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Abstract

Suppose we want to estimate a density at a point where we know the values of its

first or higher order derivatives. In this case a given kernel estimator of the density can

be modified by adding appropriately weighted kernel estimators of these derivatives.

We give conditions under which the modified estimators are asymptotically normal.

We also determine the optimal weights. When the highest derivative is known to vanish

at a point, then the bias is asymptotically negligible at that point and the asymptotic

variance of the kernel estimator can be made arbitrarily small by choosing a large

bandwidth.

1 Introduction

Consider a point x on the real line and let f be a density that is r times continuously

differentiable at x. Suppose we have n independent observations X1, . . . , Xn with density

f . Then f(x) can be estimated with an estimator f̂(x) based on a kernel K0 of order

r. If a bandwidth of order n−1/(2r+1) is used, the estimator f̂(x) will converge at the

optimal rate n−r/(2r+1). This goes back to Rosenblatt (1956) and Parzen (1962). Moreover,

nr/(2r+1)(f̂(x)− f(x)) is asymptotically normal.

Let us extend this statement to (simultaneously) estimating f and its derivatives f (j)

at a point x. For this we work with the optimal bandwidth b = n−1/(2r+1) and with j

times continuously differentiable kernels Kj of order r − j, j = 0, . . . , r. Then f(x) and its

derivatives f (j)(x) can be estimated with kernel estimators

f̂ (j)(x) =
1

n

n∑
i=1

1

bj+1
K

(j)
j

(x−Xi

b

)
, j = 0, . . . , r.

Each estimator f̂ (j)(x) has the optimal rate n−(r−j)/(2r+1) for estimating f (j)(x). We show as

a first result (see Proposition 1) that the joint distribution of n(r−j)/(2r+1)(f̂ (j)(x)−f (j)(x)),

j = 0, . . . , r, is asymptotically normal, and calculate the asymptotic mean vector and the

covariance matrix.

Suppose now that we have auxiliary information in the form of pointwise constraints on

the derivatives. This means, for example, that we know the values of some derivatives at x
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or, more generally, that certain linear combinations are zero, i.e. A(f ′(x)−a1, . . . , f (r)(x)−
ar)
> = 0 for a known matrix A and a known vector (a1, . . . , ar)

>. We can then introduce

new estimators for f(x) by modifying f̂(x) as follows,

f̂c(x) = f̂(x)− c>A

 n−1/(2r+1)(f̂ ′(x)− a1)
...

n−r/(2r+1)(f̂ (r)(x)− ar)

 ,

where c is a vector of constants. We show in Remark 1 that f̂c(x) can be written as a kernel

estimator with bandwidth b = n−1/(2r+1) and kernel K̃ = K0−c>A(K ′1−a1, . . . ,K
(r)
r −ar)>.

This representation makes it easy to use Proposition 1 to establish our main result, the

limiting normality of nr/(2r+1)(f̂c(x)− f(x)), which is provided in Theorem 1.

The new estimator f̂c(x) exploits the auxiliary information and should therefore outper-

form the ordinary kernel estimator f̂(x), or, at least, be as good as f̂(x). We distinguish

two cases. In the first case the constraint implies that the highest derivative of the density

vanishes at x, i.e., f (r)(x) = 0. Then the asymptotic bias of nr/(2r+1)(f̂(x)− f(x)) vanishes

(see Lemma 1), and the asymptotic MSE equals the asymptotic variance. In this case, we

do not need the ‘corrected’ estimator f̂c(x). We show that the best kernel with support

[−s, s] is the uniform kernel. The asymptotic MSE can then be made arbitrarily small by

choosing s large. In the second case, f (r)(x) is not known to be zero. Then we determine

the vector c that minimises the MSE of nr/(2r+1)(f̂c(x)− f(x)).

The main applications are to cases in which we know that certain derivatives are zero

at some known point x. For example, the density may have a maximum there, f ′(x) = 0;

an inflection point, f
′′
(x) = 0; or a saddle point, f ′(x) = 0 and f

′′
(x) = 0. The important

special case where f ′(x) is zero (or known) is discussed in more detail in Examples 2–4.

When we know at which point the density has a maximum or a saddle point, we may also

know that it is symmetric (and perhaps bimodal) around this point. This information can

be used to improve f̂c(x) further, by symmetrisation.

The approach described here is not restricted to kernel estimators. Similar improvements

can be obtained for other types of density estimator and for combinations of different types

of density estimator. The main tool is a result on the pointwise joint asymptotic normality

of estimators for the density and some of its derivatives. The approach also extends to

multivariate density estimation and to density estimation for dependent data.

We have restricted ourselves to estimating a density under constraints on its deriva-

tives. Similar results can be obtained for estimators of some derivative under constraints

on derivatives of higher or lower order.

The idea behind the modification f̂c(x) of f̂(x) is that the variance may be reduced if we

add to f̂(x) an estimator of zero that is correlated to f̂(x). This idea is similar to an additive

improvement of empirical estimators under linear constraints on the underlying distribu-

tion. We briefly describe this. Let X have unknown distribution P . Suppose that f(X) is

real-valued and square-integrable under P , and that g(X) is r-dimensional with P -square-

integrable components. Assume that Pg = E[g(X)] = 0 constitutes a linear constraint on
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P . Let X1, . . . , Xn be independent copies of X. The best nonparametric estimator of Pf is

the empirical estimator Pf = (1/n)
∑n

i=1 f(Xi). Its asymptotic variance is P (f2)− (Pf)2.

The constraint Pg = 0 gives an r-dimensional ‘estimator’ Pg = (1/n)
∑n

i=1 g(Xi) of zero.

It can be combined with Pf to obtain an estimator of the form

Pf − c>Pg =
1

n

n∑
i=1

(f(Xi)− c>g(Xi)).

Such an estimator has asymptotic variance P (f − Pf − c>g)2. It is minimised for c =

c∗(P ) = (P (gg>))−1P (gf). Hence the minimal asymptotic variance is

P (f2)− (Pf)2 − P (fg>)(P (gg>))−1P (gf).

This is strictly smaller than the asymptotic variance P (f2) − (Pf)2 of Pf unless f and g

are uncorrelated. Since c∗(P ) depends on P it must be replaced by an estimator, say c∗(P).

This does not change the asymptotic variance. Levit (1975) shows that

Pf − c∗(P)>Pg =
1

n

n∑
i=1

f(Xi)−
n∑

i=1

f(Xi)g
>(Xi)

( n∑
i=1

g(Xi)g
>(Xi)

)−1 1

n

n∑
i=1

g(Xi)

is asymptotically efficient. Müller and Wefelmeyer (2002) consider constraints with g = gϑ
depending on an unknown finite-dimensional parameter ϑ.

An asymptotically equivalent improvement of Pf is obtained by using empirical likeli-

hood. It replaces the empirical distribution (1/n)
∑n

i=1 δXi by a weighted version that obeys

the linear constraint; see Owen (1988), (2001).

Our problem of estimating a density f at x under a pointwise constraint differs from the

problem of estimating f(x) under a linear constraint on f , say E[g(X)] = 0 for some known

function g. Such a linear constraint leads to an improvement of order n−1/2. The density

estimator f̂(x) converges at a slower rate. Hence the improvement vanishes asymptotically;

see e.g. Zhang (1998), who demonstrates (first order) equivalence of a standard kernel

estimator and a modified version that uses a linear constraint.

The next section contains our main results, in particular the limiting normality of the

new estimator f̂c(t). The proofs are in Section 3.

2 Results

Let X1, . . . , Xn be real random variables with bounded density f . Fix a point x on the real

line. Let r be a natural number. Assume that f is r times continuously differentiable at x.

Denote by Kj,s the set of all functions K on the real line that vanish outside a compact

set and have bounded and continuous derivatives up to the order j, and that are (signed)

kernels of order s, i.e.
∫
K(t) dt = 1,

∫
tiK(t) dt = 0 for i = 1, . . . , s−1, and

∫
tsK(t) dt 6= 0.

For a function K on the real line and a positive bandwidth b, introduce the scaling

Kb(x) = K(x/b)/b. Note that we can rescale the kernel by multiplying the bandwidth
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with a positive constant c. This corresponds to replacing K in the definition of Kb by

Kc: we have Kcb(x) = K(x/(cb))/(cb) = Kc(x/b)/b. In the following we will also need the

derivatives of Kb which, for appropriately differentiable K, are

K
(j)
b (x) = ∂jxKb(x) =

1

bj+1
K(j)

(x
b

)
.

Let K0 ∈ K0,r be a kernel and b0 a bandwidth. We estimate f(x) by the kernel estimator

f̂(x) =
1

n

n∑
i=1

K0b0(x−Xi).

To estimate the various derivatives, we may use different kernels and bandwidths. For

j = 1, . . . , r let bj be a bandwidth and Kj ∈ Kj,r−j . Set

f̂ (j)(x) =
1

n

n∑
i=1

K
(j)
jbj

(x−Xi).

The following lemma describes approximations for the bias and the variance of f̂ (j)(x). The

result is essentially known. See Bhattacharya (1967), Schuster (1969) and Singh (1977,

1981). We indicate the proof in Section 3.

Lemma 1. Let f be r times continuously differentiable at x. For j = 0, . . . , r let Kj ∈
Kj,r−j, and let bj → 0 and nbj →∞. Then

b−r+j
j (E[f̂ (j)(x)]− f (j)(x)) = f (r)(x)

(−1)r−j

(r − j)!

∫
tr−jKj(t) dt+ o(1),

nb2j+1
j Var f̂ (j)(x) = f(x)

∫
K

(j)2
j (t) dt+ o(1).

For j = 0, . . . , r the rate of f̂ (j)(x) is optimal if the variance converges at the same rate

as the squared bias. This holds if b
−2(r−j)
j ∼ nb2j+1

j , i.e. bj ∼ n−1/(2r+1). In the following

we set

bj = b = n−1/(2r+1)

and absorb a possible positive factor of the bandwidth as a scale parameter in Kj . The

following proposition shows that the joint distribution of n(r−j)/(2r+1)(f̂ (j)(x) − f (j)(x)),

j = 0, . . . , r, is asymptotically normal. Set

Vn =


nr/(2r+1)(f̂(x)− f(x))

n(r−1)/(2r+1)(f̂ ′(x)− f ′(x))
...

f̂ (r)(x)− f (r)(x)


and µ = (µ0, µ1, . . . , µr)

> with

µ =


(−1)r
r!

∫
trK0(t) dt

(−1)r−1

(r−1)!
∫
tr−1K1(t) dt
...∫

Kr(t) dt

 .
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Define Σ = (σjk)j,k with

σjk =

∫
K

(j)
j (t)K

(k)
k (t) dt, j, k = 0, . . . , r.

Proposition 1. Let f be r times continuously differentiable at x. For j = 0, . . . , r let

Kj ∈ Kj,r−j. Then Vn is asymptotically normal with mean vector f (r)(x)µ and covariance

matrix f(x)Σ.

A similar result for polynomial estimators of regression functions is in Masry and Fan

(1997); see also Fan and Yao (2003), Theorem 5.2. Analogous results hold for time series.

Univariate asymptotic normality for density estimators in time series is proved in Bradley

(1983) and Lu (2001). In the following we write briefly
∫
tkKm

j instead of
∫
tkKm

j (t) dt.

Example 1. (Vanishing highest derivative.) Suppose we have a constraint A(f (·)(x)−
a) = 0, where f (·) denotes the vector of derivatives, f (·) = (f ′, . . . , f (r))>, A is some known

matrix and a a known vector. We first address the case in which the constraint implies that

the highest derivative of the density vanishes at x, i.e. f (r)(x) = 0. This is a special case

where the ordinary kernel density estimator f̂(x) for estimating f(x) cannot be improved:

the asymptotic bias of nr/(2r+1)(f̂(x)−f(x)) is f (r)(x)µ0 (see Lemma 1), i.e. it vanishes. The

asymptotic MSE of f̂(x) therefore equals the asymptotic variance f(x)σ00 = f(x)
∫
K2

0 . Let

us suppose that K0 is supported by the bounded interval [−s, s]. Then
∫
K2

0 is minimised

by the box kernel K0 = Bs = (2s)−11[−s, s]. This follows from the Cauchy inequality

1 =

∫
K0 =

∫
1[−s, s]K0 ≤

(∫
1[−s, s]2

∫
K2

0

)1/2
= (2s)1/2

(∫
K2

0

)1/2
,

which implies
∫
B2

s = (2s)−1 ≤
∫
K2

0 . (This is plausible because the best nonparametric

estimator of an expectation is the unweighted sample mean, and here we estimate the

expectation of (2bs)−11[x− bs, x+ bs](X).) This means that we can make the asymptotic

MSE of f̂(x) arbitrarily small by taking K0 = Bs with s large.

In the following we address the general case in which f (r)(x) is not known to vanish.

For an arbitrary vector c we can then introduce a ‘corrected’ estimator f̂c(x) for f(x),

f̂c(x) = f̂(x)− c>A

 n−1/(2r+1)(f̂ ′(x)− a1)
...

n−r/(2r+1)(f̂ (r)(x)− ar)

 .

Remark 1. (Alternative presentation of the estimator.) Set K(·) = (K ′1, . . . ,K
(r)
r )>.

We can write f̂c(x) as an ordinary kernel estimator

f̂c(x) =
1

n

n∑
i=1

K̃b(x−Xi)

with bandwidth b = n−1/(2r+1) and kernel K̃ = K0 − c>A(K(·) − a).
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Write µ and Σ from Lemma 1 as

µ =

(
µ0
ν

)
and Σ =

(
σ00 λ>

λ Λ

)
,

where ν = (µ1, . . . , µr)
>, λ = (σ10, . . . , σr0)

> and Λ = (σjk)j,k, j, k = 1, . . . , r. Introduce

the vector c− = (1,−c>)> and the diagonal block matrix A− = diag(1,−A).

Theorem 1. Let f be r times continuously differentiable at x. For j = 0, . . . , r let Kj ∈
Kj,r−j. Assume that A(f (·)(x)− a) = 0 holds. Then

nr/(2r+1)(f̂c(x)− f(x)) = c>−A−Vn

is asymptotically normal with mean f (r)(x)(µ0 − c>Aν) and variance

f(x)
(
σ00 − 2c>Aλ+ c>AΛA>c

)
.

Remark 2. (Optimal choice of c.) It follows from Theorem 1 that the asymptotic MSE

of nr/(2r+1)(f̂c(x)− f(x)) is

f (r)2(x)(µ0 − c>Aν)2 + f(x)
(
σ00 − 2c>Aλ+ c>AΛA>c

)
= A− 2c>B + c>Cc

with
A = f(x)σ00 + f (r)2(x)µ20,

B = f(x)Aλ+ f (r)2(x)µ0Aν,

C = f(x)AΛA> + f (r)2(x)Aνν>A.

The matrix C is symmetric. If C 6= 0, the asymptotic MSE is minimised by c = c∗ = C−1B.

The minimal asymptotic MSE is A − B>C−1B. Both B and C depend on the density

through f(x) and f (r)(x). Write ĉ∗ for c∗ with f(x) and f (r)(x) replaced by f̂(x) and f̂ (r)(x).

It follows that nr/(2r+1)(f̂ĉ∗(x)−f(x)) also has asymptotic MSE A−B>C−1B. The original

estimator f̂(x) is f̂c(x) with c = 0. Hence the asymptotic MSE of nr/(2r+1)(f̂(x)− f(x)) is

A, which is strictly larger than A−B>C−1B.

Example 2. (Vanishing derivative; r=1.) Suppose the density f is continuously dif-

ferentiable at x and we want to estimate f(x) under the constraint f ′(x) = 0. This is a

special case of the situation in Example 1, with r = 1. We treat it now with Theorem 1. As

bandwidth with optimal rate we take b = n−1/3. We can improve f̂(x) by using modified

estimators of the form f̂c(x) = f̂(x) − cn−1/3f̂ ′(x). The joint asymptotic distribution of

n1/3(f̂(x)− f(x)) and f̂ ′(x)− f ′(x) is normal with variances f(x)
∫
K2

0 and f(x)
∫
K ′21 and

covariance f(x)
∫
K0K

′
1, and with bias f ′(x)(−

∫
tK0,

∫
K1)

> = 0. Then n1/3(f̂c(x)−f(x))

is asymptotically normal with mean 0 and variance

f(x)
(∫

K2
0 + c2

∫
K ′21 − 2c

∫
K0K

′
1

)
.
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This is therefore the asymptotic MSE. It is minimal for c = c∗ =
∫
K0K

′
1/
∫
K ′21 . The

minimal asymptotic MSE is

f(x)
(∫

K2
0 −

(
∫
K0K

′
1)

2∫
K ′21

)
.

This is smaller than f(x)
∫
K2

0 unless
∫
K0K

′
1 = 0.

Suppose K0 is supported by the bounded interval [−s, s]. We minimise the asymptotic

MSE over K1 by choosing K1 with support [−s, s] such that K ′1 is close to K0. We must

have
∫
K ′1 = 0. This holds for the choice K ′1 = K0−Bs, where Bs = (2s)−11[−s, s] is again

the box kernel on [−s, s]. This means that K1(t) = (L0(t) − t + v)1[−s, s](t), where L0 is

an antiderivative of K0 and the constant v is chosen such that

1 =

∫
K1 =

∫
L0 −

∫ s

−s
t+

∫ s

−s
v =

∫
L0 − s2 + 2sv,

which holds for v = s/2−
∫
L0/(2s). By Remark 2, with

∫
K0 = 1,

c∗ =

∫
K0K

′
1∫

K
′2
1

=

∫
K0(K0 −Bs)∫
(K0 −Bs)2

=

∫
K2

0 − 1/(2s)∫
K2

0 − 2/(2s)) + 1/(2s)
=

∫
K2

0 − 1/(2s)∫
K2

0 − 1/(2s)
= 1.

The asymptotic MSE is

f(x)
(∫

K2
0 −

(
∫
K0K

′
1)

2∫
K
′2
1

)
= f(x)

(∫
K2

0 −
(∫

K2
0 − 1

))
= f(x).

This is the asymptotic MSE of n1/3(f̂(x)− f(x)) with K0 = Bs. Indeed, by Remark 1, the

kernel of f̂c∗(x) = f̂1(x) is K̃ = K0 − c∗(K0 − Bs) = K0 − (K0 − Bs) = Bs, which is the

optimal kernel for f̂(x) by Example 1.

Remark 3. (Kernel choice.) It is important to choose different kernels for different

derivatives. If we take K1 equal to K0 in Example 2 and write K for this kernel, then∫
K2 =

∫
K2(t+ u) dt implies

0 = ∂u

∫
K2(t+ u) dt = 2

∫
(KK ′)(t+ u) dt = 2

∫
KK ′,

and there is no improvement over f̂(x).

Now we consider two examples with constraints that do not imply that the highest

derivative of f vanishes at x.

Example 3. (Nonvanishing derivative; r=1.) In the simplest example with nonvan-

ishing highest-order derivative, the density has one continuous derivative at x, i.e. r = 1 as

in Example 2, and the constraint is f ′(x) = a with a 6= 0. The bandwidth with optimal rate

is again b = n−1/3. Set f̂c(x) = f̂(x)−n−1/3c(f̂ ′(x)− a). The joint asymptotic distribution
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of n1/3(f̂(x)− f(x)) and f̂ ′(x)− f ′(x) is normal with covariance matrix as above, and with

bias a(−
∫
tK0,

∫
K1)

> = a(−
∫
tK0, 1)>. The asymptotic MSE of n1/3(f̂c(x)− f(x)) is

f(x)
(∫

K2
0 − 2c

∫
K0K

′
1 + c2

∫
K ′21

)
+ a2

(∫
tK0 + c

)2
= A− 2cB + c2C

with

A = f(x)

∫
K2

0 + a2
(∫

tK0

)2
,

B = f(x)

∫
K0K

′
1 − a2

∫
tK0,

C = f(x)

∫
K ′21 + a2.

If f(x) > 0, then C > 0 and the asymptotic MSE is minimised by c = c∗ = B/C. The

minimal asymptotic MSE is A−B2/C. Both B and C depend on the density through f(x).

Write ĉ∗ for c∗ with f(x) replaced by f̂(x),

ĉ∗ =

(
f̂(x)

∫
K0K

′
1 − a2

∫
tK0

)2
f̂(x)

∫
K ′21 + a2

.

Then the asymptotic MSE of n1/3(f̂ĉ∗(x)− f(x)) is A−B2/C, while n1/3(f̂(x)− f(x)) has

asymptotic MSE A.

Example 4. (Nonvanishing derivative; r=2.) For a second example with nonvanishing

highest-order derivative, again take the constraint f ′(x) = 0 as in Example 2, but now

assume that f is known to be twice continuously differentiable at x. Then A = diag(1, 0) and

a = (1, 0)>. The bandwidth b0 = n−2/5 gives the optimal rate. Since f
′′
(x) is not involved in

the constraint, we can set f̂c(x) = f̂(x)− cn−1/5f̂ ′(x). By Proposition 1, n2/5(f̂(x)− f(x))

is asymptotically normal with mean f
′′
(x)12

∫
t2K0 and variance f(x)

∫
K2

0 . Hence the

asymptotic MSE of n2/5(f̂(x)− f(x)) is

A = f(x)

∫
K2

0 + f ′′2(x)
1

4

(∫
t2K0

)2
.

On the other hand, by Theorem 1, n2/5(f̂c(x)− f(x)) is asymptotically normal with mean

f
′′
(x)
(1

2

∫
t2K0 + c

∫
tK1

)
and variance f(x)

( ∫
K2

0 − 2c
∫
K0K

′
1 + c2

∫
K ′21
)
. Hence the asymptotic MSE of f̂c(x) is

f(x)
(∫

K2
0 − 2c

∫
K0K

′
1 + c2

∫
K ′21

)
+ f ′′2(x)

(1

4

(∫
t2K0

)2
+

1

2
c

∫
t2K0

∫
tK1 + c2

(∫
tK1

)2)
= A− 2cB + c2C
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with

B = f(x)

∫
K0K

′
1 −

1

4
f ′′2(x)

∫
t2K0

∫
tK1,

C = f(x)

∫
K ′21 + f ′′2(x)

(∫
tK1

)2
.

If C > 0, the asymptotic MSE of f̂c(x) is minimised by c = c∗ = B/C. The minimal

asymptotic MSE is A−B2/C.

Suppose that K1 is of order 2. Then
∫
tK1 = 0, and we have B = f(x)

∫
K0K

′
1 and

C = f(x)
∫
K ′21 . Assume that K ′1 does not vanish. This means that K1 is not a box kernel.

Then
∫
K ′21 6= 0, and c∗ simplifies to

∫
K0K

′
1/
∫
K ′21 , and the asymptotic MSE simplifies to

f(x)
(∫

K2
0 −

( ∫
K0K

′
1

)2∫
K ′21

)
+

1

4
f ′′2(x)

(∫
t2K0

)2
.

By the Cauchy inequality,
( ∫

K0K
′
1

)2 ≤ ∫ K2
0

∫
K ′21 . Note again that K ′1 cannot be pro-

portional to K0 since
∫
K0 = 1 but

∫
K ′1 = 0. Hence the variance term of the asymptotic

MSE is always positive. It may however happen that
∫
K0K

′
1 = 0. Then f̂c∗(x) has the

same asymptotic MSE as f̂(x). This is in particular the case if K0 and K1 are symmetric,

so K ′1 is antisymmetric and hence orthogonal to K0.

3 Proofs

Proof of Lemma 1. For j = 0, . . . , r we have the Taylor expansion

f (j)(x− bjt)− f (j)(x) =

r−j∑
k=1

(−bjt)k

k!
f (j+k)(x)

+
(−bjt)r−j

(r − j − 1)!

∫ 1

0
(1− t)r−j−1(f (r−j)(x− bjt)− f (r−j)(x)) dt.

For appropriately differentiable f and g we have (f ∗ g)′ = f ′ ∗ g = f ∗ g′ and therefore

(f ∗ g)(j) = f (j) ∗ g = f ∗ g(j). In particular,

E[f̂ (j)(x)] = E[K
(j)
jbj

(x)] = K
(j)
jbj
∗ f(x) = Kjbj ∗ f

(j)(x) =

∫
Kj(t)f

(j)(x− bjt) dt.

Since Kj is of order j and f (r−j) is j times continuously differentiable, we obtain the asserted

expansion of the bias of f̂ (j)(x).

The variance of f̂ (j)(x) is

nVar f̂ (j)(x) = VarK
(j)
jbj

(x−X)

= E[K
(j)2
jbj

(x−X)]− (E[K
(j)
jbj

(x−X)])2

= b−2j−1j

∫
K

(j)2
j (t)f(x− bjt) dt−

(
b−jj

∫
K

(j)
j (t)f(x− bjt) dt

)2
.
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Since f (j) is continuous at x, we obtain the asserted approximation of the variance of f̂ (j)(x)

similarly as for the bias.

Proof of Proposition 1. Recall that we have set bj = b = n−1/(2r+1). Lemma 1 gives

expansions for the bias and variance of f̂ (j)(x). For the covariances we obtain by a similar

argument

E[K
(j)
jb (x−X)K

(k)
kb (x−X)] =

1

bj+1bk+1
E
[
K

(j)
j

(x−X
b

)
K

(k)
k

(x−X
b

)]
=

1

bj+k+2

∫
K

(j)
j

(x− u
b

)
K

(k)
k

(x− u
b

)
f(u) du

= n(j+k+2)/(2r+1)

∫
K

(j)
j (t)K

(k)
k (t)f(x− bjt) dt.

Hence

n(2r−j−k)/(2r+1)Cov f̂ (j)(x)f̂ (k)(x)→ f(x)σjk.

Set Yni = brK(·)((x−Xi)/b) with K(·) = (K
(0)
0 , . . . ,K

(r)
r )>. Then nr/(2r+1)f̂(x)

...

f̂ (r)(x)

 =
n∑

i=1

Yni.

With nb2r+1 = 1 we have

nE‖Yn‖21(‖Yn‖ > ε) = nb2rE
∥∥∥K(·)

(x−X
b

)∥∥∥21(∥∥∥K(·)
(x−X

b

)∥∥∥ > b−rε
)

=

∫
‖K(·)(t)‖21

(
‖K(·)(t)‖ > b−rε

)
f(x− bt) dt→ 0.

The assertion now follows from the central limit theorem of Lindeberg and Feller. See e.g.

van der Vaart (1998), Proposition 2.27, for a multivariate version.

Proof of Theorem 1. Write

nr/(2r+1)(f̂c(x)− f(x)) = c>−A−Vn.

This is asymptotically normal by Proposition 1. The mean is

f (r)(x)c>−A−µ = f (r)(x)(µ0 − c>Aν),

and the variance is

f(x)c>−A−ΣA>−c− = f(x)
(
σ00 − 2c>Aλ+ c>AΛA>c

)
.
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