The only structural assumptions
on the distribution of the variables are that the errors have mean zero and are
independent of the covariates. The independence assumption is important. It
enables us to construct an estimator for the response density that uses all the
observed data, in contrast to the usual local smoothing techniques, and which
therefore permits a faster rate of convergence. The idea is to write the response
density as a convolution integral which can be estimated by an empirical version,
with a weighted residual-based kernel estimator plugged in for the error density.
For an appropriate class of regression functions, and a suitably chosen band-
width, this estimator is consistent and converges with the optimal parametric
rate n1/2. Moreover, the estimator is proved to be efficient (in the sense of Hájek
and Le Cam) if an efficient estimator is used for the regression parameter.
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likelihood, influence function, gradient.
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1. Introduction

We study regression models of the form Y = rϑ(X) + ε, where rϑ is a linear
or nonlinear regression function that depends smoothly on a finite-dimensional
parameter vector ϑ. We assume that the covariate vector X and the error vari-
able ε are independent, and that the errors have mean zero and finite variance.
We will not make any further model assumptions on the distributions of X and
ε, in other words our model is a semiparametric regression model. Note that this
model with an unknown error distribution is particularly relevant in situations
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where it is not appropriate to assume that the errors are from a normal distri-
bution, or from some other specific distribution, which would allow estimation
of the regression function using likelihood techniques.

We are interested in situations where some of the responses Y are missing.
More precisely, we will assume that Y is missing at random (MAR). This means
that we always observe X , but only observe Y in those cases where some indica-
tor δ equals one, and the indicator δ is conditionally independent of Y given X ,
i.e. P (δ = 1|X,Y ) = P (δ = 1|X) = π(X). MAR is a common assumption and
is reasonable in many situations (see Little & Rubin, 2002, Chapter 1). One
example would be the problem of non-responses in survey questions: assume,
for example, that additional data about socioeconomic status are available. It
is possible that the response probabilities are different for subjects with differ-
ent socioeconomic backgrounds. It is also possible that subjects from the same
status group are equally likely to respond, regardless what the response would
be.

Note that the more intuitive notion of randomness for the missing value
mechanism is called missing completely at random (MCAR). Here the missing
value mechanism does not depend on observed or unobserved measurements, i.e.
P (δ = 1|X,Y ) is a constant, P (δ = 1|X,Y ) = π(X) = π. (By assuming MAR
responses we will also cover the MCAR situation, since π(X) = π is simply
a special case.) The situation when data are not missing at random (NMAR)
will not be studied here: in this case P (δ = 1|X,Y ) = π(X,Y ) is a function
of X and Y . It therefore depends on data that are missing, which means that
inference requires auxiliary information. With the MAR assumption, P (δ =
1|X,Y ) = π(X) depends only on observable data, i.e. the mechanism π(X) is
“ignorable”: it need not be modeled since it can be estimated from the data.

In this article we study density estimators, specifically consistent estimators
of the density of the response variable Y which converge with the unusual (fast)
rate n1/2. The simplest (slowly converging) estimator of the density of a variable
Y at some point y is a kernel estimator based on observed responses,

1

N

n
∑

i=1

δikb(y − Yi), (1.1)

where N is the number of completely observed data points, N =
∑n

j=1 δj ,

and where kb(y) = k(y/b)/b with kernel function k and bandwidth b > 0. If
there is additional information available in the form of a single covariate or a
covariate vector X , then it is intuitively clear that an estimator which uses the
additional information should be better than the kernel estimator above. This
idea is, for example, used by Wang (2008) for a related regression model with
MAR responses, but without assuming independence of covariates and errors.
He introduces a probability weighted estimator and an imputed estimator, and
proves local asymptotic normality – but with rates slower than n1/2, which is
typical for kernel estimators. Also related is Mojirsheibani (2007), who studies
partial imputation for response density estimators in a nonparametric regression
setting with MAR responses. He also obtains convergence rates that are slower
than n1/2.
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Here we construct an estimator for the response density from a sample
(Xi, δiYi, δi). Under appropriate conditions on the regression function and the
distribution, our estimator will converge with the desired rate n1/2, and, beyond
that, will be efficient. The case with missing responses is an important general-
ization of the case with fully observed data, which is covered as a special case
with all indicators δi = 1. This is a research area where little work has been
done, even if we include cases where all data are observed.

In order to introduce the estimator we writeM for the covariate distribution
and f for the error density. We also suppose that rϑ(X) has a density g. Then
the response density, say q(y), can be written as a convolution integral,

q(y) =

∫

f{y − rϑ(x)}M(dx) =

∫

f(y − u)g(u) du

=

∫

f(u)g(y − u) du = E{g(y − ε)} = f ∗ g(y).

This representation suggests two plug-in estimators of the integral: firstly, a
convolution of kernel density estimators,

q̂(y) = f̂ ∗ ĝ(y) with f̂(z) =
1

N

n
∑

j=1

δjkb(z − ε̂j),

ĝ(z) =
1

n

n
∑

j=1

kb{z − rϑ̂(Xj)},
(1.2)

where ε̂i = Yi − rϑ̂(Xi) are the residuals based on a n1/2-consistent estimator ϑ̂
of ϑ. Another obvious and perhaps even simpler estimator is

∫

f̂{y − rϑ̂(x)} dM̂(x) =
1

n

n
∑

i=1

f̂{y − rϑ̂(Xi)} (1.3)

with f̂ from above. Here M̂ is just the empirical covariate distribution function.
For technical reasons we will work with estimator (1.2) in this article. However,
it is easy to see that this estimator can always be written in the form (1.3).
The reverse does not hold in general. The two estimators are the same if, for
example, the kernel k in f̂ is the standard normal density. (See Section 5 for
more details.)

Note that the two estimators (1.2) and (1.3) use all observations, whereas
the usual kernel estimator (1.1) only uses a fraction of the data, namely the
responses Yi in a neighborhood of y, which explains the faster convergence
rate. The convolution approach is therefore, in general, better than the usual
approach (1.1), and even better than the usual estimator based on complete
data pairs. A degenerate case is given if the regression function is a constant,
rϑ(x) = ϑ. In this case we do not estimate an integral: q(y) is just a shift of
the error density, q(y) =

∫

f(y−ϑ)M(dx) = f(y−ϑ) – which is estimated with
the usual slow rates.
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Now suppose that the response density can be written as a non-degenerate
convolution integral. The estimator (1.2) will, in general, be n1/2-consistent but
not efficient. In order to make it efficient we have to use an efficient estimator
for ϑ̂. We will also have to incorporate the mean zero constraint on the error
distribution, which we achieve by adding Owen’s empirical likelihood weights.
The weighted estimator of the error density, f̂w, is then a weighted version of
f̂ , with weights ŵj based on residuals ε̂j = Yj − rϑ̂(Xj) such that the weighted
residuals are centered around zero,

∑n
j=1 ŵjδj ε̂j = 0. Our final estimator is the

weighted version q̂w(y) of (1.2), namely

q̂w(y) = f̂w ∗ ĝ(y) with f̂w(z) =
1

N

n
∑

j=1

ŵjδjkb(z − ε̂j), (1.4)

and with ĝ as before. For some auxiliary results we will refer to Müller (2009),
where, in the same nonlinear regression setting, we derived efficient estima-
tors for expectations Eh(X,Y ). The key idea in that article is to exploit the
independence of covariates and errors by writing the expectation as an iter-
ated expectation which can be estimated by empirical plug-in estimators. The
construction of an efficient estimator for ϑ̂ will not be discussed here. We refer
to Müller (2009) Section 5. For further background on efficient estimation of
expectations in various regression settings with MAR responses see also Müller,
Schick and Wefelmeyer (2006). Weighted residual-based density estimators for
autoregressive models are studied in Müller, Schick and Wefelmeyer (2005).

To our knowledge, our proposed response density estimator is the first effi-
cient estimator for nonlinear and even linear regression. The result is new even
if we only consider the special case with completely observed data. By allowing
for responsesmissing at random we cover a common missing data situation. Our
efficiency results are based on the Hájek–Le Cam theory for locally asymptoti-
cally normal families. As a consequence, the proposed estimator has a limiting
normal distribution with the asymptotic variance determined by the influence
function, which provides a basis for further inference.

Our estimator is motivated by Saavedra and Cao (1999), and Schick and
Wefelmeyer (2004a, 2004b), who propose n1/2-consistent estimators for marginal
densities of first order moving average processes using plug-in methods. An early
paper introducing a U -statistic estimator that converges faster than the usual
kernel estimator is Frees (1994). Other articles have considered n1/2-consistent
density estimation in various (complete data) settings, for example Schick and
Wefelmeyer (2004c, 2007a), who estimate densities of sums of independent ran-
dom variables, Du and Schick (2007) who derive estimators for derivatives, and
Schick and Wefelmeyer (2007b), who study linear processes. Giné and Mason
(2007) derive central limit theorems (in various norms) for density estimators
of functions of several variables in a general framework. Two recent papers
in a nonparametric regression setting (with an unspecified regression function
r) are Escanciano and Jacho-Chávez (2010) and Støve and Tjøstheim (2011).
Escanciano and Jacho-Chávez describe properties of their estimator r̂(X) which
entail asymptotic normality of the (unweighted) response density estimator (1.3)
(with r̂ in place of rϑ̂). Støve and Tjøstheim study the mean squared error of
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the same estimator. Both articles propose the Nadaraya-Watson estimator for
estimating the regression function.

As in Giné and Mason (2007), who prove limiting normality of their estima-
tors, we will have to require square-integrability. In the context of regression
this is often violated. Consider again the response density q(y) = f ∗ g(y) =
E{g(y − ε)} where g is the density of rϑ(X). In order to guarantee square-
integrability we need rϑ such that g(y − ε) has a finite second moment. In
Section 5 of this article we discuss this assumption and present some simula-
tions. We study both the situation when the regression function is correctly
specified and when it is misspecified – with convincing results. We also identify
and discuss irregular cases where the n1/2 rate (and efficiency) cannot be ob-
tained, for example when rϑ is constant or has parts that are constant or close
to constant. If X is two-dimensional this means that there are saddle points or
local extrema where the curve is close to flat. The assumptions are typically
satisfied if the regression function is linear or partly linear. Note that the re-
sult by Escanciano and Jacho-Chávez (2010), for the same reasons, only holds
for a restricted class of regression functions – which they implicitly assume by
requiring square-integrability. Støve and Tjøstheim (2011) explicitly assume a
(univariate) regression function that is strictly monotonic.

The earlier sections of this paper are organized as follows. In Section 2 we
derive an expansion of the unweighted version of the response density estimator.
This result is used in Section 3, where we provide an approximation of the final
weighted estimator. Both expansions still involve the difference ϑ̂−ϑ. Section 4
is on efficiency: we characterize the influence function of an efficient estimator
of the response density. Comparing the efficient influence function and the
approximation in Section 3 yields that the weighted estimator is efficient if ϑ̂ is
efficient. The main result is given at the end of Section 4 in Theorem 3.

2. The unweighted estimator

We commence by deriving a first asymptotic expansion for the unweighted
estimator (1.2). We begin with some notation. Recall that we are considering
the nonlinear regression model Y = rϑ(X) + ε, with covariate vector X inde-
pendent of the error variable ε. We write M for the distribution function of
X , and F and f for the distribution function and the density function of ε.
The error ε has mean zero and finite variance. Write ε̂i = Yi − rϑ̂(Xi) and
kb(y) = k(y/b)/b, where k is a kernel and b a bandwidth. The unweighted es-

timator (1.2) has the form q̂ = f̂ ∗ ĝ with f̂(z) = N−1
∑n

j=1 δj kb(z − ε̂j) and

ĝ(z) = n−1
∑n

j=1 kb{z − rϑ̂(Xj)}, where ϑ̂ is a n1/2-consistent estimator. We

work with a second order kernel. This means
∫

k(u) du = 1,
∫

uk(u) du = 0 and
0 <

∫

u2k(u) du <∞.
We now state the main conditions under which the asymptotic expansion

of the response density estimator is proved. We will assume throughout this
article that P (δ = 1) = Eδ is positive to exclude the degenerate case that a
response is (almost surely) never observed.

Condition K. The kernel k is of order two and is three times continuously
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differentiable with ‖k‖2, ‖k′‖2, ‖k′′‖2 and ‖k′′′‖2 finite.

Condition F. The error density f has an integrable derivative f ′ that is Lip-
schitz, |f ′(x) − f ′(y)| ≤ |x− y|L for some positive finite constant L.

Condition G. The density g of rϑ(X) is of bounded variation.

Condition R. The regression function τ 7→ rτ (x) is differentiable with a p-
dimensional gradient ṙϑ(x) which satisfies E|ṙϑ(X)|4 < ∞ and the Lipschitz
condition

|ṙτ (x) − ṙϑ(x)| ≤ |τ − ϑ|a(x)
with a ∈ L2(M) .

Condition T. The estimator ϑ̂ is n1/2-consistent.

As a consequence of conditions F and G, the densities f and g are bounded
and therefore square-integrable. The response density q = f ∗ g thus belongs to
C0(R), where C0(R) is the set of all continuous functions h from R → R that
vanish at infinity, sup|y|>M |h(y)| → 0 as M → ∞. Note that C0(R) equipped

with the sup-norm ‖·‖∞ is a separable Banach space. We will consider a central
limit theorem for our response density estimator in this space. It also follows
from Condition F that q = f ∗g has a Lipschitz continuous derivative q′ = f ′∗g.

Condition R implies that |rϑ+τ − rϑ − ṙ⊤ϑ τ | ≤ |τ2|a for τ close to ϑ. From

this we immediately obtain for a n1/2-consistent estimator ϑ̂

1

n

n
∑

i=1

∣

∣rϑ̂(Xi)− rϑ(Xi)− ṙϑ(Xi)
⊤(ϑ̂− ϑ)

∣

∣ = Op(n
−1), (2.1)

1

n

n
∑

i=1

{

rϑ̂(Xi)− rϑ(Xi)− ṙϑ(Xi)
⊤(ϑ̂− ϑ)

}2
= Op(n

−2).

Also, since |ṙϑ(X)| has a finite fourth moment, we have

max
1≤j≤n

|ṙϑ(Xj)| = op(n
1/4).

A further consequence of Condition R is

max
1≤j≤n

δj |ε̂j − εj| = op(1),

which was proved in Lemma 7.1 in Müller (2009).
In Theorem 1 we will derive an approximation for the difference between

the unweighted estimator q̂ and the density q, which will involve the difference
ϑ̂ − ϑ where, for now, ϑ̂ is some n1/2-consistent estimator of ϑ. An expansion
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for ϑ̂− ϑ is provided in Section 4. We introduce some notation and write

̺ = E{ṙϑ(X)|δ = 1}

A1(y) =
1

N

n
∑

i=1

δi{g(y − εi)− q(y)},

A2(y) =
1

n

n
∑

i=1

[f{y − rϑ(Xi)} − q(y)],

q̇(y) = −
∫

f ′{y − rϑ(x)}ṙϑ(x)M(dx).

The proof of Theorem 1 rests on the following lemmas, which are proved in
Section 6 at the end of this article.

Lemma 1. Suppose that Conditions K, F, R and T are satisfied and set

f̃(z) =
1

N

n
∑

j=1

δjkb(z − εj).

Then, as nbα → ∞ for some α ≥ 7/2 and b→ 0, the following properties hold:

‖f̂ − f̃ − f ′̺⊤(ϑ̂− ϑ)‖2 = op(n
−1/2), (2.2)

‖f̃ − fb‖2 = Op((nb)
−1/2), (2.3)

‖fb − f‖2 = o(b3/2), (2.4)

with fb = f ∗ kb differentiable with derivative f ′
b = f ′ ∗ kb which is bounded and

Lipschitz.

Lemma 2. Suppose that Conditions K, G, R and T are satisfied and set

g̃(z) =
1

n

n
∑

j=1

kb{z − rϑ(Xj)}, Γ̄1(z) = E[k′b{z − rϑ(X)}ṙϑ(X)].

Let nbα → ∞ for some α ≥ 7/2 and b→ 0. Then, with gb = g∗kb, the following
properties hold:

‖ĝ − g̃ + Γ̄⊤
1 (ϑ̂− ϑ)‖2 = op(n

−1/2), (2.5)

‖Γ̄1‖2 = O(b−1), (2.6)

‖g̃ − gb‖2 = Op((nb)
−1/2), (2.7)

‖gb − g‖2 = O(b1/2), ‖gb − g‖1 = O(b), ‖g′b‖1 = O(1). (2.8)

Lemma 3. Assume that Conditions F and G are satisfied and let n → ∞ and
b→ 0. Then we have, for any kernel k,

‖Ai ∗ kb −Ai‖∞ = op(n
−1/2) for i = 1, 2,

and A1 ∗ kb and A2 belong to C0(R) and converge in distribution in C0(R) to a
Gaussian process.
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Theorem 1. Assume that Conditions K, F, G, R and T are satisfied. Then,
as nbα → ∞ for some α ≥ 7/2 and nb4 → 0, the following expansion holds,

‖q̂ − q −A1 −A2 − (q′̺+ q̇)⊤(ϑ̂− ϑ)‖∞ = op(n
−1/2).

Proof. In order to prove the statement we write

q̂ = f̂ ∗ ĝ = fb ∗ gb + (f̂ − fb) ∗ gb + fb ∗ (ĝ − gb) + (f̂ − fb) ∗ (ĝ − gb).

We begin with the last term on the right-hand side. In order to show that
it is asymptotically negligible, we will use the properties given in Lemmas 1
and 2. Lemma 2 yields ‖ĝ − gb‖2 = Op((n

−1/2b−1). In view of the inequality

‖(f̂ − fb) ∗ (ĝ − gb)‖∞ ≤ ‖f̂ − fb‖2‖ĝ − gb‖2 and since nb3 → ∞, we obtain the
rate

‖(f̂−fb)∗(ĝ−gb)‖∞ = Op((nb)
−1/2)Op(n

−1/2b−1) = Op(n
−1b−3/2) = op(n

−1/2).

Now consider fb ∗ gb = q ∗ kb ∗ kb. The derivative q′ is Lipschitz and k is of
order two. Hence, by a standard argument, ‖q ∗ kb − q‖∞ = O(b2), which yields
‖(q ∗ kb − q) ∗ kb‖∞ ≤ ‖q ∗ kb − q‖∞‖kb‖1 = O(b2). This and nb4 → 0 give

‖fb ∗ gb − q‖∞ = O(b2) = op(n
−1/2).

We conclude the proof by showing

‖(f̂ − fb) ∗ gb −A1 − q′̺⊤(ϑ̂− ϑ)‖∞ = op(n
−1/2), (2.9)

‖fb ∗ (ĝ − gb)−A2 − q̇⊤(ϑ̂− ϑ)‖∞ = op(n
−1/2). (2.10)

In order to prove (2.9) we use (2.2) which yields

(f̂ − fb) ∗ gb = (f̃ − fb) ∗ gb + f ′ ∗ gb̺⊤(ϑ̂− ϑ) + T1 ∗ gb
with ‖T1‖2 = op(n

−1/2). Since g is bounded it has finite L2 norm and ‖gb −
g‖2 → 0. This gives ‖T1 ∗ gb‖∞ ≤ ‖T1‖2‖gb‖2 = op(n

−1/2). A standard argu-
ment, using the fact that q′ is Lipschitz, yields ‖f ′∗gb−q′‖∞ = ‖q′∗kb−q′‖∞ =

O(b). Hence we have ‖f ′ ∗ gb̺⊤(ϑ̂ − ϑ) − q′̺⊤(ϑ̂ − ϑ)‖∞ = op(n
−1/2). It is

easy to see that (f̃ − fb) ∗ gb = A1 ∗ kb ∗ kb. It follows from Lemma 3 that
‖A1 ∗ kb −A1‖∞ = op(n

−1/2) and therefore ‖A1 ∗ kb ∗ kb −A1‖∞ = op(n
−1/2).

This proves (2.9).
For the proof of (2.10) it suffices to study f ∗ (ĝ− gb) instead of fb ∗ (ĝ− gb)

since ‖fb − f‖2 = o(b3/2) by (2.4) and ‖ĝ − gb‖2 = Op((n
−1/2b−1) as shown

above. From Lemma 2 we have

f ∗ (ĝ − gb) = f ∗ (g̃ − gb)− f ∗ Γ̄⊤
1 (ϑ̂− ϑ) + T2 ∗ f

with ‖T2‖2 = op(n
−1/2) and thus ‖T2 ∗ f‖∞ = op(n

−1/2). Now use f ∗ Γ̄1 =
−q̇ ∗ kb and ‖q̇ − q̇ ∗ kb‖∞ → 0, which holds by the Lipschitz property of f ′,

to obtain ‖f ∗ Γ̄⊤
1 (ϑ̂ − ϑ) + q̇⊤(ϑ̂ − ϑ)‖∞ = op(n

−1/2). Finally the identity

f ∗ (g̃ − gb) = A2 ∗ kb and Lemma 3 yield ‖A2 ∗ kb − A2‖∞ = op(n
−1/2). This

completes the proof of (2.10).
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3. Expansion of the weighted estimator

We now consider the weighted density estimator which uses residual-based
weights ŵj constructed by adapting the empirical likelihood approach intro-
duced by Owen (1988, 2001). The weights are given by

ŵj =
1

1 + λ̂δj ε̂j
,

where the Lagrange multiplier λ̂ solves

n
∑

j=1

δj ε̂j

1 + λ̂δj ε̂j
= 0

and satisfies 1 + λ̂δj ε̂j > 0 for j = 1, . . . , n. As shown by Owen (1988, 2001),

λ̂ exists and is unique on the event min1≤j≤n δj ε̂j < 0 < max1≤j≤n δj ε̂j . This

event has probability tending to one. Off this event we set λ̂ = 0. It was
shown in Müller (2009, Lemma 3.1) that max1≤j≤n |ŵj − 1| = op(1) and that
the Lagrange multiplier satisfies the expansion

λ̂ =
1

σ2

1

N

n
∑

j=1

δjεj −
1

σ2
̺⊤(ϑ̂− ϑ) + op(n

−1/2) = Op(n
−1/2). (3.1)

In Theorem 2 we provide an asymptotic expansion for the weighted density
estimator. The proof uses the above expansion and also Lemma 4 below, which
is proved in Section 6. This also requires that

∫

u2{|k(u)|2 + |k′(u)|2} du <∞. (3.2)

Lemma 4. Suppose that Conditions K, F, R, T and (3.2) are satisfied and let
ψ(z) = zf(z). Then, as nb3 → ∞ and b→ 0,

‖f̂w − f̂ + λ̂ψ‖2 = op(n
−1/2), (3.3)

and
∫

z2{f̂(z)− f(z)}2 dz = op(1). (3.4)

We now state the expansion for the weighted estimator. In addition to the
notation from Lemma 4 and the previous section we introduce

q̄(y) = E{g(y − ε)ε} = ψ ∗ g(y), A3(y) =
1

N

n
∑

j=1

δj
εj
σ2
q̄(y).

Theorem 2. Suppose that the conditions from Theorem 1 and (3.2) are satis-
fied. Then the weighted response density estimator q̂w has the expansion

‖q̂w − q −A1 −A2 +A3 − (q′̺+ q̇ + σ−2q̺̄)⊤(ϑ̂− ϑ)‖∞ = op(n
−1/2).

9



Proof. In view of Theorem 1 it suffices to verify

‖q̂w − q̂ +A3 − σ−2̺⊤(ϑ̂− ϑ)q̄‖∞ = op(n
−1/2).

This is implied by

∥

∥λ̂q̄ − 1

σ2

{ 1

N

n
∑

j=1

δjεj − ̺⊤(ϑ̂− ϑ)
}

q̄
∥

∥

∞ = op(n
−1/2), (3.5)

and
‖q̂w − q̂ + λ̂q̄‖∞ = op(n

−1/2). (3.6)

Note that the function ψ introduced in Lemma 4 is square-integrable since f is
bounded and has a second moment. As a convolution of two square-integrable
functions, q̄ = ψ ∗ g belongs to C0(R) and is therefore bounded. Thus (3.1)
implies (3.5). In view of the identity

q̂w − q̂ + λ̂q̄ = λ̂(q̄ − ψ ∗ ĝ) + (f̂w − f̂ + λ̂ψ) ∗ ĝ

we obtain the bound

‖q̂w − q̂ + λ̂q̄‖∞ ≤ |λ̂|‖ψ‖2‖ĝ − g‖2 + ‖f̂w − f̂ + λ̂ψ‖2‖ĝ‖2.

Statement (3.6) now follows from equations (3.1) and (3.3) and from the fact
that g ∈ L2, which yields ‖gb − g‖2 → 0 and thus ‖ĝ − g‖2 = op(1).

For the efficiency proof in the next section we will need an expansion for q̂w −
q which is asymptotically equivalent to the one given in Theorem 2. More
precisely, we will need the expansion with N =

∑n
j=1 δj replaced by nEδ in A1

and A3. That the two expansions are indeed asumptotically equivalent follows
directly from Slutsky’s theorem and the law of large number.

Corollary 1. Suppose that the conditions from Theorem 2 are satisfied and let

Ã1(y) =
1

n

n
∑

i=1

δi
Eδ

{g(y − εi)− q(y)},

Ã3(y) =
1

n

n
∑

i=1

δi
Eδ

εjσ
−2q̄(y),

for y ∈ R. Then q̂w has the expansion

‖q̂w − q − Ã1 −A2 + Ã3 − (q′̺+ q̇ + σ−2q̺̄)⊤(ϑ̂− ϑ)‖∞ = op(n
−1/2).

4. Efficiency and main result

In order to derive the canonical gradient of q(y), y ∈ R, which characterizes
the efficient influence function, one can build on results from Müller (2009) for
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estimating Eh(X,Y ). In the following we will summarize the key arguments
and refer to that article for details. In particular we will point out the main
differences and show that the influence function in Theorem 2 is the efficient
one, provided that ϑ̂ is efficient for ϑ. Write ℓ = −f ′/f for the score function

for location. By Müller (2009, Lemma 5.1), the efficient ϑ̂ is characterized by
the canonical gradient E{(δζζ⊤)−1}δζ with ζ = ζ(X,Y ) where

ζ(x, y) = {ṙϑ(x)− ̺}ℓ{y− rϑ(x)} + ̺
y − rϑ(x)

σ2
,

i.e. ζ = {ṙϑ(X) − ̺}ℓ(ε) + σ−2̺ε with ̺ = E{ṙϑ(X)|δ = 1} as introduced
earlier. In the following we assume that f has finite Fisher information for
location, Eℓ2(ε) <∞.

The joint distribution of (X,Y ) is specified by the marginal distribution
M(dx) of X and the conditional distribution Q(x, dy) of Y given X = x. A
gradient γ for an arbitrary differentiable functional κ of the distribution of
(X,Y ) is characterized by

lim
n→∞

n1/2{κ(Mnu, Qnv)− κ(M,Q)} = E[γ(X, δY, δ){u(X) + δv(X,Y )}]

for all u ∈ U and v ∈ V , where Mnu and Qnv are perturbations of M and Q,

Mnu(dx) =̇ M(dx){1 + n−1/2u(x)},
Qnv(x, dy) =̇ Q(x, dy){1 + n−1/2v(x, y)}.

The derivatives u and v belong to the tangent space

T =
{

u(X) : u ∈ U
}

⊕
{

δv(X,Y ) : v ∈ V
}

,

with U and V given below. The canonical gradient is a gradient that is an
element of the tangent space, i.e. it is of the form

γ∗(X, δY, δ) = u∗(X) + δv∗(X,Y )

with the terms of the sum being projections onto the tangent space. As a
gradient of κ, γ∗ must satisfy the above characterization,

lim
n→∞

n1/2{κ(Mnu, Qnv)− κ(M,Q)} (4.1)

= E{u∗(X)u(X)}+ E{δv∗(X,Y )v(X,Y )}.

Note that T is the tangent space that is relevant for estimating functionals ofM
and Q – such as Eh(X,Y ) and q(y) = Ef{y− rϑ(X)} – but not for functionals
of the full joint distribution that also involve the conditional distribution π(x) of
the indicator variable δ given x (see Müller, 2009, for the complete specification).

The perturbed distributions Mnu(dx) and Qnv must both be probability
distributions, i.e. integrate to one. Since we do not assume any model for
the distribution of X this yields U = L2,0(M) = {u ∈ L2(M) :

∫

u dM =
0}. The nonlinear regression model constitutes a constraint for the conditional

11



distribution, Q(x, dy) = f{y−rϑ(x)}dy. Perturbing f and ϑ gives Qnv(x, dy) =
Qnst(x, dy) = fns{y − rϑnt

(x)} dy with ϑnt = ϑ + n−1/2t, t ∈ R
p, fns(y) =

f(y){1 + n−1/2s(y)} with s ∈ S where

S =
{

s ∈ L2(F ) :

∫

s(y)f(y) dy = 0,

∫

ys(y)f(y) dy = 0
}

.

Note that fns must be a mean zero probability density which explains the two
constraints on s ∈ S. As in Müller (2009) we obtain

V =
{

v(x, y) = s{y − rϑ(x)} + ℓ{y − rϑ(x)}ṙϑ(x)⊤t : s ∈ S, t ∈ R
p
}

.

That summarizes the results we shall need from that article. We go on to
consider a specific form for κ(M,Q) in (4.1), namely κ(M,Q) = q(y) =

∫

f{y−
rϑ(x)}M(dx). Using again the approximation of fns{y − rϑnt

(x)} from Müller
(2009) and the formula for the perturbation Mnu for M from above, the left-
hand side of (4.1) is

∫

fns{y − rϑnt
(x)}Mnu (dx) −

∫

f{y − rϑ(x)}M(dx)

=̇ n−1/2

∫

f{y − rϑ(x)}{u(x) + v(x, y)}M(dx)

= n−1/2
(

E
[

f{y − rϑ(X)}u(X)
]

+ E
[

f{y − rϑ(X)}v(X, y)
]

)

with v ∈ V specified above. Setting v = 0 in (4.1) therefore yields

E[f{y − rϑ(X)}u(X)] = E{u∗(X)u(X)}.

Since u∗ must be centered this is immediately solved by

u∗(X) = f{y − rϑ(X)} − Ef{y − rϑ(X)} = f{y − rϑ(X)} − q(y). (4.2)

In order to find v∗ we set u = 0 in (4.1) and obtain

E
[

f{y − rϑ(X)}v(X, y)] = E{δv∗(X,Y )v(X,Y )}. (4.3)

Analogously to Müller (2009), any element in V can be written v(x, y) = s{y−
rϑ(x)} + ζ(x, y)⊤t for some t ∈ R

p and s ∈ S, with ζ(x, y) defined at the
beginning of the section. For the canonical gradient we write

v∗(X,Y ) = s∗(ε) + ζ(X,Y )⊤t∗,

with s∗ ∈ S and t∗ ∈ R
p to be determined. With this notation equation (4.3)

states

E
(

f{y − rϑ(X)}[s{y − rϑ(X)}+ ζ(X, y)⊤t]
)

= E
[

δ{s∗(ε) + ζ(X,Y )⊤t∗}{s(ε) + ζ(X,Y )⊤t}
]

.
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In order to determine s∗ ∈ S we set t = 0 and use the fact that δζ(X,Y ) is
orthogonal to S which yields

E
[

f{y − rϑ(X)}s{y − rϑ(X)}
]

= E{δs∗(ε)s(ε)}. (4.4)

Analogously, setting s = 0, we obtain a characterization for t∗,

E[f{y − rϑ(X)}ζ(X, y)⊤t] = E{δζ(X,Y )⊤t∗ζ(X,Y )⊤t}. (4.5)

Below we will check that (Eδ)−1g(y − ε) solves (4.4). However, since s∗ must
be in S, we choose a suitable modification, namely

s∗(ε) =
1

Eδ
[g(y − ε)− E{g(y − ε)} − ε

σ2
E{εg(y − ε)}]. (4.6)

It is easy to see that s∗ ∈ S. In particular, s∗ solves (4.4):

E{δs∗(ε)s(ε)} = E
([

g(y − ε)− E{g(y − ε)} − ε

σ2
E{εg(y − ε)}

]

s(ε)
)

= E{g(y − ε)s(ε)} =

∫

g(y − u)s(u)f(u) du

= E
[

f{y − rϑ(X)}s{y − rϑ(X)}
]

.

Now consider (4.5) and suppose that E{δζ(X,Y )ζ(X,Y )⊤} is invertible. It is
easy to see that

t⊤∗ = E[f{y − rϑ(X)}ζ(X, y)⊤]E{δζ(X,Y )ζ(X,Y )⊤}−1 (4.7)

solves (4.5). The first expectation equals the factor before (ϑ̂− ϑ) in Theorem
2,

E[f{y − rϑ(X)}ζ(X, y)] = q̇(y) + q′(y)̺+ σ−2q̄(y)̺, (4.8)

with q̄(y) = E{g(y − ε)ε}. To see this consider

E[f{y − rϑ(X)}ζ(X, y)]
= E[f{y − rϑ(X)}ṙϑ(X)ℓ{y − rϑ(X)}]− E[f{y − rϑ(X)}̺ℓ{y − rϑ(X)}]

+ E[f{y − rϑ(X)}̺y − rϑ(X)

σ2
].

Since ℓ = −f ′/f the first term on the right-hand side is

−
∫

f ′{y − rϑ(x)}ṙϑ(x)M(dx) = q̇(y),

The same argument and q′(y) = f ′∗g = E{f ′{y−rϑ(X)} shows that the second
term equals q′(y)̺. Apart from the constant vector ̺/σ2, the third term is

∫

f(y − u)(y − u)g(u) du =

∫

f(z)zg(y − z) dz = E{g(y − ε)ε},
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which is indeed the desired q̄(y) from (4.8). Hence (4.8) holds, and (4.7) can be
rewritten as

t⊤∗ = {q̇(y) + q′(y)̺+ σ−2q̄(y)̺}⊤E(δζζ⊤)−1 (4.9)

We are now in a position to specify the canonical gradient, for which we have
derived the form

γ∗(X, δY, δ) = u∗(X) + δv∗(X,Y ) = u∗(X) + δ{s∗(ε) + ζ(X,Y )⊤t∗},
with u∗(X), s∗(ε) and t∗ given in equations (4.2), (4.6) and (4.9). This result
is summarized in the following lemma. Note that we now additionally require
that E(δζζ⊤) is invertible, where E(δζζ⊤) involves the covariance matrix of
δṙϑ(X) and the Fisher information Eℓ2(ε). We will use that q = f ∗ g, i.e.
E{g(y − ε)} = q(y) in (4.6).

Lemma 5. Consider ζ = ζ(X,Y ) = {ṙϑ(X)− ̺}ℓ(ε) + σ−2̺ε with ℓ = −f ′/f .
Suppose additionally to the conditions given in Section 2 that E(δζζ⊤) is invert-
ible and that Eℓ2(ε) < ∞. Then the canonical gradient of the response density
q(y), y ∈ R, is

f{y − rϑ(X)} − q(y) +
δ

Eδ
{g(y − ε)− q(y)− ε

σ2
q̄(y)}

+ {q̇(y) + q′(y)̺+ σ−2q̄(y)̺}⊤E(δζζ⊤)−1δζ.

Comparing the canonical gradient and the expansion of the weighted estima-
tor in Corollary 1, and taking into account that an efficient estimator ϑ̂ of ϑ has
influence function E(δζζ⊤)−1δζ, we see that our weighted response density esti-

mator is efficient for q(y) if ϑ̂ is efficient. Note that estimators that are efficient
in the Hájek–Le Cam sense are asymptotically normal by construction. The
lower variance bound is given by the second moment of the canonical gradient,
i.e. by Eγ2∗ . We summarize our results in the following main theorem.

Theorem 3. Assume that Conditions K, F, G, R and (3.2) are satisfied and
that the covariance matrices of ṙϑ(X) and of δṙϑ(X) are invertible. Also as-
sume that f has finite Fisher information for location, Eℓ2(ε) < ∞, where

ℓ = −f ′/f . Let ϑ̂ be an asymptotically linear estimator of ϑ with influence func-
tion E(δζζ⊤)−1δζ, where ζ = {ṙϑ(X)− ̺}ℓ(ε) + σ−2̺ε. Consider the weighted
response density estimator (1.4) with bandwidth b satisfying nbα → ∞ for some
α ≥ 7/2 and nb4 → 0. Then, uniformly in y ∈ R, the difference q̂w(y) − q(y)
has the expansion

1

n

n
∑

i=1

[

f{y − rϑ(Xi)} − q(y) +
δi
Eδ

{

g(y − εi)− q(y)− εi
σ2
q̄(y)

}

+ {q̇(y) + q′(y)̺+ σ−2q̄(y)̺}⊤E(δζζ⊤)−1δi{ṙϑ(Xi)− ̺} ℓ(εi) + ̺
εi
σ2

]

+ op(n
−1/2).

In particular, q̂w(y) is an efficient estimator of q(y), for every y ∈ R. More-
over, the process n1/2(q̂w − q) converges in distribution in the space C0(R) to a
Gaussian process.
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The last statement holds in view of Lemma 3 where we show, in particular,
that the critical term A1 ∗ kb (that involves g, which is only assumed to be of
bounded variation) converges in C0(R).

Our proposed density estimator requires plugging in an efficient estimator
ϑ̂ for ϑ in order to be efficient, or at least a n1/2-consistent estimator ϑ̂ to
achieve the parametric rate of convergence. For the construction of an effi-
cient estimator for ϑ we refer to the discussion in Müller (2009), Section 5,
where a “one-step improvement” approach involving a preliminary estimator
and an estimator of the influence function is sketched. The idea goes back
to Schick (1993) and Forrester et al. (2003) who consider regression models
with completely observed data. Since the construction can be quite involved,
a simple alternative estimator, with regard to practical applications, would be
the ordinary least squares estimator, i.e. the minimizer of the sum of observed
squared residuals

∑n
i=1 δi{Yi−rϑ(Xi)}2 with respect to ϑ. The estimator solves

∑n
i=1 δiṙϑ(Xi){Yi − rϑ(Xi)} = 0, and therefore has the asymptotic expansion

n1/2(ϑ̂− ϑ) =̇ n−1/2
n
∑

i=1

E{δṙϑ(X)ṙϑ(X)⊤}−1δiṙϑ(Xi){Yi − rϑ(Xi)}.

This i.i.d. representation as a sum of square-integrable variables immediately
yields asymptotic normality and n1/2-consistency. If the errors happen to be
normally distributed, the ordinary least squares estimator can be shown to be
efficient: it satisfies the characterization of an efficient estimator ϑ̂ for ϑ from
Müller (2009), Lemma 5.1,

n1/2(ϑ̂− ϑ) =̇ n−1/2
n
∑

i=1

E(δζζ⊤)−1δi
[

{ṙϑ(Xi)− ̺} ℓ(εi) + ̺
εi
σ2

]

.

To see this, use the fact that for a normal error density f the score function
simplifies to ℓ(ε) = −f ′(ε)/f(ε) = ε/σ2, and that ζ = {ṙϑ(X)−̺}ℓ(ε)+σ−2̺ε =
ṙϑ(X)ε/σ2 in this case.

5. Simulations and discussion

The proposed response density estimator q̂w(y) from equation (1.4) is effi-
cient and will therefore, in general, outperform its unweighted version q̂(y) and
the simple estimator N−1

∑n
i=1 δikb(y − Yi) given in equations (1.2) and (1.1).

This is supported by simulations reported in this section (see Tables 1 to 3).
Let us address some computational issues first. Remember that the response

density is a convolution of (unknown) densities, q(y) = f ∗ g(y). Our estimator
(1.4) uses density estimators for f and g and can, in particular, also be written
in the simpler form (1.3),

q̂w(y) =
1

n

n
∑

i=1

f̂w{y − rϑ̂(Xj)} =
1

n

n
∑

i=1

1

N

∑

j

ŵjδj k
∗
b{y − rϑ̂(Xi)− ε̂j},
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where k∗b (y) = k ∗ k(y/b)/b is a convolution of two kernels. Since normal distri-
butions are closed under convolutions, i.e. every normal density can be expressed
as a convolution of normal densities, one can, for example, take the standard
normal density for k∗, which is what we have done for our illustrations.

For the simulations we also chose the error density f to be standard normal.
This allows us, by the discussion at the end of the previous section, to use the
ordinary least squares estimator as an efficient plug-in estimator for ϑ.

We focus on partially missing responses with π(X) = P (δ = 1|X) = 1/(1 +
e−X), where X is a one-dimensional covariate which we generated from a uni-
form distribution with support (−1, 1). This means that π(X) takes values
between 0.27 and 0.73, and that, on average, half of the responses are missing.

Table 1: Nonlinear regression: simulated mean squared errors

Estimator b = 0.1 b = 0.3 b = 0.5 b = 0.7 b = 0.9 b = 1.1
AMSE U 0.00097 0.00062 0.00055 0.00077 0.00133 0.00223

W 0.00086 0.00052 0.00046 0.00070 0.00127 0.00219
S 0.00849 0.00262 0.00163 0.00151 0.00189 0.00287

y = −1: U 0.00072 0.00046 0.00045 0.00070 0.00113 0.00164
W 0.00061 0.00035 0.00035 0.00060 0.00106 0.00157
S 0.00276 0.00091 0.00048 0.00038 0.00051 0.00080

y = 0: U 0.00175 0.00099 0.00063 0.00048 0.00051 0.00078
W 0.00146 0.00074 0.00043 0.00033 0.00042 0.00071
S 0.01049 0.00358 0.00234 0.00189 0.00178 0.00202

y = 1: U 0.00190 0.00117 0.00128 0.00237 0.00450 0.00755
W 0.00190 0.00117 0.00128 0.00237 0.00451 0.00756
S 0.01617 0.00454 0.00308 0.00366 0.00579 0.00866

y = 2: U 0.00100 0.00066 0.00053 0.00058 0.00091 0.00159
W 0.00079 0.00047 0.00037 0.00047 0.00084 0.00156
S 0.01500 0.00397 0.00170 0.00077 0.00056 0.00098

y = 3: U 0.00059 0.00047 0.00043 0.00047 0.00057 0.00070
W 0.00046 0.00034 0.00031 0.00035 0.00048 0.00062
S 0.00775 0.00296 0.00218 0.00201 0.00198 0.00194

y = 4: U 0.00018 0.00017 0.00022 0.00058 0.00063 0.00108
W 0.00017 0.00016 0.00020 0.00047 0.00061 0.00105
S 0.00194 0.00077 0.00069 0.00077 0.00136 0.00201

The figures are the simulated mean squared errors of estimators of q(y) at
y = −1, 0, . . . , 4 for different bandwidths b. The top panel shows the simu-
lated average mean squared error, which is computed for y-values on a grid
with grid size 0.05, ranging from −1.9 to 4.45. The regression function is
rϑ(x) = eϑx = ex, i.e. ϑ = 1, the covariates are from the univariate uniform
distribution on (−1, 1), and the sample size is n = 100. The estimators are
the unweighted version “U” of the proposed estimator, the proposed weighted
estimator “W”, and the simple estimator “S” from equation (1.1). Bold values
are the minimum mean squared errors for each estimator.

In Table 1 we consider an exponential regression function and compare the
simulated mean squared errors of the three estimators pointwise, and also the
respective average mean squared errors computed on a partitioning of the inter-
val [−1.9, 4.45], which is chosen such that q(y) < 0.01 for y outside the interval.
Note that the average mean squared error is proportional to a Riemann sum,
or, more precisely, to an approximation of the mean integrated square error
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(“MISE”) E[
∫

{q̂(y) − q(y)}2 dy]. Both the weighted and the unweighted ver-
sions of our proposed estimator are clearly better than the simple estimator
which only uses those data located in a neighborhood of y.

The behavior of the estimator depends strongly on the behavior of the re-
gression function. So far we have only studied a regression function which has a
simple form, namely a univariate monotonic regression function. Here the pro-
posed approach works as anticipated. Let us now identify and discuss irregular
cases where the n1/2 rate (and efficiency) cannot be obtained.

An extreme case is given if the regression function is constant, rϑ(X) = ϑ.
In this case the response density is just a shift of the error density, q(y) =
∫

f(y − ϑ)M(dx) = f(y − ϑ), and the density g of rϑ(X) = ϑ is just the point

mass in ϑ, P{rϑ(X) = ϑ} = 1. The proposed estimator q̂w(y) with rϑ̂(X) = ϑ̂
is therefore just a (weighted) estimator of the shifted error density,

q̂w(y) =
1

nN

n
∑

i=1

n
∑

j=1

ŵjδj k
∗
b (y − ϑ̂− ε̂j) =

1

N

n
∑

j=1

ŵjδj k
∗
b (y − ϑ̂− ε̂j)

=
1

N

n
∑

j=1

ŵjδjk
∗
b (y − Yj).

Note that this is a weighted version of the simple kernel density estimator from
equation (1.1). In particular, weighting has no effect here, i.e. q̂w(y) and q̂(y)
(and therefore all three estimators) are asymptotically equivalent. This is ex-
plained by the different rates of convergence: q̂w(y) and q̂(y) both converge
to q(y) at a rate slower than the parametric rate n1/2, whereas the difference
between q̂w(y) and q̂(y) is negligible since it has the order n−1/2.

A related case is given when the regression function is a step function, with
possible values ϑ1, . . . , ϑp. Then the response density is a discrete mixture of
shifts of the error density, with weights P{rϑ(X) = ϑi}. The weights can be
estimated empirically, and the response density can be estimated by a mixture
of shifts of error density estimators. The rate is similar to that of the usual
nonparametric (kernel) estimators for the response density.

We now consider the situation where rϑ has no constant parts over intervals,
so that the response density is a continuous convolution of the error density. We
need square-integrability, i.e., since q(y) = E{g(y−ε)}, that g(y−ε) has a finite
second moment, which is often violated.

Suppose first that the covariate is one-dimensional with density m and that
the derivative of the regression function is bounded away from zero, |r′ϑ| ≥ η > 0.
Applying the change of variable theorem to the density g of rϑ(X), the second
moment of the random variable g(y − ε) is

E{g2(y − ε)} =

∫

1

[r′ϑ{r−1
ϑ (y − z)}]2

m2{r−1
ϑ (y − z)}f(z) dz

≤ 1

η2
Em2{r−1

ϑ (y − ε)},

which is finite if Em2{r−1
ϑ (y − ε)} < ∞. This holds, for example, if the co-

variate density m is bounded. Then q̂w(y) has the expansion given in Theorem
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2 (for some n1/2-consistent ϑ̂), and q̂w(y) converges at the n1/2 rate and is
asymptotically normal.

It is possible that rϑ is continuous but only piecewise invertible, with a
derivative that vanishes (or does not exist) at certain points. For example,
rϑ(x + t) − rϑ(x) may behave approximately like cta or c|t|a for small t and
certain values of x. Simple examples are rϑ(x) = |x|1/2, |x|, x2 and x3 at x = 0.
Again we can apply the change of variable theorem, now to the monotonic parts
of rϑ, and compute the density g of rϑ(X), which becomes a sum of densities.
The behavior of g(y − ε) depends crucially on the points where r′ϑ is zero (or
does not exist), i.e. on the denominator [r′ϑ{r−1

ϑ (y− z)}]2 in the change of vari-
able formula at those points. For example, for a quadratic regression function
rϑ(x) = x2 we have [r′ϑ{r−1

ϑ (x)}]−2 = 1/(4x), i.e. E{g2(y− ε)} cannot be finite

since limǫ→0

∫ 1

ǫ
1/x dx diverges. Due to the fact that limǫ→0

∫ 1

ǫ
1/xp dx con-

verges for p < 1 and diverges for p ≥ 1, we conclude that if rϑ(x + t) − rϑ(x)
behaves like cta or c|t|a for one (or more) x then, if a ≥ 2, the random variable
g(y − ε) does not have a finite second moment. Therefore, q̂w(y) converges at
a slower rate than n1/2, depending on a. The slower rate for certain types of
regression functions follows as in Schick and Wefelmeyer (2009a), who derive
convergence rates for estimators of the density of |X1|a + |X2|a with i.i.d. ob-
servations X1, . . . , Xn. See also Schick and Wefelmeyer (2009b), who consider
density estimators for sums of squared observations. They obtain asymptotic
normality (pointwise) with rate (log n/n)1/2, which is slightly slower than n1/2.

Table 2: Comparison of regression functions

Estimator n b = 0.1 b = 0.3 b = 0.5 b = 0.7 b = 0.9 b = 1.1
(a) U 50 22.412 14.029 11.140 12.269 17.592 26.328

100 9.730 7.219 6.748 9.527 15.695 25.145
500 1.796 1.683 2.894 6.716 13.725 23.443

W 50 20.875 12.549 9.880 11.238 16.792 25.722
100 8.325 5.916 5.628 8.639 14.998 24.629
500 1.297 1.222 2.479 6.398 13.474 23.262

S 50 163.618 45.057 23.911 18.929 21.576 28.921
100 85.412 25.702 14.969 14.350 18.701 27.260
500 20.281 8.485 7.041 9.689 15.892 24.974

(b) U 50 60.200 28.941 19.419 20.329 28.698 42.030
100 26.937 14.500 11.470 15.577 25.575 40.018
500 4.905 3.248 4.953 11.335 22.563 38.168

W 50 58.773 27.308 18.032 19.202 27.815 41.334
100 25.711 13.321 10.443 14.768 24.946 39.544
500 4.559 2.874 4.690 11.084 22.410 38.051

S 50 175.453 46.209 24.625 22.319 29.450 42.446
100 87.330 23.360 14.062 16.554 26.100 40.315
500 17.314 4.995 5.545 11.532 22.717 38.232

The figures are simulated average mean squared errors multiplied by 10, 000,
in a set-up similar to Table 1. The regression function is linear in panel (a),
rϑ(X) = ϑX, and the average is computed on the interval [−3.1, 3.1] (outside
which q < 0.01). In panel (b) the regression function is quadratic, rϑ(X) = ϑX2,
and the interval on which the average is computed is [−2.5, 3.2]. The grid-size
is 0.1 for n = 50 and n = 100, and 0.2 for n = 500. In all simulations ϑ = 1.
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Figure 1: A typical data set with about 50% of the responses missing. The regression func-

tion is X + 0.3 cos(2πX). The line is the fitted linear regression function ϑ̂X, assuming
(erroneously) a linear relationship between Y and X.

To illustrate this, in Table 2 (a) we consider a linear regression function,
where the response density can be estimated at the parametric rate, and in
panel (b) a quadratic regression function, where we expect a slower rate of
convergence. That our estimator in (b) converges at a slower rate than our esti-
mator in (a) is indeed supported by the simulations. Consider, for example, the
minimum mean squared errors of our weighted estimator in (a) and (b) when
we increase the sample size by the factor 10: for n = 50 the minimum average
mean squared error in (a) is about 8.1 times as large as for n = 500. The im-
provement is less striking in (b): for n = 50 the minimum average mean squared
error is about 6.3 times as large as for n = 500. Another consequence of the
slow rate of convergence of q̂w(y) and q̂(y) in (b) is that the two estimators are
asymptotically equivalent, as explained earlier. The figures for q̂w(y) and q̂(y)
in Table 2 (b) are indeed similar. However, even for n = 500 the weighted esti-
mator still performs noticeably better than its unweighted version. It therefore
seems reasonable to always work with weights.

In order to study the performance of our estimator when the regression
function is not correctly specified, which is typically the case in applications
when we assume a model, we consider in Table 3 a sinusoidal regression function
with a linear trend (see Figure 1), but fit a linear regression line into the data.
Perhaps surprisingly, even though our estimator is biased the mean squared
errors in Table 3 are very similar to those given in Table 2 (a) where we consider
a correctly specified linear regression function. In particular, our estimator again
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outperforms the simple estimator, even though that estimator is robust since it
uses only the responses Y . This behavior is explained by the fact that in our
illustration the mean squared error is dominated by the variance, whereas the
bias is very small. Since we are interested in estimating the integral q(y) =
∫

f{y− rϑ(x)}M(dx), and not the regression function rϑ itself, we expect that
our estimator will, in general, work well in the finite sample situation, even if the
regression function is not carefully specified – a simple linear regression model
will often suffice.

Table 3: Misspecified regression function

Estimator n b = 0.1 b = 0.3 b = 0.5 b = 0.7 b = 0.9 b = 1.1
U 50 22.089 14.374 11.017 12.195 16.995 25.202

100 9.473 7.063 6.834 9.261 15.306 24.066
W 50 20.562 12.847 9.782 11.161 16.207 24.605

100 8.095 5.775 5.697 8.372 14.590 23.524
S 50 165.832 45.018 24.258 18.939 21.376 27.903

100 84.187 25.000 15.407 13.852 18.455 26.220

The figures are simulated average mean squared errors multiplied by 10, 000 in
a setting related to Table 2(a): again we are fitting a linear regression function
rϑ(X) = ϑX into the data. However, and in contrast to Table 2(a) where the
regression function is correctly specified, the data are generated from a nonlinear
regression model, rϑ(X) = X + 0.3 cos(2πX), in order to study an example of a
misspecified regression function. See Figure 1 for an illustration.

To conclude, let us discuss the impact of the regression function on the
behavior of the density estimator in the multivariate covariate case. Here similar
but more complex results hold. The density g of the regression function rϑ(X),
with covariate vector X = (X1, . . . , Xp), is obtained by applying the change
of variable formula as follows: first introduce h(x) = {rϑ(x), x2, . . . , xp} =
(u1, u2, . . . , up). If h is one-to-one (and therefore invertible) with non-vanishing
Jacobian, i.e. | det ∂h(x)/∂x| 6= 0, then the density of h(X), fh(X)(u), at u =
(u1, . . . , up) is

fh(X)(u) =
∣

∣

∣
det

∂h−1(u)

∂u

∣

∣

∣
m{h−1(u)}.

Due to the simple form of h, invertibility just means that u1 = rϑ(x) can be
solved with respect to x1. In particular, the Jacobian is simply ∂rϑ(x)/(∂x1).
The assumptions for change of variable are therefore met if one of the partial
derivatives never vanishes, say if ∂rϑ(x)/(∂x1) 6= 0, and if u1 = rϑ(x) can be
solved with respect to x1.

The density g of rϑ(X) is the marginal density

g(u) =

∫

∣

∣

∣
det

∂h−1(u)

∂u

∣

∣

∣
m{h−1(u)} d(u2, . . . , up).

As in the univariate case it is clear that g(y − ε) has a finite second moment if
the marginal density of X1 is bounded. Now suppose that h is not invertible on
the support of X , but there is a partition {A1, . . . , Am} of the support where h
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is invertible on each of the Aj . Then, if on each of the Aj ’s the Jacobian does
not vanish,

fh(X)(u) =

m
∑

j=1

∣

∣

∣
det

∂h−1
j (u)

∂u

∣

∣

∣
m{h−1

j (u)}

where h−1
j is the inverse of h on Aj . The density of rϑ(X) is computed, analo-

gously to the above, as a marginal density. As in the univariate case, one has
to investigate the points where the partial derivatives vanish. Whether g(y− ε)
has a finite second moment or not will again depend on the curvature at those
points.

A multivariate case where the assumptions for our main result are in general
satisfied is when the regression function has a linear part, rϑ(X) = ϑ1X1 +
r̃ϑ2,...,ϑp

(X2, . . . , Xp), which includes linear regression as a special case. Let us
assume that the linear part of the regression function is not constant, that is,
one parameter is non-zero, say ϑ1 6= 0. The density of the vector {ϑ1X1 +
r̃ϑ2,...,ϑp

(X2, . . . , Xp), X2, . . . , Xp} at (u1, u2, . . . , up) is

|J | ·m
{u1 − r̃ϑ2,...,ϑp

(u2, . . . , up)

ϑ1
, u2, . . . , up

}

where |J | = 1/|ϑ1| is the Jacobian. Hence the density of ϑ⊤X is the marginal
density,

g(u) =

∫

1

|ϑ1|
m
{u1 − r̃ϑ2,...,ϑp

(u2, . . . , up)

ϑ1
, u2, . . . , up

}

d(u2, . . . , up).

The assumptions for our result hold if g(y − ε) has a finite second moment,
which is satisfied if, for example, the density of X1 is bounded.

This discussion shows that before implementing the density estimator one
should check carefully whether g(y − ε) has a finite second moment. If the
regression function does not have a linear (non-constant) part this requires,
as a first step, that we check whether the Jacobian vanishes at certain point.
If g(y − ε) does, in fact, have a finite second moment, the weighted density
estimator is efficient for q(y). If the assumption is violated, our estimator will,
in general, still converge, but at a rate slower than n1/2. In that case it is
sufficient to work with the unweighted version.

6. Proofs

Proof of Lemma 1

For the proofs of the lemmas we will repeatedly use the next inequality: if h is
absolutely continuous with a square-integrable a.e. derivative h′, then

‖h(· − t)− h(· − s)‖2 ≤ ‖h′‖2|t− s|, s, t,∈ R. (6.1)

For the proof of (2.2) we introduce the notation

f̆(z) =
1

N

n
∑

j=1

δjkb{z − εj + ṙϑ(Xj)
⊤(ϑ̂− ϑ)}
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and show
‖f̂ − f̆‖2 = op(n

−1/2), (6.2)

‖f̆ − f̃ − f ′̺⊤(ϑ̂− ϑ)‖2 = op(n
−1/2). (6.3)

Using (6.1) with h = kb we can bound the left-handside of (6.2) by ‖k′b‖2D,

with D the left-hand side of (2.1). Since ‖k′b‖2 = O(b−3/2) and D = Op(n
−1),

the desired (6.2) follows.
The proof of (6.3) uses a Taylor expansion. For this we introduce the averages

B1(z) =
1

N

n
∑

j=1

δjk
′
b(z − εj)ṙϑ(Xj), z ∈ R,

B2(z) =
1

N

n
∑

j=1

δjk
′′
b (z − εj)ṙϑ(Xj)ṙϑ(Xj)

⊤, z ∈ R,

and the conditional expectations B̄1(z) = E{B1(z)|δ1, . . . , δn} and B̄2(z) =
E{B2(z)|δ1, . . . , δn}. The first expectation B̄1(z) calculates to

1

N

n
∑

j=1

δj

∫

k′b(z − y)f(y) dyE{ṙϑ(Xj)|δj = 1} = 1(N > 0)f ∗ k′b(z)̺.

Analogously one obtains B̄2 = 1(N > 0)f ∗ k′′b (z)E{ṙϑ(X)ṙϑ(X)⊤|δ = 1}. The
remainder R = f̆ − f̃ −B⊤

1 (ϑ̂− ϑ)− 1/2 (ϑ̂− ϑ)⊤B2(ϑ̂− ϑ) of the expansion is
bounded by

‖R‖2 ≤ ‖k′′′b ‖2
1

N

n
∑

j=1

δj |ṙϑ(Xj)
⊤(ϑ̂− ϑ)|3 = Op(b

−7/2n−3/2).

Here we used that ‖ṙϑ(X)‖ has a finite third moment and that ‖k′′′‖2 is finite.
The desired rate op(n

−1/2) follows from nbα → ∞ for some α ≥ 7/2. We also
have

∫

NE(‖B2(z)− B̄2(z)‖2|δ1, . . . , δn) dz

≤
∫

1

N

n
∑

j=1

δjE{|k′′b (z − εj)|2‖ṙϑ(Xj)ṙϑ(Xj)
⊤‖2} dz

≤ ‖k′′b ‖22
1

N

n
∑

j=1

δjE{‖ṙϑ(Xj)ṙϑ(Xj)
⊤‖2} = Op(b

−5).

This shows that ‖(ϑ̂ − ϑ)⊤(B2 − B̄2)(ϑ̂ − ϑ)‖2 = Op(b
−5/2n−3/2) = op(n

−1/2)

and thus ‖f̆ − f̃ −B⊤
1 (ϑ̂−ϑ)‖2 = op(n

−1/2). Analogous arguments yield ‖(B1−
B̄1)

⊤(ϑ̂− ϑ)‖2 = Op(b
−3/2n−1) = op(n

−1/2). Now use this, f ∗ k′b = f ′ ∗ kb and

P (N = 0) = (1−Eδ)n → 0 to obtain ‖B⊤
1 (ϑ̂−ϑ)− f ′̺⊤(ϑ̂−ϑ)‖2 = op(n

−1/2).
This together with the above rates yields the desired result (6.3).
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Statement (2.3) is quickly proved since it is just a consequence of

∫

NE[{f̃(z)− fb(z)}2|δ1, . . . , δn] dz ≤
∫

k2b ∗ f(z) dz = O(b−1).

Equation (2.4) finally follows from a standard argument, using the fact that f ′

is Lipschitz and Condition K (cf. end of proof of Lemma 4 where we treat f ∗
k̃b).

Proof of Lemma 2

Equations (2.5), (2.7) and (2.8) can be established analogously to the proofs of
equations (2.2)–(2.4) in the previous lemma. For the proof we introduce

ğ(z) =
1

n

n
∑

j=1

kb{z − rϑ(Xj)− ṙϑ(Xj)
⊤(ϑ̂− ϑ)},

and show
‖ĝ − ğ‖2 = op(n

−1/2),

‖ğ − g̃ + Γ̄⊤
1 (ϑ̂− ϑ)‖2 = op(n

−1/2). (6.4)

which immediately yields (2.5). For the proof of (6.4), for example, the roles of
B1 and B̄1 are now played by Γ1 and Γ̄1 where

Γ1(z) =
1

n

n
∑

j=1

k′b{z − rϑ(Xj)}ṙϑ(Xj).

Similarly, Γ2 is the Hessian matrix and Γ̄2 its expectation. Then one verifies
‖ğ − g̃ + Γ⊤

1 (ϑ̂− ϑ)− (ϑ̂− ϑ)⊤Γ2(ϑ̂− ϑ)‖2 = Op(b
−7/2n−3/2) and

∫

nE(‖Γ2(z)− Γ̄2(z)‖2) dz

≤
∫

E[|k′′b {z − ṙϑ(Xj)}|2‖ṙϑ(Xj)ṙϑ(Xj)
⊤‖2] dz = Op(b

−5),

and obtains (6.4) as in the proof of (6.3). Equations (2.7) and (2.8) can be
shown analogously to the proofs of the corresponding statements in Lemma 1.
In contrast to that proof where we used the Lipschitz assumption on f ′ we now
utilize the fact that g is bounded and L1-Lipschitz, ‖g(· − t) − g‖1 = L|t| for
some L and all t ∈ R. This holds since g is of bounded variation; see e.g. Schick
and Wefelmeyer (2007a). Also use that g′b = g ∗ k′b and Condition K.

It remains to verify (2.6). For this we write

Γ̄1(z) =

∫

k′b(z − y)h(y)g(y) dy = b−1

∫

(hg)(z − bu)k′(u) du
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with h(y) = E[ṙϑ(X)|rϑ(X) = y). Then, with Γ̄1i and hi denoting the i-th
component of Γ̄1 and h, respectively, we obtain

b2
∫

|Γ̄1i(z)|2 dz =

∫

{
∫

hig(z − bu)k′(u) du}2 dz

≤
∫ ∫

{hig(z − bu)}2|k′(u)| du
∫

|k′(u)| du dz

= ‖k′‖21
∫

{hi(z)}2g2(z) dz

≤ ‖k′‖21‖g‖∞
∫

h2i (z)g(z) dz <∞.

This shows that ‖Γ̄1‖2 = O(b−1), which completes the proof.

Proof of Lemma 3

By Condition G the densitiy g is of bounded variation. Due to this assumption
g can be written as the difference of two bounded monotonic functions. Hence
it may be assumed without loss of generality to be of the form

g(t) =

∫

(−∞,t]

φdµ, t ∈ R,

for some finite measure µ and some φ ∈ L1(µ). Hence we can write q(y) =
f ∗ g(y) as F ∗ dg(y) =

∫

F (y − t)φ(t) dµ(t).
Consider A1(z) = N−1

∑n
i=1 δi{g(z − εi)− Eg(z − εj)} and set

Q(z) = N−1/2
n
∑

i=1

δi{1(εi ≤ z)− P (ε ≤ z)},

w(δ) = sup
z∈R

sup
|t|≤δ

|Q(z + t)−Q(z)|.

Then we can write

N1/2A1(z) =

∫

Q(z − y)φ(y) dµ(y), z ∈ R,

N1/2A1 ∗ kb(z) =
∫

Q ∗ kb(z − y)φ(y) dµ(y), z ∈ R.

Thus

N1/2‖A1 ∗ kb −A1‖∞ ≤ ‖Q ∗ kb −Q‖∞
∫

|φ| dµ = op(1),

which holds since

‖Q ∗ kb −Q‖∞ ≤ w(
√
b) + 2‖Q‖∞

∫

|bx|>
√
b

|k(x)| dx = op(1),

using known properties of empirical processes and N/n→ Eδ > 0. This proves
‖A1 ∗ kb −A1‖∞ = op(n

−1/2).
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As a uniformly continuous density, k belongs to C0(R), and so does A1 ∗ kb.
We shall now establish tightness of N1/2A1 ∗ kb. In view of the characterization
of compact subsets in C0(R) given in Schick and Wefelmeyer (2004c), we need
to show stochastic equicontinuity and stochastic uniformly small tails. We have

sup
z∈R

sup
|t|≤δ

N1/2|A1 ∗ kb(z + t)−A1 ∗ kb(z)| ≤ w(δ)

∫

|φ| dµ,

and sup|z|>3M N1/2|A1 ∗ kb(z)| is bounded by

sup
|z|>3M

∫ ∫

|Q(z − y − bu)||k(u)||φ(y)| dµ(y) du

≤ sup
|z|>3M

∫

|bu|≤M

∫

|y|≤M

|Q(z − y − bu)||φ(y)| dµ(y)|k(u)| du

+ ‖Q‖∞
{

∫

|y|>M

|φ(y)| dµ(y)
∫

|k(u)| du+

∫

|φ| dµ
∫

|bu|>M

|k(u)| du
}

≤ sup
|z|>M

|Q(z)|
∫

|φ| dµ

+ ‖Q‖∞
{

∫

|y|>M

|φ| dµ+

∫

|φ| dµ
∫

|bu|>M

|k(u)| du
}

.

By known properties of the empirical distribution function and by our assump-
tions on g and k, the last term can be chosen arbitrarily small if M is suffiently
large.

The statements corresponding to A2 can be proved similarly. Note that f
satisfies stronger assumptions than g, in particular it is uniformly continuous
with integrable derivative f ′. We refer to Schick and Wefelmeyer (2005, Section
2) who prove for such functions f that ‖A2 ∗ kb − A2‖∞ = op(n

−1/2) and that
A2 converges in distribution in C0(R) to a Gaussian process, for any kernel k
and any bandwidth b→ 0.

Proof of Lemma 4

We verify equation (3.4) first. We do this in two steps by proving
∫

z2{f̂(z)−
f̃(z)}2 dz = op(1) and

∫

z2{f̃(z) − f(z)}2 dz = op(1). The second statement
follows immediately from

∫

z2NE[{f̃(z)− fb(z)}2|δ1, . . . , δn] dz ≤
∫

z2k2b ∗ f(z) dz = O(b−1),

our assumptions on the bandwidth, and
∫

z2{fb(z)− f(z)}2 dz → 0.

For the proof of the first statement we use the inequalities

{kb(z − t)− kb(z − s)}2 ≤ (t− s)2
∫ 1

0

{k′b(z − s− λ(t− s)}2 dλ
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and |u+ v| ≤ (1 + |u|)(1 + |v|) which imply that
∫

z2{kb(z−t)−kb(z−s)}2 dz ≤ (t−s)2(1+|s|)2(1+|t−s|)2
∫

(1+|u|)2{k′b(u)}2 du.

The last integral is bounded by b−3(1 + b)2(
∫

(1 + |u|)2{k′(u)}2(u) du and has
the order O(b−3) since we assume that

∫

u2{k′(u)}2 du is finite. Now consider

[
∫

z2{f̂(z)− f̃(z)}2 dz]1/2. Using the above arguments we obtain the bound

1

N

n
∑

j=1

δj

[

∫

z2{kb(z − ε̂j)− kb(z − εj)}2 dz
]1/2

≤ O(b−3/2)
1

N

n
∑

j=1

δj |ε̂j − εj |(1 + |εj |)(1 + |ε̂j − εj |) = op(b
−3/2n−1/2).

This yields the desired order op(1) since we require nb3 → ∞. We also used
that max1≤j≤n δj |ε̂j − εj | = op(1). This completes the proof of (3.4).

We now prove (3.3). The weights satisfy by construction ŵj(1 + λ̂δj ε̂j) = 1.

Multiplying both sides with 1− λ̂δj ε̂j gives the identity

ŵj = 1− λ̂δj ε̂j + (λ̂δj ε̂j)
2ŵj .

Thus we have

f̂w(z)− f̂(z) + λ̂ψ(z) = λ̂{ψ(z)− zf̂(z)}+ λ̂V1(z) + λ̂2V2(z) (6.5)

with

V1(z) =
1

N

n
∑

j=1

δj(z − ε̂j)kb(z − ε̂j), V2(z) =
1

N

n
∑

j=1

δj ε̂
2
j ŵjkb(z − ε̂j).

The first term on the right-hand side of (6.5) has the desired order op(n
−1/2)

by equation (3.4) proved above and since λ̂ = Op(n
−1/2) by (3.1). For the third

term we have

‖V2‖2 ≤ 1

N

n
∑

j=1

δj ε̂
2
j ŵj‖kb‖2 = Op(b

−1),

which holds in view of ‖kb‖2 = O(b−1), max1≤j≤n δj |ε̂j − εj | = op(1) and

max1≤j≤n |ŵj − 1| = op(1). This rate suffices since λ̂2 = Op(n
−1).

Now consider the second term on the right-hand side of (6.5) involving V1.
We can rewrite V1 so that it contains a factor b,

V1(z) = b
1

N

n
∑

j=1

δj k̃b(z − ε̂j)

where k̃(x) = xk(x). Using inequality (6.1) yields

‖ 1

N

n
∑

j=1

δj(k̃b(z − ε̂j)− k̃b(· − εj)‖2 = O(b−3/2)
1

N

n
∑

j=1

δj|rϑ̂(Xj)− rϑ(Xj)|

= Op(n
−1/2b−3/2).
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This holds since
∫

(k̃′(x))2 dx can be bounded by 2
∫

[k2(x) + x2{k′(x)}2] dx
which is assumed to be finite. As in the proof of Lemma 1 we obtain

∫

NE
[{ 1

N

n
∑

j=1

δj k̃b(z − εj)− f ∗ k̃b(z)
}2]

dz ≤
∫

k̃2b ∗ f(z) dz = O(b−1).

This requires
∫

x2k2(x) dx to be finite, which is satisfied since we use a second
order kernel. The above and

f ∗ k̃b(z) =
∫

{f(z − bu)− f(z)− f ′(z)bu}uk(u) du

= b

∫ 1

0

∫

{f ′(z − sbu)− f ′(z)} ds u2k(u) du

gives

‖f ∗ k̃b‖22 ≤ b2
∫

u2k(u) du

∫ 1

0

∫∫

{f ′(z − sbu)− f ′(z)}2 dz u2k(u) du ds

≤ Lb3
∫

u2k(u) du

∫ 1

0

∫∫

|f ′(z − sbu)− f ′(z)| dz u2k(u) du ds

which is of order o(b3). Now note that V1 contains an additional factor b which
we also have to take into account. This shows that ‖V1‖2 = Op(n

−1/2b−1/2) +

o(b5/2) which is op(1) as desired.
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