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1. Introduction

The subject of this thesis are goodness—of—fit tests for discrete data with parameters to
be estimated. For this purpose, observed and expected counts for a given parametric
model will be compared applying a certain “distance measure”, which should be
small if the model is true and large if it is not. Of course, the distribution of the
distance under the nullhypothesis, i.e. the case that the model holds, is needed in
order to check the goodness—of—fit. For those tests, commonly Pearson’s X* and the
Likelihood Ratio Statistic are used. Cressie and Read (1984) have embedded them
in a family of “Power-Divergence Statistics” SDy (A € R), where each member SD)
is a sum over all deviations between observed and expected counts:

SDy = Z ay(obs, exp)
cells

with distance function
2 - obs obs\ A 2
ay(obs, exp) Ot 1) <(emp) > /\—I—l(o s—exp) >0

The values A = 0, where ag is defined by continuity, and A = 1 yield the Likelihood
Ratio and Pearson’s X? Statistic respectively. To allow zero observations, which are
typical when data are sparse, only values A € (—1,00) will be considered.

The observed data consist of a J x K contingency table:

categories
D
groups 1 e k -«» K |sum
| X oo Xik e Xy | Xy
il Xp o e Xk D P
J| Xno e Xk e Xk | Xog
sum JY+1 e X+k R xY_l_]{ X++

with .J groups usually represented by covariables Z € RF (R € N), K categories
D e {1,..., K} and observed counts X;; € Ny of objects (Z, D) belonging to group
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6 1. Introduction

7 and category k.

The sampling schemes considered here are Poisson and product—multinomial. Pois-
son distribution, i.e. when X1, ..., X jx are independent Poisson distributed random
variables, typically occurs when all available data (Z, D) are collected within a fixed
period. The product—multinomial distribution here is column—multinomial, that is
to say that the surveyed columns are K independent multinomials. An important
application are case—control studies where D is usually an indicator for a disease with
K = 2 values 1 (disease) or 0 (no disease).

The main interest in the investigation of contingency tables lies in the description of
associations within a table rather than in the marginal distribution of covariables and
categories. Thus, the models to be tested are association models, where dependencies
between covariables and categories are specified by a finite-dimensional parametrized
model and where the marginal distribution may vary.

It is commonly held that for increasing sample size, SDjy is asymptotically X? dis-
tributed under the common sampling schemes, which are Poisson or conditional Pois-
son, such as (product—) multinomial sampling. For this approach, especially the num-
ber of cells J x K is assumed to be fixed, and hence the number of parameters is finite.
There are, however, additional assumptions which are often not given, especially not
when the data are sparse, for instance the increase of all expected values. The aim
of this dissertation is to meet this situation using an “increasing—cells” approach, i.e.
the number of categories K is fixed and the number of groups J increases, and to
derive a limiting normal distribution of SD,. In particular, the expected values of
each cell may be small but need not be. One difficulty in proving such a limiting
result is that the models considered do not specify the marginal distribution of the
covariable groups. So when the number of groups tends towards infinity, one has to
deal with an asymptotically infinite number of nuisance parameters.

A number of authors have also discussed the possibility of taking a normal rather
than a X* approximation using the increasing—cells approach, e.g. Peter McCullagh
(1986), Gerhard Osius and Dieter Rojek (1992) and Carl Morris (1975). McCullagh
considers Pearson’s X* and the Likelihood Ratio Statistic for Poisson and binomial
sampling with all expected values and hence the distribution of the table specified by
a finite—~dimensional parametric model. Osius and Rojek derive the asymptotic nor-
mality of SDy for “row—multinomial” sampling, which is also product—multinomial
but with the rows being J independent multinomials. In terms of expected values,
they examine the same models as this thesis. Because of the underlying sampling
scheme, though — the group sizes are given, they do not have to deal with an in-
creasing number of nuisance parameters. Although Morris is not concerned with
parameter estimation but with given expected values, his paper also must be men-
tioned. Morris proves the asymptotic normality of Pearson’s X? and the Likelihood
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Ratio Statistic for multinomial sampling, i.e. for a J—dimensional multinomial vector
where J increases to infinity, by making use of the fact that the multinomial distri-
bution is a special conditional Poisson distribution. Thus, he can dispense with the
stochastic dependencies within the components and apply the central limit theorem.
His work and the work of Osius and Rojek provide important ideas for the general
concept of this thesis, in particular valuable elements of proofs, which could partially
be adopted. Especially the results for calculating asymptotic orders and certain ap-
proximation steps could be deduced in a way similar to Osius and Rojek’s. Morris’
idea is of central importance for the asymptotics in the column—multinomial case.

The general background will be provided in chapter 2. In the first section, the sam-
pling schemes will be given, which yield the distribution models considered here,
Poisson— and column—multinomial. After this, the “increasing—cells” approach will
be explained in detail. The following section then presents the parametric models in
question, which, in order to describe dependencies within a table, formulate ratios of
expectations as functions of a finite-dimensional parameter vector. Since only ratios
within a table are modelled and hence the marginal distribution of the covariable
groups is not specified, this will in particular lead to additional nuisance—parameters,
namely the expectations of the row—sums. For applications usually generalized linear
models are taken, in particular logistic regression models. These will be sketched as
an example and it will be outlined in how far they fit into the modell class consid-
ered here and which points are in need of improvement. With the models of interest
being characterized, the nullhypothesis to test, which will later be assumed for the
derivation of the asymptotic results, can be formulated. Finally the model fit will
be described, which will be done using maximum likelihood or asymptotic equivalent
estimators, and supplementary information like the formulae for information matrix
and scores will be given. In the last section, the Power—Divergence Family SD,,
respectively the distance function ay, is defined and some characteristic properties
and derivatives are summarized. With all necessary background provided, then in
anticipation of the last chapter, the final standardization terms for a goodness—of-fit
test for both distribution models and the decision rules are given. Further, all as-
sumptions will be listed and explained in brief.

Chapter 3 will treat Morris’ approach (1975). Morris not only studied the concrete
statistics mentioned, but above all introduced a general method to achieve a limit-
ing normal distribution for arbitrary multinomial sums. This approach will be used
later to derive the asymptotic normality of the goodness—of-fit statistic in the case of
column—-multinomial sampling. In this chapter now, the simple generalization from
the multinomial to the column—multinomial model will be considered. The first sec-
tion illustrates the method, the theoretical statements will then be formulated in the
following section. Since this approach makes use of the fact that the multinomial is
a particular conditional Poisson distribution, it will turn out that asymptotic results
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for column-multinomial sums can be deduced to the Poisson case and hence that
Poisson and column-multinomial statistics can partially be treated together. Addi-
tionally, however, some requirements concerning the convergence of the conditional
distribution will have to be fulfilled. These can be checked using a criterion from Steck
(1957), which is essential for Morris” approach and will also be given. Of special im-
portance for the later application case will be the generalization of a fundamental
lemma from Morris (1975), which summarizes the approach formulating conditions
for the asymptotic normality of arbitrary column—multinomial sums.

In chapter 4, some general results for the Poisson distribution will be presented, which,
applied to ay, will be very useful for further proofs concerning the weak convergence
of the test statistic. The first section deals with expected values of functions under
Poisson distribution. By considering these expectations as functions of the parameter
1, conditions for existence, continuity and differentiability in p are given. Further, a
very helpful Taylor approximation for expectations of the form E(ILLT(H(%)) is stated
for the asymptotics p — oo, where X is Poisson(u) distributed, H is a real valued
function and r a nonnegative integer. Thus, a valuable tool for calculating asymp-
totic orders is given, which can in particular be applied to the distance function ay.
The idea for this theorem goes back to Osius (1984), who showed a similar result for
the binomial distribution B(n,p) for the asymptotics n — co. Decisive for the proof
of this theorem is the fundamental property of the central Poisson moments to be
polynomials in p with the degree not exceeding half of the order, which will also be
given. The statements following in the second section are applications of these results
to moments of a) and will lead to important bounding statements, which will be used

throughout the proofs of the later chapters.

Subject of the actual main chapters of this thesis, chapter 5 and chapter 6, will be the
derivation of a limiting normal distribution for SD) under the nullhypothesis. In or-
der to eliminate the correlations caused by estimating, chapter 5 deals with a gradual
approximation of the centered goodness—of—fit statistic. This will be done formulating
the single steps for both sampling schemes together, and thus leads to analytically
identical approximations for both distribution models. Especially because of the un-
derlying stochastic dependencies in case of column—multinomial sampling, at certain
points, however, differentiated argumentation will be necessary. In particular, one
auxiliary result concerning the column—multinomial model will be shown using Morris’
approach, which requires rather comprehensive argumentation. For reasons of clarity,
it therefore will be treated separately in section 5.1, prior to the actual approximation
steps. In there, some arguments from Morris’ proof concerning the asymptotic nor-
mality of the Likelihood Ratio Statistic (1975) could be directly adopted. Referring
to Osius and Rojek (1992), who also considered the Power-Divergence Family, though
in the case of row—multinomial sampling, it should be mentioned that although their
approximation is similarly structured and the proceeding could partially be adopted,
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here additional arguments become necessary in order to handle the nuisance param-
eters as well as the stochastic dependencies in the column—multinomial case.

In chapter 6, the limiting normality of the approximated sum will be proved. When
Poisson sampling is considered, the approximation is, in contrast to the column-—
multinomial case, a sum of independent variables and the asymptotic normality can,
using the the auxiliary results from chapter 4, thus be easily derived applying the cen-
tral limit theorem. In the case of column—multinomial sampling, the desired limiting
normality of the approximated statistic will be shown choosing Morris’ approach,
which uses results from the proof concerning the Poisson approximation. Similar to
the proof of the auxiliary result concerning the approximation in section 5.1, where
Morris’ method was applied, for this proof some of Morris’ results could be adopted.
With the asymptotic normality of the approximated statistic, scaled with the “true”
asymptotic variance, given in section 6.1, the next section establishes as the last
step needed the consistency of the variance estimation. The following theorems then
present as a conclusion of the preceding statements the main results of this the-
sis, namely the asymptotic normality of the test statistic under the nullhypothesis for
Poisson (Theorem 6.4) and column-multinomial-sampling (Theorem 6.5). The result
for the column—multinomial statistic is only verified for the subclass with A € (-1, 1],
which, however, includes all important goodness—of-fit statistics.

In conclusion to the actual chapters follow some “Final Remarks”, giving an out-
look on advisable improvements and formulating open questions. Finally, the ap-
pendix lists the first central moments of the Poisson distribution, which are especially
necessary for the bounding results in chapter 4. Further, an inequality concerning
the distance function and two technical results, which do not deal directly with the
goodness—of—fit statistic, but are needed in several proofs, will be given.



2. Model and Goodness—of—Fit

2.1 Stochastic Model and Asymptotics

Starting off with the sampling scheme, in this section contingency tables, models for
their distributions and the asymptotic approach will be explained.

Starting point for the Poisson distribution model is a sample of independent,
identically distributed observations (Z;, D;), i =1,..., N, with Z € R® being a vec-
tor of covariables and D a categorial random variable with values in {1,..., K'}. For
the image space of Z, let a disjoint decomposition be considered: I'mZ = U;-Izl I;. If
the observations (Z;, D;), i =1,..., N, come in by chance within a fixed period t; —
that is to say that the total size N is a random variable — and nearby assumptions
are fulfilled (see for example Billingsley, 1986, section 23), then the distribution of the
counts X = X, (o) for the event (Z € I, D = k) is given by J-K independent Pois-
son processes with intensity Ajx > 0, i.e. for every j € {1,...,J} and k € {1,..., K}
Xy, is Poisson distributed with the expected value pj, = 5+ A, > 0, and the variables
Xi1,...,X K are stochastically independent. Since sums of stochastically indepen-
dent Poisson variables are Poisson distributed themselves, this also holds for the size
N, ie. N = 237:1 DA X =t X4y ~ Pois(pyq) with ppy = Z}-jzl vE, k-
Hence the Poisson distribution model is of a very general kind and typically occurs
if all available data are collected within a fixed period.

After these preliminary remarks, to see the Poisson model come into being, in the
following a Poisson distribution will be assumed. In order to study an asymptotic
approach, let this from now on be indicated by a running index n. Now for each
n € N a disjoint decomposition of the image space of Z is considered:

J”l
ImZ = U I, It ..., Ij. pairwise disjoint.
=1
Hence, with N™ as the stochastic total sample size, for the counts X7 will be supposed
(7e{1,...,J",ke{l,...,K},n € N):

no= {1 << N"|Z; € 17, D; = K} ~ Pois(ul),
X1, X1y, .., X 7ni  stochastically independent.

10



2.1. Stochastic Model and Asymptotics 11

It the event Z € I} is interpreted as the belonging to a covariable group, indicated
through the code C' = j, this yields for the counts the following representation as a

contingency table X” = (X%),x:

J
group/ categories
code 1 ce k ce K sum
LyXy - Xgpooo X | XY
j e noo e | X5
JU N Xy X o X | Xny
n n n n J— n
sum +1 +E ik | Xiy =N
The subscript “-” will always denote a vector and “+” a summation over the corre-
sponding index (for example is X = (X, .. .,XJnk)T the k—th column and X

the sum over its components).

The relevant sampling scheme to achieve a column—multinomial distribution are
K independent samples, each of size ny, from the conditional distribution of Z given
D=1k (k=1,...,K). Notably, n; and hence the total size n = np = YK  n,
is fixed. If the k—th sample (Z;|D = k), i € {1,...,n}, is considered, the vector
YR =(Y,..., Y%, )T of counts

k=11 <1 < nilZi € 17}

has a multinomial distribution of size ng with J™ classes and probability vector 7T.T;C|D =
(ﬂ'?k'D, ey ﬂ'gnkw). Here each component ﬂ';‘HD of ﬂ'_T;c'D equals the probability P(Z €
I?|D = k) and with E(Y}}) = puf especially holds ToRD = e/ Tk

group/ categories
code 1 ce k e K sum
n n n n
1 Yy e 1k e 1K Y1+
> n n n n
J il T 7k e IK Yj+
J" Y7, e Y7, ce Y7 Yo,
sum | Y4 =ng .- Y-Ck =mng - Y_ITK =ng | Y, =n
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The independence of the samples thus yields for Y = (Y}});x a product-multinomial
distribution:

1y Y ..., Y% stochastically independent,

n

Hijk

n . n . n _ n n n _ Ik
Yy ~ Multign(ng, 7l p) with 70 p = (7% ps -« Thngp), Tikip = e

Because of the conventional arrangement of a contingency table, this distribution
model is often also called “column-multinomial”.

Particularly useful for theoretical considerations is the fact that the column-mul-
tinomial is a conditional Poisson distribution, obtained when the column sums are
fixed in the Poisson model. This will be essential for the derivation of the limiting
distribution for the column—multinomial statistic and will be discussed in detail in
the next chapter. Further conditional Poisson models, which will not be studied here
but should nevertheless be mentioned, are the multinomial, the row—multinomial and
the hypergeometric distribution. The underlying sampling scheme of a multinomial
distribution is a sample of size n from the common distribution of Z and D, i.e.
the underlying distribution table consists of the probabilities P(Z € I'D = k). It
can be derived from the Poisson distribution through fixing of the total size. The
row—multinomial distribution is the analogue to the column—multinomial distribution
— here J" independent samples of size n; (j € {1,...,J"}) are taken out of the
conditional distribution £(D|Z € I7'). Hence the rows are stochastically independent
multinomials and the components of each probability vector equal the conditional
probabilities P(D = k|Z € I7). Fixing of all marginal sums in the Poisson distribu-
tion model finally yields the hypergeometric distribution, which, however, is merely
of theoretical interest.

In the following, for Poisson and column-multinomial sampling the asymptotics,
which have in the preceding considerations already been indicated through the index
n, will be explained in detail. Just like for the commonly considered “fixed—cells
approach”, here will also be assumed:

e The expected total sample size tends towards infinity, 7}, — oo,
e the dimension R of the covariable vector is fixed,
e the number K of categories is fixed.

The meaning of n for the column-multinomial distribution is clear: Because the
expected sum Z}]; Zi{zl 1 = iy equals the total sample size Y, , an increase of
Yr, = Zﬁ;l ng = n will be considered. In the case of Poisson sampling, n will in
practice certainly be identified with the realized sample size. Because this quantity is
in fact a random variable, it is more useful for theoretical investigations to choose n
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as a formal index, which increases proportionally to pf ,, i.e. pf, = nc + o(1) with
constant ¢ > 0. Additionally will now be supposed:

e The number of groups J” increases, J” — oc.

This approach allows an application of asymptotic results to tables with sparse data,
since in contrast to the “fixed—cells asymptotics”, an increase of all expected values p7}
needs not be assumed. Because in both distribution models, Poisson and column—
multinomial, the marginal distribution concerning the covariables will here be left
arbitrary, additional conditions concerning grouping resp. the underlying probabilities
will have to be met (see sec. 2.3). One basic requirement to accomplish the increasing—
cells approach is the existence of a sequence of decompositions U}]; I7 increasing in
number, where for each partition the probability of getting filled must be positive,
ie. P(Z € I]”) > 0 for all j, n. This is in particular not given if the distribution of the
covariables is discrete with finite domain. As a stronger condition one will even have
to demand that asymptotically all groups be filled with probability one (see cond.
LCO, sec. 2.3).

2.2 Parametric Modelling and Model Fitting

Keeping the notation of the last section, now the actual models of interest, for which
the goodness—of—fit shall be tested, and the estimation will be described. At first
let not a cc?ncrete distribution, but merely the table of expectations p” = (,U;‘Lk)j,k €
(0,00)”"*K be considered. Of interest are associations within a table, thus between
covariable groups and categories, which are described by parametric models. For

j=1,...J%and k =1,..., K the expectations are modelled as follows:
n n n o _n : n 'unk(e) S
1k = i (0) = Hj+77jk,|o(0) with 7Tjk,|(:(9) = L" 0 R, (2.1)
J+
Because the expectations uf,, ..., tj», may vary, there is no reduction of dimension

in the marginal distribution £(Z), which is usually of minor interest.
The hypothesis to check with a goodness—of—fit test now says that the model is true:

Hy: 36 €0: ph = M;;n;kw(eo) for all j,k,n

with ©® C R” being an open parameter space. Because of the given sampling scheme
in case of Poisson or row-multinomial distribution, the ratio ﬂ';lk|c = u?k/u;?+ =
{1 /nj equals the conditional probability P(D = k[Z € I7), which is of primary
interest in the study of contingency tables. This concrete interpretation as a proba-
bility does not apply if column—multinomial distribution is considered. Even though
by sampling holds 77, = p7, /ply = phy /e = P(Z € I}|D = k), through the col-
umn sums being fixed, a marginal distribution of D is already given. Hence neither
the true common distribution £(Z, D) nor the conditional distribution £(D|Z) can
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be derived.

By (2.1) the ratios Tokp = {7/ 1y, which are conditional probabilities in the case
of column—multinomial sampling, depend on the same parameter vector 8 as ﬂ';‘kw:

n
Hyt
n

who(), 0 € RS,
Hig

Wi = py(0) = Hikﬂ?km(e) = /L?+7T?k|c(0) A ﬂ-;k|D(0) =
with p%, = ny for all k,n if column-multinomial sampling is considered. In this

distribution model, however, and in contrast to Poisson sampling, additional marginal
conditions have to be fullfilled in order to guarantee

Z’fﬂcm Z o ko (0) = 1. (2.2)

s=1

This leads to evident restrictions concerning the class of models F?k|c(0) described
n (2.1), which are, in view of applications, in general not met (see also (2.6)). For
the case of column—multinomial sampling, the investigation of parametric models as
described in (2.1) thus turns out to be merely of theoretical interest.

In applications, the single groups are usually represented by covariable vectors 27,
and 77y - (0) = Fi(z},0) is modelled with Fy, ..., Fx being given functions. In gen-
eralized linear models, these frequencies depend on the covariables only through a
linear combination, e.g.:

ke (0) = Gi((2],0)) forj=1,...,J% k=1,...,K,n€N.

Models for dependencies within contingency tables are of special interest in epidemi-
ology, where the ﬂ?kw are typically disease risks and the categorial variable D indi-
cates different stages of a disease. For those investigations, usually a more specific
parametrization is chosen, which will now be briefly described. Starting point is a log
linear model, log u7;, = njy, with linear predictor 77 and the following parametriza-
tion of the complete model:

log pijy, = mjy, = o™ + p§ + 7 + V-
Interpretability and uniqueness of the parameters are given through suitable marginal

conditions. Choosing especially pf = 77" = 0, ¢J; = 0, ¥{} = 0 for all j, k,n, the
parameters ¢;‘k turn out to be the “log—odds-ratios”:

M]k I8

Ve = M+ M — M — Mk = log
:“1k

A suitable parametric model in order to accomphsh (2.1) is now as follows:
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with the commonly considered special case
M ="+ pf + v+ (2}, Br)  forall j,k,n (B € RY).

Here p? = v, = 0, 1 = 0 and further (without loss of generality) z* = 0 are set in
order to meet the marginal conditions. With the special choice ¢7 = (z;l,ﬂk) this
model assumes linear dependencies between the covariables and the different stages of
a disease. An equivalent rewriting now reveals (2.3) to be a multivariate logit model:

logit, 7} := log Wl — log 7y = Yk + ¥ji(8)-

In particular the ratio F;Lk|c = ,u;-lk/,u?_l_ states in accordance with (2.1) explicitly as
follows:

exp (v + ¥5(8))

Tile = Tiko(0) = =x - . (2.4)
e Siy exp(y + it (8))
In the concrete example this clearly results in
n n exp (e + (27, Br))
Tiklc = 7rjk|0(0) = ’ (2.5)

1=y exp(y1 + (=7, B1))

with 0 = (v2,..., 7K, B2, .-+, Bk) € RS (S = (K — 1) - (R+ 1)) being the parameter
vector of interest.

By definition, model (2.4) fits well into the more general model (2.1). In the case
of Poisson sampling, the finite—dimensional parametrization of the odds-ratios and
the marginal distribution £(D) considered there is reasonable — in particular, since
in this distribution model all parameters may vary independently of each other. As
already announced, the adequacy of model (2.4) for column-multinomial sampling is,
however, not given. Instead of (2.4), in this case more generally

n 0 o exp(vi + ¢ (8))
Tiklc = 7Tjk,|c(0 )= =k n 4 n (2.6)
=1 exp() + ¥p(8))
should be considered with especially the sequences of parameters (7;') not being con-
stant (k= 2,...,K). As can be seen by simple calculations, in order to accomplish
the marginal conditions (2.2) each 7} is already uniquely determined through all
other parameters. Beside the fact that these clearly vary with n, this additionally
entails each ke to be dependent on the vector of row sums u?, = (u7,);. Hence

the appropriate model for column-multinomial sampling (2.6) does not fit into the
assumed model class (2.1), which considers a decomposition of the expectations T
in two separate parts, u7, and ﬂ';lkw(O).

For the estimation of y in the following, the maximum likelihood estimator 6", or
some equivalent estimation function in regard to the approximability through infor-
mation matrix and scores, will be taken. The loglikelihood function (8| X", u7,)
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and the score vector U” (0| X™) are in the Poisson distribution model given as follows:

J* K

ln(9|Xn7M.n+) = Z Z(X]nk log N?k - N?k — log X]nk!)
j:l k=1

Jr K

= > ) (Xklog 134 o (0) — 15y e (0) — log X3
7=1k=1
K

gn
= Z(ZXklog,uﬁ—l—ZXklogﬂ'JHC - ph = ZlogX )

j=1 k=1 k=1

with loglikelihood kernel Z SR X T log ﬂ']k|c(0)

UneIxX") = Y URe1xg)

Jr K

= > > XjiDjlog i c(6)

7=1k=1
= DJI"(0|X", ).
The ML estimator §” there clearly has to fulfil U”(#"|X™) = 0. Since multinomial

densities are particular conditional Poisson densities, for column—multinomial distri-
bution holds

K n
sy = E(Gpenr)

k=1

- Zlog(yn) Zlogl'[ (%p ()"
= Zlog(yn)+i:zl/;klogﬂ]k|D (6)

k= 1]1

K H]+ ]HC( )
= Zlog(yn)+ZZ —

k=1 j7=1 Tk

with loglikelihood kernel 377, Y42, Y log 77y, . (6),

UnEY) = U

J* K

= > M YiDjlog il (0)

j:l k=1
= Dgl”(0|yn, :u;n+)a
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i.e. in both distribution models the scores and thus the estimators §” are analytically
identical — as functions of X resp. Y™, not, however, their distributions.

Since in later chapters many arguments will hold for both sampling schemes and the
score vector will be repeatedly used, let in the following U"(#) denote the score vector
for Poisson as well as for column—multinomial distribution. Specific statements will
be indicated writing U (#|X") or U™ (#|Y™). The same notational convention will in
the following also be used for other stochastic terms, which are analytically identical
in both distribution models.

If ™ denotes the table of expectations for Poisson as well as for column—multinomial
sampling, then in both cases the information matrix under Hj is the same. If
Wi = /L;?’_l_ﬂ';”kw(%) holds for all j, &, n, for some 6y € ©, simple calculations give in
the case of Poisson sampling

(4, 00) = Con(U" (6]X")
Jv K
= 3 Con(X0D] log 'y (60)
7=1k=1
Jv K

= Y. Y Djlog ikl (00) - 115 - Do log i (6o)
7=1k=1
n K

= Z I Z 7T;Lk|c(90)DaT log ”;k|c(00) - Dglog ﬂ-;k|0(00)
j—l k=1

T n n
= Z [ Z Da 7Tjk,|c(00) ‘ Dﬁﬂ—jkm(eo)
7=1 = Jk|C

and in the column—multinomial model

I"(pfy,00) = Cov(U"(60]Y"))

K J»
= COU(ZZY]‘%DaT log ﬂ-?k|0(00))
k=15=1
K Jm
= > Cov(} YD log Tikjc (fo))
k=1 7=1
K Jn Jn
= > (COU(Z YDy, log 7y (60), D Yk D, log ﬂ?kw(@o))) o
k=1 7=1 j=1 r,s=1,...,

gn

- é(Z“ﬁ

g Do B0 Dao (o)
— ]k

r,s=1,...,8
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J” K

n 1 T, n n

= X; Hj+ kZ 7ﬂnk|0(00) Dy ij|c(00) ’ D97Tjk|0(00)'
= =1 7

In order to estimate the vector of expectations u”, the row sums X7 resp. Y}
(7 =1,...,J") will be used. Since the ML estimator — if it exists — is uniquely
determined through the normal equations, which require conformity of observed and
estimated marginal sums, the row sums are ML estimators for u7, .

In conclusion, the following estimators will be considered:

e A" maximum likelihood or some asymptotic equivalent estimator for 8y with

— /n(0" - bp) = 0,(1),
— 0" =0 = (I" (-4, 60) ™" - U™ (80) + Op(n™"),

o 47, (j€{1,...,J"}) maximum likelihood estimator for u?, :

- 3, =X (Poisson),
%, =Y  (column-multinomial).

The estimators for the modelled expectations thus will be ﬂ;’_l_ﬂ?k'o(@”) for all j €
{1,...,J"},ke{l,...,K},ne N.

2.3 Goodness—of-Fit Statistic and Test

The best known statistics usually taken for goodness—of—fit tests are Pearson’s X? and
the Likelihood Ratio Statistic (“Deviance”). Cressie und Read (1984) have embedded
them in the more general class of the so—called “Power-Divergence Statistics” SDj,
whose members are characterized through the subscript A € R and which will be
considered in the following. Each representative SD) is a sum over all deviations
between observed and expected values,

SD) = Z ay(observed, expected),

cells

in the situation considered here hence between observed data and fitted modelled
expectations. The deviation is measured by the distance function ay, which will in
the following only be defined for A € (=1, 00) to allow zero observations.

Definition 2.1 For A € (—1,00), the distance function
ay : RS‘ xRt — RS‘

(z,1) — ax(z,p)
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with RY denoting [0,00) and Rt = (0, 00), is defined as follows:

ay(z,p) = ﬁ.:ﬂ((%))\—l)—/\il(m—u) for X #0,

. X
wlw,p) = lim ax(e,p) =2(elog -~ (2 = p)).

Certain values of A indicate known goodness—of-fit statistics:

a_yjp(z, ) = 4(vVz - Vi)? (Freeman—Tukey),
ag(z,p) = 2(.77 logz/pu— (z — ,u)) (Likelihood Ratio),
ar(z,p) = (z—p)/p (Pearson’s X*).

Contingent on A, the deviation between observation z and comparative value p is
weighted differently. The statistic of Pearson (A = 1) is the only one which does
not distinguish whether observations with the same absolute distance lie above or
below p. In so far, distance functions with A # 1 are asymmetrical; for values A < 1
observations below p are weighted stronger, for A > 1 it is just the other way round.

Before test statistic and decision rule will be given, first some important properties
and derivatives of the distance function are presented in the following lemma, which
can immediately be deduced from the definition. Beside the positive homogenity of
ax(z, p), in the following chapters especially the fact will be used that the first partial
derivatives equal zero if x and u coincide. Let also already be pointed out that the
derivatives of ay(z, ) in 2 do not for all A exist in 2 = 0, which will in later Taylor
expansions require a separate study of the zero.

Lemma 2.2 For the distance function ax(z,u), A € (=1, 00), holds
ax(u,p) = 0,
coax(z,p) = ax(ex,cu) for allc € RT  (positive homogenity).

Differentiation in x gives the following derivatives:

Diay(z,p) = { % <(%)A N 1) for A € (=1,00)\{0}

210g§ for A =0,
Dla’)\(oa:u) = iiil})Dl(I/,\(l’,,u) = —o0 for A € (_1a0]7

pA—(k=1) k=2

T T0h ferk>20e (<100,
H =1

|lea>‘(0,,u)| = |31}_%Df‘1>\($7ﬂ)| =00 fO’I‘ k > 23A € (_1?k - 1)\{0? 1, ak - 2}

le(l,)\(l',/.t) =2
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For X € (—1,00) in particular holds:

k=2
2 _ .
Diax(u,p) =0, Diax(p,p) = o Diax(u,pp) = 2% - [T (A = 4) for k> 3.
=1
Differentiation in u provides

2 x
D2a)\(ac,,u) = (1 - (_))H-l)v Dzak(ﬂaﬂ) = 07

COA+1 I
Diar(@, ) = ~(2*1, Diar(u, ) =
Y ll/ l,[/ 3 Y l,[/’

and application of the functional equation
ax(z,p) = @ - Dyax(z, p) + p - Dyax(z, p)

further yields as a conclusion:
1
D2a/\($7 :u) = ;(ak(wv :u) - Dla}\(wv :u))v

x 2 x 2
DyDjay Ty ) = ——D2(L)\ Typ) = ——{— )\7 D Djay K ft) = ——.
(z, 1) P (z, 1) M(M) (s 1) p

O

As can immediately be seen considering the monotonous behavior of the distance
function — ay(-, p) is strictly decreasing on [0, u) and increasing on (u,00) — large
deviations between observed and fitted expectations and hence large values of ay resp.
S D) obviously speak against the nullhypothesis.

Using the notation from section 2.1 and 2.2, now the test statistic SDY (4" ,0") is
complete. Considering both distribution models separately gives the statistics

J* K

SDX(A%y, 7| x") = Z Z ax(XGy, [L;”_l_?r;’kw(é")) (Poisson),
j=1k=1
) K )
SDY(p”,0"|Y") = Z Z ax(Yj, 547k (60"))  (column—multinomial),
7=1k=1

whose asymptotic normality under Hy will be derived in chapters 5 and 6. Writing

K
mi(uly,00) = E(SD(u%,001X™) = Y > E(aa(XJ, pr)),
7=1k=1
Jm K
Cg(:“-nweo) = ZZDGIO%W%C(GO)'COU(“A(X?MM?IC)’ fk%

7=1k=1
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J* K Jn

n n n n n 1
a2 (u,b0) = DY Var(aa(Xjy, uh)) +27 +ZT

j=1k=1 =1 M+

an K
l 71T n n
=23 " —— " Cov(ax(X}, uh), (X7)?)
j=1 Fit k=
moK
+4 Z Z Tikic (00)Cov(ax(X g, pir), Xi)
7=1k=1
— X (T, B0) (T (17, 00)) ™" (R (1 80)) T
K
SNl 00) = Rl 00) — > e (e (u%, 00))2,
k=1

n n l '7’” 7T n n n .
Ve, 00) = " Z:I(CO”(‘IA(Xjk,ij)a—Xjk) = k1o (60)) (k=1,...,K),
J:

where in case of column-multinomial distribution for each & € {1,..., K'} the column
sizes p'y, = ni are known, then the following standardizations and in particular
decision rules for an asymptotic level « test will be obtained:

SDR (A%, 07| X™) — my(ary, 07) + T

rejection of Hy —— > 2y
O (H~+7 Hn)
if Poisson sampling and
SDn ¥ 1) én Yn _ ni{nn én Jn
rejection of HO }\(lu“+’ | ) m)\(lu’-+’ )+ > 2z,

A 07)
if column-multinomial sampling is considered (z, is the upper a—quantile of the
standard normal distribution N(0,1)). The main results stating the asymptotic nor-
mality of the test statistics are given in Theorem 6.4 for Poisson and in Theorem
6.5 for column—-multinomial distribution as conclusions of the preceding results. The
asymptotic normality will in the column—multinomial case only be shown for statistics
with A € (-1, 1], which, however, include all important representatives of the power

divergence family. In the case of Poisson sampling, the result is proved for arbitrary
A> -1

In order to achieve a normal limit now for both distribution models, the following
conditions are required to hold:

(RC1) 7Jc(#) is continuously differentiable twice in 6 for all j, &, n,
(RC2) Je>0:7jc(0) > e forall jk,nbeW,
(RC3) IM >0: a)|[Dorfy(0)]| <M forall j,k,n,6€W,

b) ||D§ﬂ';‘k|o(0)|| <M forall jk,n,6€W,
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(LCO) P(pfy >0Yjed{l,....J"}) — 1,

where W C © is a convex compact neighbourhood of the true parameter 6. Con-
dition (LCO) concerning the estimators g7, = X7, resp. Y} (j = 1,...,J") for
the expectations of the row sums requires that asymptotically with probability 1 all
groups are filled. Hence it is actually directed towards the distribution of the covari-
ables resp. the way of grouping them. The first three assumptions (RC1) — (RC3) are
regularity conditions for the modelled ratios, which, in the presence of covariables

Z27, ..., 2%, are usually met if the covariables are bounded. In this case generally
ke (0) = Fr(27,0) with given functions Fy,..., Fx (cp. p. 14) is assumed. These
functions and their derivatives are typically continuous in 27 and — in accordance

with (RC1) — continuous in §. Hence (RC3) is clearly fulfilled if the covariables are
bounded (For an illustration consider the multivariate logit model (2.5), for which
the derivatives can be determined by simple calculations).

Writing " and U™(f) for the parameter estimators and the scores in both distribu-
tion models in accordance with the notational convention provided last section, then
the other required conditions for Poisson and column-multinomial sampling are as
follows:
1
(LC1) —I™(pu",6y) — I positive definite,
n
(LC2) Va(d" - ) = 0,(1),
R 1
(LC3) (0" = bo) = (I" (7, 00)) 7" U™ (B) + Op(—),

(BC) Je>0:puj >e forall jk,n,

Jn
VCP) ——=0(1 Poisson),
(VCC) J =0(1) (column-multinomial),

SR (py, 0o)
1 =

MD1 Jpn — 0,

( ) /,]nn]z::l lu]-}-

1 L1
(MD2) — S — — 0,
VJ" ; \/ [

(MD3) | nax mikp(fo) — 0 forall & (column-multinomial).
<gsdm

Assumptions (LC1) — (LC3) (“limiting conditions”) are standard conditions; (LC2)
and (LC3) are generally met by the maximum-likelihood estimator. The existence of
a sequence of ML estimators will not be a prerequisite here — merely a sequence of
estimators 6" is needed, which is consistent with the rate 1/,/n (LC2) and approx-
imable through information matrix and score vector (LC3). Beside condition (BC)
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(“bounding condition”) concerning the expected values, a variance condition (VCP)
for the Poisson and a variance condition (VCC) for the column-multinomial statistic
will also be necessary. Here o}? and s}? are the variances of the test statistics for
Poisson respectively column—multinomial sampling approximative. The assumptions
(MD1) to (MD3) are conditions concerning the (not modelled) marginal distributions
respectively the way of grouping.

Except for their different stochastic behaviour, the conditions for both distribution
models almost coincide. (MD3) will only be required for column multinomial sam-
pling, which can, due to (RC2), also be regarded as a condition concerning the

marginal distribution (77, (60) = l:f—: = % * o (Bo) with 7% - (f0) > € > 0).

Let now finally the assumptions (MD1) and (MD2) be illustrated, which can also be
expressed in terms of sample means. For this purpose, consider the p—th mean
1 z 7 T J
Mp(fc.):<J—an§)p with 2. = (z1,...,25)" € R, p € R.
i=1

For example, the case p = —1 denotes the harmonic, p = 1 the arithmetic and p = 2

the quadratic mean. Using this notation, condition (MD2), i.e. \217 _“77:1 \/;JT+ — 0,

can be equivalently stated as follows
Jn 1

( w—,,Z F) = 5o (7 D057 = ) e D)

=

In order to meet (MD2), thus a sufficiently large increase of the —i-th mean is
required. If the terms of the sum are positive, the p—th mean M, is increasing in p
(see Kendall/Stewart (1969), chapter 2). This yields

'+ = — Jn ZM;+ M1(M ) > JnMP('“ ) > ]_M—lg('“-+) (2.8)

for all p € (=3, 1). (MD2) thus requires a fast increase of all p—th means with p > —1
and due to the choice of n especially (J (A N}

In regard to condition (MD1), i.e. \/}n_an; w5 — 0, the particular property
My (7)) < Mi(p?y) gives already the boundedness of the term considered there:
2

(A i) = L (L)
ﬁjzl\/ﬂj = J_anI(Nﬁ)

= (M(pl))™" My (py)
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= (M () M ()

M,
< 1.

(MD1), which requires convergence to zero, thus demands the increase of the arith-

metic mean Mj (1", ) to be faster than that of the 3—th mean. Hence it just strengthens

the requirements (M (p7))~" — 0 and M. (u7y) — oo implied by (MD2) (see
2

(2.7) and (2.8)).

In view of applications, (MD1) and (MD2) are approximatively met, if — first
of all — the total sample size is much larger than the number of groups. Fur-

n -2
ther, the scaled —1-th mean }—HAM_;_(/L”_F) = J]—H(Jl—n Z}‘]:1(N?+)_%> has to be
large, which can in the application case be checked inserting the estimated ex-
pectations of the row sums Y} respectively X7 . Finally, the arithmetic mean

n

My (p?y) = Jl—n Zj;l Kiy = “%;'ﬁ“'— respectively - should be notably larger than the
n Jn n \i 2
3 th mean M;_(N~+) = (% Zj:l(:uj+)2) .



3. Weak Convergence
for Column—Multinomial Sums

In this chapter, the limiting normal distribution of column multinomial sums for the
increasing cells approach is in the centre of interest. Statements on this matter are
required, for example, in order to prove the asymptotic normality of the approximated
goodness—of-fit statistic and will here be studied in general. The considerations of
this chapter are merely theoretical and not concerned with modelling or model fitting
at all.

The main difficulty in the derivation of such limiting results now lies in the stochastic
dependencies within each column, which prevent an application of the central limit
theorem. To fulfil these conditions an indirect approach is chosen. It goes back to
Morris (1975), who proved a “fundamental lemma”, giving conditions for the asymp-
totic normality of multinomial sums. It is essential for his approach that the basic
property of the multinomial distribution be conditional Poisson, i.e. that it coincides
with the distribution of a vector of stochastic independent Poisson variables condi-
tional on the sum equalling the multinomial sample size.

This particular method will be illustrated in the first section. The second section
then will discuss the approach more precisely, formulating statements to provide the
theoretical background. Finally, a generalization of Morris’ lemma for the column—
multinomial model will be given.

3.1 TIllustration of the Approach

Let in the following be Y = (Yji);x (j=1,...,J, k=1,...,K) a J X K column—
multinomial distributed contingency table and X the analogously defined Poisson
table. For these considerations, a simpler notation than elsewhere can be cho-
sen: For each k € {1,...,K} consider Y, = (Ylk,...,YJk)T ~ Multij(ng,pr)
with probability vector p.x = (pik, - - .,ka)T and stochastically independent columns
Y,,...,Y k. In the Poisson distribution model let the entries Xz, j = 1,...,J,
k =1,...,K be stochastically independent Poisson(p ) distributed random vari-
ables having the same expectations ;i as the corresponding column-multinomial
variables, i.e. p;i := ngpj; for all j, k.

The object of interest is the asymptotic distribution of column-multinomial sums

25
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237:1 Sy fie(Yik), fik : No — R or more generally of sums of the type 237:1 (Y5,
f; + NI¥ — R if the number of classes .J increases. These will be considered in the
following, when Morris’ method is illustrated without going into mathematical detail.
In contrast to Morris, this will already be done for the simple generalization from the
multinomial to the column-multinomial distribution.

Starting point is the fact that the column-multinomial distribution model is condi-
tional Poisson, i.e.

:E(X‘]Z::l)(ﬂ :nl,...,zj:_f 3K :TLK).

J=1

Hence, instead of studying the dlstrlbutlon of EJ 1 f5(Y;.) directly, it suffices to con-

sider the conditional distribution £( ]:1 Fi(X5)] E] 1 X1 = na, .. -72]‘:1 Xk =
nx ), with the advantage that under Poisson dlstubutlon only sums of stochastically
independent random variables appear.

Using s := Var(z;zzl fi(X;)) = ijl Var(f;(X;.)) and

J

ZXJk—nk@ZXJk—ZNJk@\/l—Z(X = ujk) =0

71=1
for k =1,..., K gives
1 J J
— (Y;)) = (X;.) J = k=1,...,K). (3.
E(SJ;f]( ])) ( Zf] ‘\/—;( gk — H]k) oV 1, ,ﬂ) (3 1)

If for reasons of clarity the notation

1 1
=2 S, Us(X) =23 filX),
- ]:1 ' j:l

S

JY]k /,ij (k:]_’...’K),

is chosen, (3.1) can be equivalently stated:
() = £(Us(X)|Vis(X) =0 VEk=1,...,K).

The stochastic independence of the Poisson variables yields for the conditioning sums

EVii(X))=0, Var(V}s(X))=1 foralke{l,...,K},

Cov(Vis(X),Ves(X)) =0 forall k,k € {1,...,K},k# k¥,
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and by definition of Us(X) and sy holds Var(Uj(X)) = 1. If further
E(Us(X))=0, Cov(Us(X),Vis(X))=0VEke{l,...,K} (3.2)

is fulfilled, then under known assumptions (e.g. if each variable meets the Lindeberg
Condition for the central limit theorem) follows:

U(X), Vis(X),. .., Vs (X)) =5 N1 (0, Ig41)  (J = o) (3.3)

with Ix 4, being the (K + 1) X (K + 1) unity matrix. If now the conditional dis-
tribution £(U;(X)|Viks(X)=0VEk=1,...,K) converges to the conditional limiting
distribution, the statistic of interest, scaled with the Poisson variance, is asymptoti-
cally normal:

1 J
£(5 Y h0))

(v, ()

= £(Us(X)Vis(X) = 0VE=1,...,K) ZF N(0,1).  (34)

The whole approach will be studied more precisely in the next section. Apart from its
general theoretical background, a generalization of Morris’ fundamental lemma will
be given which is based on this method and formulates conditions for the asymptotic
multivariate normality (cp. (3.3)) and the convergence of the conditional distribution
to the conditional limit. There the validity of (3.2), which is a condition concerning
the functions f;, will be assumed. This does not hold in general, it can, however,
always be accomplished by a suitable transformation of the given functions. Because
such a transformation will be necessary in the later application case, the method will
now be shortly described. For this purpose let the given functions (which do not fulfil
(3.2)) be denoted by ¢; (j =1,...,J). Let be 2 = (zj;);x an arbitrary J x K table
with nonnegative entries and for j € {1,...,J} let the function f; : NF — R be
defined as follows:
K

fi(z) = 9i(z) — Bgi(X;3.)) = Y ks (zk — ps),
1 < B
Vhy = E;Cov(gj(Xj.),Xjk).

Next, let the notation be as before, i.e. s34 := Var(z'j]:] fi(X;.)) etc.. With such
chosen f;, all considerations apply, especially (3.2) holds, e.g. (k=1,..., K):
Cov(Us(X), V(X))
11 L&

J I
o el (; 9;(X;.) ; A; Via X jk ; Jk,)

=
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J K
= SJ\/,LT(ECOU 9;(X Xjk)—;C'ov(kz::l'ykJXjk,Xjk))

= T (ZCO’U (9;(X )—7k.7H+k)

_ LJ ;+k(;cov(gj<xj.), ) - u+ku—zc(wgg i) X))

71=1

<

Z = ZQJ(YJ) ZE g] X Z’YLJ Z - Z:ij)

J=1
J
= Y gi(Y;) -
=1

gives the asymptotic normality for the column—-multinomial sum in question:

1< J
5(;(2%(}/}-)—E(Zgj(Xj-)))) ( ng ) 2FN(0,1). (3.6)

Hence the standardization terms are the expected value of the original and the vari-
ance of the corrected sum under Poisson distribution. This variance can be specified
more precisely:

J
s = Var(ij(Xj.))

i=1

M“

E(g;(X;.))

<.
Il
—

K

- Var(Z:gj(Xj.) = s (X — ij))

7=1k=1
J J K
= Var(Zgj(ij.)) —}-Va?“(z YEJ N]k))
7=1 7=1k=1
J J K
—2Cou( Y 05(X;), >0 D a (Xjk — pin))
7=1 7=1k=1
J J K J K
= Var( Y ;00)) + 3 S 0k Var(Xi) =230 3 wesCov(g;(X;), Xj)
j=1 j—l k=1 j—1 k=1

Mu

= Var(

)+27kJZNJk_2ZVkJZCOUgJ Xjk)

k=1 k=1

Il
-

J
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J K K
= Va,r(Zgj(Xj.)) + Z Vighsk — 2 Z Virh+k
7=1 k=1 k=1
J K
- Var ( 3 gj(Xj.)) = Vesttk- (3.7)
7=1 k=1

3.2 Theoretical Results

To provide the theoretical background, a theorem from Steck (1957) concerning the
convergence of conditional distributions in general will be given. Since Steck proves
his result considering conditional characteristic functions and in particular requires
a certain equicontinuity condition to hold, this will be defined first. After Steck’s
theorem, a simple lemma for asymptotic multivariate normality will be presented.

Definition 8.1 Consider metric spaces My and M,. The family of functions ¥™ :
My — My, v — ¢"(v) (n € N) is called uniformly equicontinuous on bounded
sets, if for every € > 0 and every bounded set C C M, there exists a § > 0 such that
for allm € N holds:

0,1 € G o, < 6 = 167(0), 90 < e (39
O
Considering the special case " : R — R (3.8) reduces to
v,o+heC CRE B <6= [¥"(v+h) — " (V)] < e

Theorem 3.2 (Steck (1957), Thm. 2.1) Let (U™, V") be a sequence of random
vectors (U™ € R, V" € RX) with (U, V") -5 (U, V) (n — 00) and
p":RE xR — R
(0,8) = Y"(v,t) == B[V = v)
a version of the conditional characteristic function. If for every fizredt € R the family
of functions

{o" (= t)|n € N}
s uniformly equicontinuous on bounded sets, then it holds
LUMV" =v) = LUV =v) (n — 00).
O

Lemma 3.3 Assume S™ is a M —dimensional random vector, (S™)" = (S},...,S%)
=Y, X! with X! = (X5,...,X]3,) and the vectors X7, ..., X}, being stochas-
tically independent. For alli € {1,...,n}, m € {1,...,M}, n € N resp. m,m’ €



30 3. Weak Convergence for Column—Multinomial Sums

{1,...,M}, n € N let be E(X},) =0 and E(S}, - Sl/) = Opmm' with 8y, being the

ml
Kronecker-delta. Suppose further that all components of S™, i.e. S = > 7" X!
fulfil the Feller Condition for the central limit theorem (‘“uniformly asymptotically
negligible” condition) and are asymptotically normal distributed, i.e.

max Var(X2)"™=30 and L(SI) =3 N(0,1) forallme{1,...,M}.

Then it holds (Inr is the M x M unity matriz):

S”i)N(O,IM) with  n — oo.
O

The simple proof can be found in Morris (1975, Lemma 2.1). It is based upon the
method of Crameér-Wold (reduction of dimension) and makes use of the fact that
each component of S meets the Lindeberg Condition for the central limit theorem,
which is implied by the Feller Condition and the asymptotic normality.

With the necessary theoretical statements given, the following lemma, which is a sim-
ple generalization of Morris’ “fundamental lemma” (1975, Lemma 2.2) from the mul-
tinomial to the column—multinomial distribution, states the exact conditions needed
for the approach described in section 3.1. The conditions (3.9) to (3.11) assure the
assumptions for Lemma 3.3 and hence the common distribution of the statistic of
interest under Poisson distribution and the conditioning sums to be asymptotically
normal (cp. 3.3). Condition (3.12) implies Steck’s criterion for the convergence of the
conditional distribution in the special case considered here.

To illustrate the method without exact formulation of the assumptions (sec. 3.1), it
was sufficient to consider an increasing cells approach (J — oo). For asymptotic
normality though, an increase of the total sample size will definitely be necessary.
With regard to the later application, and in contrast to Morris this will now be the
primary asymptotics, indicated by the running index n, entailing an increase of the
number of classes J".

Lemma 3.4 Consider a column-multinomial distributed J® X K contingency ta-
ble Y" = (Y}})jk, t-e. the columns YT,..., Y are stochastically independent and
multinomial distributed, Y7 = (Y2, ..., YR ) ~ Multijn(ng, p7%) with probability
vector pty, = (pTy, ..., Pmy) . for k =1,..., K. Analogously, let X" = (X7k)jk be a
Poisson distributed table with stochastically independent entries X7 G=1,...,J",
k=1,...,K) and especially E(X7) = p7 = ngp.

For every n == Y8 my, j € {1,...,J"} let functions e NE — R be given with
EZEJZ(XIJ’-‘.)) :I('), Cov(L72y FH(XT), /00 X)) = X2 Cou(f(X]), X5) = 0 for
alk=1,..., K.
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Besides the asymptotics n — 0o, consider J" — 0o and ng, — oo for eachk =1,..., K
and assume the following conditions to hold:

11_>m | Inax Pi =0 foralk=1,.. . K, (3.9)
n o0 <1< n
1 c
n X £ N0, (0 o0), (3.10)
Ve
1
lim - max Var(fj(X])) =0 (Feller Condition). (3.11)

n—-00 Z] 1V(17‘(fn(Xn)) 1< <Jn

Further suppose

I ! E((zjjf“(L” +MD) f”(L”))2> 0 (3.12)
im sup sup —; (L? ny _ f(pn — '
h—=0 n 7 },7:1 Var(fjn(X]n.)) AR J 3\

to be true, with v® = (v},...,v%)T being a bounded sequence and L" = (L) ks
M"™ = (M]”k) ik column—multinomial distributed contingency tables, for which holds
L’}c = (LY, -, Ly, )~ ]\Wlulti‘]n(nk + vp\/nk, pl) and MY, ~ Multign(hiy/nk, p7.)
(h = (ha,.. h[\)T € RE) with stochastically independent columns L%, ... L%,
M7, .. .,M,T}(. In particular, let v™ and h be such that the sizes ly, 1= ng+ vy /N and
my, := hr/nk are nonnegative integers for every k € {1,..., K}. Then it holds:

1
(o var(f ()

» Zf;‘(YjT,‘) LyN@0,1) (n— o).

Proof:

Defining V' :=1/,/n EJ I(XJ,C i) foreach k € {1,..., K} clearly gives E(V}]") =
0, Var(V”) = 1. Further condition (3.9) and ny — oo assure for V}* Ljapounov’s
condition for the central limit theorem

Z X — i 1o+ 3(1)
Eu) u +3 <_+3max " o1
S () - S0 < 43,5, = o)

for n — oo. Since the Ljapounov implies the Lindeberg condition, which is equivalent
to the validity of the Feller Condition and the asymptotic normality of the sum, it

follows
max Var(ijnk _ 'u?k) = max p% =30 and L(V) =3 N(0,1).
1<g< T Tk 1< <gn = )

Hence, condition (3.9) is the Feller Condition directed to the terms of each sum V}”.

The variable i o
l ' n n n '
NS S E I ey
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with E(U™) = 0 and Var(U") = 1, is also by assumption asymptotically normal
and meets the Feller Condition (cond. (3.9),(3.10)). The stochastic independence
of the columns gives further Cov(V?,VJ3) = 0 for all k, k" € {1,...,K},k # K,
and assumption Cov( 3]:1 X7, 3];1 X%) = 0 yields Cov(U™,V}') = 0 for all
k€ {1,...,K}. Hence all conditions of Lemma 3.3 are met, thus giving

(Un7 V1n7 sy ‘/I:’E')T i> NI§'+1(07 IK-I-I) (’fL — OO)

If now Steck’s equicontinuity condition from Theorem 3.2 holds, which is sufficient for
the convergence of the conditional distribution to the conditional limiting distribution,
ie.

LU VE=0Vk=1,...,K) =5 N(0,1),
then the result follows from

LUV =0Vk=1,...,K)
= (X B X = m VE =1, K)
= Jj=1
1 =
= (@ X H05)
Now it holds V;* = v & \/% 21721(Xjnk — ,u;‘k) = & 23721 Xjnk = nj, + v /7x and

hence by definition of L"
LUMVSE=vp VEk=1,...,K)

1 = "
= (g X O X = et o= 1, K)
Cog= j=1

1
zqﬁzﬁ@»
=

Analogous argumentation gives

Jn
n n n 4 1 n n n
J=1
Let nozv7 for reasons of brevity, be defined S} := S%Z]]; LY + M7, S3 =
S%E'j]:] f]”(L?) and let ¥™ denote a version of the characteristic function of the
conditional distribution of U”|V.". Then it holds

|" (V] + hyy .. 0+ K ) — " (0], . UR B)]
— |B(S) - B(eSH)|
— |E(eit51" _ eith)|
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E(|eit51" _ eitS;‘D
E(|eit(5{”—52") —1|)
E(|t]|ST - S71) (3.13)

Jn J"
M D CARTIRS AT
5 = j=1

1 Jn Jn )
< N (X s+ - X)), (314)

with the last inequality following from Cauchy-Schwarz and (3.13) from Billingsley
(1986), p. 353, (26.4¢):

IA

|57 =55) — 1] < minf|#(ST - S5)1,2} < [¢(ST - S5)| < [¢]IST — S5.
(3.14) and assumption (3.12) finally yield
}lliglo sup sup [P (0] 4+ hay oo 0 + BE ) — (VT . U, )| =0,

i.e. Steck’s equicontinuity condition concerning the family of conditional characteristic
functions is met. O



4. Properties of the Poisson Distribution

In this chapter, some preliminary results for later proofs will be provided. The first
section treats the central Poisson moments and the expected values of numerical func-
tions under Poisson distribution. In particular, useful statements concerning continu-
ity and differentiability are given and the asymptotic behaviour is investigated. The
application of these results to expectations of the distance function ay in the following
section, will provide some bounding statements, which will be used throughout the
proofs of the following chapters.

4.1 Expected Values
Theorem 4.1 Consider a Poisson distributed random variable X with expected value

w € RY and a function f: No X RT = R, (z,p1) — f(z,p).

a) Suppose that f is continuous in u and for every [a,b] C RT there exist constants
a,t € RY, so that for all u € [a,b], 2 € RY holds

|f(z,p1)| < ae', (4.1)

then F(u) == E(f(X,pn)) exists and is continuous in .

b) If additional to the requirements in a) the following assumptions are true, i.e.

for each x € Ny erists aif(ac, ) for all p € RY, (4.2)
w

for each [a,b] C RT there exist constants a,t € RT,
so that for all u € [a,b],z € RY holds

8 tx
gt (@l < e, (4.3)

then E(f(X,u)) is differentiable in u € R with derivative

0 0 1
o EUX 1) = B f(X,m) + - Cov(f(X, ), X).

34
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c) Suppose that the assumptions in a) and b) hold and that further 36_# flaz,p) is
continuous in . Then E(f(X,pn)) is continuously differentiable in p on RT.
Proof:

a) Let € be the counting measure and p(z|u) the density of the Poisson distribution,
ie. p(z|u) = e Hu*/z! for € Ny. Now existence and continuity in p of

Fiu) = E(f(X. ) = [ f(o,mp(alpeds

have to be shown. Therefore let [a, b] be an arbitrary compact subset of R*. Referring
to Billingsley (1986), Thm. 16.8, F'(¢) is continuous in p € [a,b], if f(z, p) - p(z|p) is
continuous in p, which is given by assumption, and if

|f(z, 1) - p(z|p)| < g(x) e-integrable

holds. The latter in particular guarantees the existence of F(p). Using condition
(4.1), it is verified as follows:

|f(z,p) - pz|p)| < "™ p(z|w)
< sup ae” - p(z|p)
n€la,b]
= g(z),

with g(z) e-integrable, because ae'*p(z|u) > 0 and the monotony of the integral yield

/g(m)edw = /sup e p(z|p)eds

n€la,b]
= sup /oeetxp(wm)edw
n€la,b]

= sup aet(e'=1)

Ne[avb]
< 00.

Thus existence and continuity of F(u) are shown for every p € [a, b]. Since [¢,b] C Rt
was chosen arbitrarily, the result holds for all u € R*t.

b) Keeping the notation of the proof of a) now for y € R*

o [ emptelnieds = [ (5@ nptal)eds. (.4)

has to be verified. This result combined with
(e mlplale)

= 5 o)l l) + 1o ) 5-p(el)
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0 e H T e~ Hapu®—1l _ e—H T
=@f<m,u)-—x!“ + fop)

0 e # T e~ HyuT  e—HyT
:ﬂf@’“) S (; xz“ - J)

then yields the stated formula:

9 0
o EFXom) = B f(X,m) + E(f(X, 1) ) E(f(X,n)

- E(%f(X,u)HCOU(f( ), f) (4.6)

For the proof of (4.4), let an arbitrary subset [¢,b] C RT be given. Referring to
Billingsley (1986), Thm. 16.8 b), for u € [a, b] a change of differentiation und inte-
gration is admissible, if the following asumptions are met:

for each z € Ny exists ai(f(r,u)p(rm)) for all p € [a,b], (4.7)
©

|%(f(x,,u)p(3:|,u))‘ < g(z) e-integrable for all 2 € Ng and p € [a,b].  (4.8)

Using (4.5) and the differentiability of f(z,p) in g on R (condition (4.2)), (4.7)
obviously holds. For the proof of (4.8) consider

o G mptel)| = |2 s+ 1) (= D]l

(15 @l + 17l - = = 1) - plel)
Be*” - p(z|p) (4.9)

with suitable positive constants § and s. The last inequality holds, because for
p € [a,b] |%f(ac,,u)| and |f(z,u)| are by assumption (4.1) and (4.3) dominated by
an exponential function. An integrable majorizing function for (4.9) can be obtained
analogously to the proof of a), thus showing (4.8). Hence (4.7) and (4.8) yield (4.4)
for p € [a,b]. Since [a,b] C Rt was chosen arbitrarily, (4.4) holds for all y € R*.

IA

c) Using the results of b) only the continuity of %E(f(X, @) in g on RT remains
to be shown. Considering formula (4.6), i.e
0

17 X
pEUCm) = B f(Xm+ f(Xom) = f(X, ).

the desired continuity follows with a) if %f(a; 1)+ fx, p) - 5 = f(x, p) is continuous
in ¢ and dominated by an exponential function. This howevel holds by assumption
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respectively has already been shown in the proof of b). O

Corollary 4.2 The assumptions (4.1) and (4.8) of Theorem 4.1 concerning f resp.
% [ are in particular fulfilled if f resp. % f is on every compact set including p
magjorized by a power function as follows:

0
|@f($aﬂ)|a |f($,ll)| < pB+y2™, B,y€ R"',m € N constant.

Proof: Using z > 0 this immediately follows from
Bt+yz™ < B4y -mle”
< (B+y-mhe”

a-e’

with @ = 3+ ym! € RT constant. O

The recursion formula for the central moments in part a) of the following theorem
(see Johnson/Kotz (1992)) is proved using the results of Theorem 4.1. It immediately
yields b), i.e. the central moments are polynomials in the expected value p, and an
easy to compute recursion formula for the coefficients (see also Appendix 8.1).

Theorem 4.3 For each r € N let v,.(u) be the r—th central moment of the Poisson
distribution with parameter . Then the following statements hold:
a)

dv,
Vr1 (1) = rpve—q (1) + p de'u) for each r e N,

b) vos(p) and vesy1(p) are polynomials in p of degree s for each s € No. More
precisely, for each r € Ng holds

Uy (H) = Z ar,i:ui

0<i<r/2

with ago =1, ayp = 0 for r > 1. Putting formally a,; = 0 for i > r/2, the following
recursion formula for the coefficients is obtained (1 <i < r/2, r > 2):

Qr g = (7“ - 1) Cr_24-1 +i- Ar_1,0 € N.

Proof:
a) For z € Ny, let p(z|u) denote the density of the Poisson distribution with param-
eter u. Then for r € N holds:

Vr+1(:“)

o0

= o (p) = rpve_ (@) + (2 — @) p(2|p)

=0
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o0 o0

= e () = e Y (e = 0" p(el) + 3 (2 = )" (2 = )0 ) plaln)

= o () + i O e+ %i (= w)7e = (@ = 1) s) p(aln)
= s () 4 1 i 2 piol) + %m (2= w)7e = (e — 7 0) pleln)
= raveor (1) + 9Z?=o(m(;uu)rp(mlu)

= ruvr_l(u)Jrua’Z,iﬁ(ﬁ)-

The change of differentiation and integration in the equation before last is granted
by Theorem 4.1 b), because (z — p)" is differentiable in y and for p € [a,b] C R
obviously dominated by an exponential function not depending on p. The same
applies to the derivative d(z — p)"/0p.

b) The cases r = 0 und r = 1 (r = 2s and r = 25 + 1 with s = 0) are trivial:
vo(p) = aogop® = app = 1, v1(p) = a1 op® = a1 = 0. Considering r = 2s and
r=2s+1, s =1 part a) gives

va(p) = pvo(p) + uayaliﬁ(f) =,
(i) = 25 () + p 2 —

hence vy(p) = Z}:o agpit with azg = 0,427 = 1 and vs(p) = Z}:o az it with
azo = 0,a3,; = 1. In particular, the stated recursion holds (a;,; = 0 because a,; =0
for i > r/2):

azy =1-app+1-a17 =agp=1,

az1 =2 -a10+1-az1 =az; = 1.
For the proof of the cases r = 2s und r = 2s+ 1, s > 2, let the statement be true for
r=2(s—1) and r =2(s — 1) + 1. Then by a) for r = 2s holds:

a7/2(3—1)+1 (1)

vas(p) = (25— 1)HV2(3—1)(H) +u ou
s5—1 ) a s—1 .
= (2s-1)u Z 02(5—1),1',“1' + Ha— Z a2(s—1)+1,i:“Z
=0 H =0

s—1

= (2s-1) Z a2(s—1),i—1:ui + Z ia2(5—1)+1,z‘/ﬁ
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»
|
—

= ((25 - 1)“2(5—1),1'—1 + Z'(12(3—1)+1,z') o+ (25— 1)“2(5—1),5—1,“5

-
Il
—

Il
'M"’

Il
—

((25 - 1)“2(5—1),i—1 + Z'(12(5—1)+1,i) 1,

2
with ag(;_1)41,, = 0 by assumption, because vy,_1)4; is a polynomial of degree
(s — 1) and ay(s—1)41,s—1 1S the highest non zero coefficient. Hence for r = 2s the
desired formula is established:

r/2 -
ve(u) = D anipt'
2=0
with ar; = (r—1)-a,_2,1+i-a,_1;, €N fori=1,...,r/2,a,0=0.

If ris odd, r =2s+ 1 (s > 2), analogous argumentation yields

s—1 s
Vast1(p) = 2sp Z Azs—144 + M@ Z 25, ft
=0 =0

5 S
= Z 28095—1,i—1 1" + Z iyt
i=1 i=1
5
= > (25a25—1,i—1 + ZaZs,i)/'Lz
i=1
r—1
2

= ((?“ —Day_g,;-1 + mr—l,i) I

i=1
r=1
2 -
= 2 o'
=1
with coefficients a,; (i=1,..., %), a,o = 0 as before. This completes the proof. O

The following theorem will provide a useful Taylor approximation for expected values
of functions of Pois(u) distributed random variables for the asymptotics g — oo.
Thus valuable information concerning the asymptotic order will be given, illustrated
by two examples. The idea to this theorem goes back to Osius (1984), who showed
a similar result for the binomial distribution B(n,p) for the asymptotics n — oo
and from whom essential elements of proof could be adopted. Decisive for Theorem
4.4 is the fundamental property of the Poisson distribution stated in the preceding
theorem, showing that the r—th central moments are polynomials in u of degree r/2
or r/2 — 1/2 — the same applies in the binomial case to the highest degree of n.

Theorem 4.4 Let X be a Poisson distributed random variable with expected value
poand X = % a suitable scaling. Further let a function H : [0,00) = R, 2 — H(z)
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be given, which is (2r + 2) times continuously differentiable on (0,00) (r € Ng) and
dominated by a power function: |H(z)| < ¢(14 2™) with ¢ € RT and m € N
constant. Then for h,(p) := E(u"H (X)) holds:

2r 1 1
he() = 30 G HO W 0| =00 for oo
k=0 """

Here vi(p) is the k—th central moment of the Poisson distribution with parameter p,
regarded as a function of p.

Proof:
The main component of this proof is a Taylor expansion of H around 1. Since the
expansion is only admissible on (0,00), and in order to handle the error term, first
a modification of the statement concerning the restricted expected value hf(p) :=
E(1g (X) - prH(X)) with K, = [1 —¢,1+¢€] C (0,00), € € (0,1) will be proved.
Thereafter, the difference between restricted and unrestricted expectation will be
shown to disappear asymptotically. The modified result to begin with is
2r+1 1 . k
B () = 30 G HO O ()] =0 (= ). (4.10)
k=0 "

Here

vi(n) = E(Lg, (X) - (X = E(X))") = Bk (X) - p* (X = 1)F)
is defined in accordance with A (u) = E(1x (X)-u*H (X)) choosing H (X) = (X —1)*.
Now by assumption, H is at least (2r+2) times continuously differentiable on (0, c0).

Thus, Taylor expansion of H around 1 on (0,00) gives for n = 2r 4+ 1 (see also
Dieudonné (1960), Th. 8.14.3):

HE) = Y %H(k)(l)()? C 1)k 4 Ra(X) (4.11)
k=0 """
with R, (X) = %(/1(1 — )P HOFD (14 2(X — 1)dz) (X =)™ n < 2r 41,

Restricted on K, the first 2r + 2 derivatives of H are bounded. Hence for X € K.,
ie. | X — 1] < ¢, the error term is dominated as follows:

[Rn(X)| < sple) | X — 1! (4.12)
1
with sp(e) = 7 Sup |[H" ) (2)] < oo.
Cle-1]<e

Multiplying (4.11) with p" gives

2r+1 1

pH(X) = FHB X = )" + g Ry (X)
k=0 "
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2r+1 1 _
= k'H(k)( ) T_k(‘X— - H)k + HTR2T+1("Y)'
Taking the restricted expectation on both sides yields
2r4+1 1 B
W)~ S HO W () = 47 B (15 (X) - Barn (). (4.13)
k=0

The bounding result for the error term (4.12) and v5,,, < V3,42 now give for the
right-hand side of (4.13):

1 E (1. (X) - Roran(X))| < p"E (L. (X) - | (Raran (X))
< s (OF (15, (X) - (X — 1))
- m.ez,,H(e)E(lAe(X) -5
= ,Mrszr+1(€)ﬂ B (11\ (Y) ’ (X - H)ZH-Z)
= sor1 (T 0,40 (1)
< 52T+1(e)u_r_21/2r+2(ﬂ)
= sorpr ()™ U g o ().

For the asymptotics yu — oo the last term of the chain tends towards zero with rate
O(1/p) since by Theorem 4.3 vy(,4q)(pt) is a polynomial in p of degree r + 1, and
hence bounded if divided by p"*!. This and (4.13) thus yield the modified statement
(4.10):

41

hy () = 32 HEO W0 )] =0()).

‘H’”E(lKe (X) - (RQTH(X))‘ _

In order to prove the actual result, it remains to be shown that AS(u) and A, (p) have
the same asymptotic order for p — oo:

pwilhe(p) = hi(p)| = O(1) forall seR. (4.14)

For this part of the proof, the assumption |H(X)| < ¢(1+ X™) with c€ R*, m € N
constant and further in particular m sufficiently large is needed. Thus for any given
[ € N, let without loss of generality be m > r + [+ 1.
For the difference of interest now the following holds:

| (1) = Py ()]

|[E(u"H (X)) — E(1g (X) - p"H(X))]

1" E(Ljp,000\ k. (X) - H(X))|

KB (Lo 0o\, (X X) - |H(X)])

1 E(Lo1-)(X) - [H(X)| 4 L1 4e,00) (X) - [H(X)))

IA 1
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I IA A

IA

IN

<

i (2eB (10 (X)) B (Ly ey (X) - (14 X™))
e (2 (1101-0(5) + Lrscoe) (X)) + B 140y (X) - X))
pe(2P(X - 1| > &) + E(L((14eym00)(X7) - X))
[z c(2P(|X —1U>e+(1+emP(X™> (14 e)m))
i C/(HE) P(X™ > s)ds (4.15)
we(2P(X =1 > )+ (14" P(X > 1+¢))

—I—/ﬂc/ P(X™ > s)ds
(14e)™

We(2P(X =1 > & + (14" P(X - 1] > o))

—I—,u’“c/ P(X™ > s)ds
(14e)™

W@+ (14 0™P(X — 1] > &) + mc/ P(X™ > s)ds  (4.16)
(14¢)™

(for (4.15) see Billingsley, 1968, page 223 (3)). Application of Markov’s inequality to
P(]X — 1| > ) yields for the first term of the sum

— o2+ (14 ™)
= e+ (149"

= pre2+ (14+4™)

=c1—
’ul Hr-l—l

W@+ (1+ M PIK ~1] 2 9
r m 1 v 2(r+1
<pe2+ (14 )62(,n—+,)E(|X—1| (r+0)

v 2(r+1
A 2K - 1)
1 B((X = @)
62(1‘+l) Iu2(r+l)

1 vorny(p)
62(r+l) ’u2(r+l)

K V(e 1) (1)

=G 20 F)

1 vy(rqr) (1)

with ¢; = ¢(24 (14 €)™)e~20+1) constant. For the second term follows

urc/oo P(X™ > s)ds
(

T4e)m

= ,urc/( P(X > s#)ds

T4e)m
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= ;fc/oo P(X > t)ymt™dt
1+4€
= ,u’“c/ P(X —1>t-1)ymt™ 'dt
1+4€
r * E((X — 1)2(m—1)) m—1
<p c/1+E (=12 mt™ " dt (4.17)
_ o [T 1 BE((X- N)2(m_1)) m—1
=pu c/1+e =) (7 = 1)20m=) mt dt
_ e Va1 (1) /°° tm-t
H PECEE N A T 1)2(m—1)dt
o V2(m—])(:u) 00 t \m-1 1
=4 H2(m—1) Lte (t _ 1) (t _ 1)m—1 dt
r V2(m 1)('LL) l m—1 /OO 1
< plem—ors 1+ E) e )T dt (4.18)
— 7 2(m—1)(:“) l m—1 /oo 1
=4 MZ(m—]) (1 + 6) . um—1 du
r 2(m—1)(#)

,LLTVZ(m—l) (:LL)

= 2(m=1)

T V9(m—
oy M Va(m=1)

(1)

,um—l Hm—l

with constant ¢; = ¢+ (14+€ )™ em-(m—2)"".e~™*2, Statement (4.17) is obtained
applying Markov’s inequality, and (4.18) holds because of

t21+e@$§1+%@(L)m_lg (1+3)m_1.

t—1 €

Using these inequalities for both terms of (4.16) now gives

1 v

hr (1) = B ()] <

1l
1
[l
1
W

s () o Vam=1) (1)

&S]

'ur+l 'um—l 2 'um—l

(e

—.0

l

Va(r+1) (1) n ,Mr+l+1 o V2(m—1)(,“) )
Iur+l Ium Ium—l

(1) (IeN).

The last equation holds since m > r 4 [ + 1 for arbitrarily chosen [ € N and because

p= U ) (i) resp. p(

m—1)

*Va(m—1)(1) are bounded as p tends towards infinity.
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The statement given above immediately yields (4.14), i.e.

pilhe (@) = by ()| = O(1) for all s € R.
Since v, (1) and v&(u) are special cases of h,(u) und 2 (p) (H(X) = (X — E(X))" =
(X — 1)" with |[H(X)| < 14 X7) and hence in particular

W) — vE()] = O(1) forall s € R
holds, it is possible to replace h¢(p) and vi (1) through A, (1) and vi(p) in the modified
statement (4.10) thus getting
241

_ 1
LOEDY YW )| =00 (= o).

Since by Theorem 4.3, =" vy,41(1) is bounded for the asymptotics p — oo, the last
term of the sum reduces to

1
(2r+1)!

1 1
()7 i vy (1) = O(),

H(2T+1)(1)HT_(2T+1)V2T+1(:LL) = m M

thus giving the result. O

Examples 4.5 If in addition to the assumptions in Theorem 4.4 H(1) = 0 holds,

then for r = 0 and r = 1 lim o0 by () = im0 E(p"H (X)) can be computed as
follows (tabulation of the central Poisson moments see Appendix 8.1, v (1) = 0):

lim ho(u) = lim B(H(X)) = HOWpw() = H(1) = 0,

Jim ha(p) = lim B(uH(X))
2

. 1 _
= ;}Lnéok_OHH(k)(l)ul *ui,(n)

= lim i]'t[(z)(l),u_lyz(,u)

pu—roo 2!

= lim lH(Z)(l),u_llu

p—ro0 2

= ~H(1).

4.2 Results concerning the Distance Function

To begin with, in this section the distance function ay will be shown to be dominated
by a power function and hence accomplishes the requirements of Theorem 4.1 (con-
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tinuity /differentiability of the expected value) and Theorem 4.4 (Taylor approxima-
tion). Application of these results then yields, by rather long but simple calculations,
the auxiliary results concerning the moments of a) needed in the following chapters.

Lemma 4.6 Consider the distance function ay : Rf — RY, = — ax(z,1) from
Definition 2.1. Then for each A € (—1,00), there exist constants ¢ € Rt and m € N
such that

lax(z, 1) < (14 2™).

Proof:
Consider A € (—1,00)\{0} first. Since z > 0 one gets
2 \ 2
lax(z, 1) = ‘mx(ﬂc —1)—>\+1($—1)‘
2 \ 2
< —— (@M )+ x4+ 1),
— Al(A+1) ( ) /\+1( )
and for the case z € [0, 1] the upper bound
2 51 2 9 4 (1+ 1 )
c= — . - . - — .
IA|(A+1) A+1 A+1 Y

If > 1 obviously |ax(z,1)| < ¢-2**? holds and hence
lax(z,1)] < (1 + 2 2) for each A € (—1,00)\{0}

is shown. For the Likelihood Ratio Statistic ag(z, 1), i.e. A = 0, it suffices to investi-
gate the cases 0 < z < 1 and z > 1, since for z = 0 by definition a((0,1) = 2 holds.
Considering

jao(z, 1)| = [2(z log # — (z — 1))| < 20 log a| +2(x + 1),

and applying the inequality logz < z — 1 yields for the case z € (0, 1]:
lao(z,1)] < 22(—log 2) + 2(2 4+ 1) = 20 log = + 2z + 1) < 22(> — 1) + 2(z +1) = 4.
T T

For z > 1 analogous argumentation leads to

lag(z,1)] < 2zlogz +2(z + 1) < 2z(x — 1) + 2(z + 1) = 2(z* + 1),
and hence also for A = 0 (¢ = 4) the desired inequality

jax(z, 1)] < e(1 4 23*2)
is established. Thus it remains to show

jax(e, 1) < e(1+2™), meN.
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This, however, is clear, because the majorization through a power function only
concerns z > 1 and in this case holds

lax(z,1)| < ez*? < cz™ for arbitrary m > A4+2> 1,m € N.

O

Example 4.7 Using the positive homogenity of ay, the preceding Lemma 4.6 espe-
cially yields

T T 1 m
jax(z, )] = nlar (5, )] < ne(1+ ) )=ente—ga

m—1
with ¢ € R* and m € N. Hence for p € [a,b], [a,b] being an arbitrary subset of
(0,00), ax(z, p) is dominated by

¢ sup p+ec sup ——- " = f+yz™

n€la,b] n€la,b] H
with 8 = ¢b and v = ¢/a™~!. Since a) is continuous in g, Theorem 4.1 a) resp.
Corollary 4.2 yields E(ax(X, p)) being continuous in p.
Further, E(ax(X, p)) is even continuously differentiable in g (Theorem 4.1 ¢)), be-
cause %ak(m,u) = ﬁ(l — (%)’\'H) is continuous in y and for p € [¢,b] C RY
obviously dominated by a power function as seen before.

O

Lemma 4.8 Let be given the distance function ay from Definition 2.1, a positive
constant € and a Poisson distributed random variable X with expected value . Then

for every A € (—=1,00) there exists a constant c € RT, such that for all u € [e,00) C
R holds:

a) |B(a(x,m)| <o

b) |B(ai(X,m)| <

c) Var(aA(X, ,u)) <e,

d) C’ov(a)\(X,,u),X)‘ <,

e) uE((aa—#rm(X, w)?)| < e,

f) lC'ov(cz>\(X,,u),_X'2)‘ <ec,

g) uzaa—uE a(X,m)| <e
82
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0 0 4
PE((5—ax(X,p) — E(5—ax(X <e.
n) | «au“*( \ 1) (a#ax( ,u))) )‘_C
Here the constant c € RT (which depends on \) is a global supremum.

Proof:

The expressions in a) — n) are all of the kind E(g(X,p)) with g : Ng x Rt — R.
This of course also includes the derived expectations, since by Theorem 4.1 b) for any
function f: Ng x Rt - R

0 0 1
ouEU ) = B(5 (X)) + 2 Cov(£(X, ), X)
0 . B} X
= E(@f()‘aﬂ)+f()‘aﬂ) ’ ; - f(X?:LL))
= E(g(X,p)
holds, if ;—Mf(X, p) exists and both f(X,u) and %f(X, p) are dominated by an

exponential function. Since the functions g resp. f considered here are simple products
of ay and the random variable X, this obviously holds (cp. Example 4.7). With the
functions g further being continuous in g, Th. 4.1 in particular gives the continuity
in g for all expectations considered in a) — n). Now if for the asymptotics y — oo
additionally E(g(X,u)) = O(1) holds, this together with the assumption p € [€,00) C
R™* gives the stated boundedness. Thus only the arguments concerning the limiting
behaviour are left to be proved. They can be easily derived applying Theorem 4.4.
Now, first of all, the following statements will be shown, which will be repeatedly
used in the actual proofs (X = X/u):

|B(par(X,1) - 1| = 0(%), (4.19)
B(pa(X, )X -1) -2 = 0(%), (4.20)
B(pa (X DX(X - 1) - 13| = 0(%), (4.21)
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‘E(,uDza)\( )+>\‘ = 0(=), (4.22)

[E(uD2ar(X,1)(X - 1)) +2| = O(5). (4.23)

By Theorem 4.4, for functions H (X) as defined there, which further fulfill H(1) = 0,
generally holds:

[B(uH (X)) - SHO (1) = 0(5). (4.24)

Choosing H(X) := ax(X,1), for which Lemma 2.2 gives H(1) = ax(1,1) = 0 and
H® (1) = D?ay(1,1) = 2, statement (4.19) immediately follows:

1 1
—.2l=0(2).
52|=00)

In order to establish (4.20), consider H(X) := a)(X,1)(X — 1) and the general
statement deduced from Theorem 4.4,

|B(pax(X,1) -

_ 3 1
(AR ) - SEOQ) - B0 - ZEOW]|=0()), (4.25)
which presumes H(1) = 0 as in the given case. The first derivatives of products
H = f - g state as follows:
H(Z) = F@g42fWg(1) 4 £4(2)
H® = ¥4 31113103 4 fg
HY = Mg af (

Hence, for the derivatives of H(X) = f(X)-g(X) with f (
and especially f(1) = ax(1,1) = 0, V(1) = Dlax(1,1)
(k > 2) clearly holds
H(1) = HV(1) =" 1) =0,

HO(1) = 3fP(1)g(),

HOW) = 4710 ().
Further using f(*)(1) = D?ay(1,1) = 2, f®)(1)
also provided in Lemma 2.2, one gets H®)(1) =
8(A — 1) and, applying (4.25), thus (4.20):

=2(A—1) and ¢(")(1) = 1, which was
3.2.1=6, HO(1) =4.2(A-1)-1=

[B(2H(X)) - gH(Q)(l) - %H(S)(l) _ %H(4)(1)‘
— ‘E(HZQ)\(X,I)(X— 1)) - % 6 — %-S(A— 1)‘
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= ‘E(ﬁa,\()_(, DX -1)) -
= Of

The proof of ( 21) will be done with analogous arguments, since again a product
H(X)=f(X) g(X

) is studied with here f(X) = a)(X,1) as before and, differently,
9(X) = X(X —1). Using f(1) = f(1) = 0 and g(1) = 0, g (1) = 1, g*)(1) = 2,
the general formulae for the derivatives of H = f - g just stated immediately entail
H(1) = HY1)=HP1) =0,

H®)(1) 3fA(1). ¢M(1) =3D%ay(1,1)-¢MW(1)=3-2-1=6,

ZOW) = 4790)0) +6/0) -4 (1)
4D}ar(1,1) - gV(1) + 6D%ar(1,1) - g (1)
4-2(A-1)-146-2-2

= 8(A—1)+24
und thus the result
3
BB ) - ErO ) - ZHOM) - 2 HOQ)|
3

= |B(r*ar(X, )X —1))—56—5(8()\—1)4—24)‘
- ‘ (,u2a)\X X (X —1))—3—,\‘

1
= 0O(-).

(u)

For the proof of (4.22) define H(X) := /\L_H(l — XM1) = Dyay(X,1), for which
obviously H(1) = 0 holds. Hence, similar to the proof of (4.19), the result follows
using (4.24), i.e

[B(u (X)) - SHO)| = 0(),

since HM(X) = —2X* and H?)(X) = —2AX*~!, which gives 1H(?)(1) = -\

The same formula, i.e. (4.24), will now be applied in order to prove (4.23). For this
purpose consider H(X) = (1 - XM (X — 1) = Dyax(X,1)(X — 1), which will
again be written as a product as follows: H(X) = ﬁf()i’) cg(X) with f(X) =

— XM and g(X) = (X — 1). For these functions clearly holds f(1) = ¢(1) = 0,
f(l)(X) —A+ DX fD(1) = =(A+ 1) and ¢M(X) = 1. Similar arguments as

before thus give

HO@W) = =) 90+ £1) -4V W) =0,
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[B(ub (%) - SHOW)| = |BEDaay(F,1)(X - 1) - 5(-4)
= [BE(uDsax(X,1)(X — 1)) +2)
- o().

With the auxiliary results (4.19) — (4.23) being proved, now the actual statements a)
- 1) will be verified.

a) E(ax(X,p)) = p-E(ax(X,1)) = O(1) is an immediate consequence of the stronger
result (4.19).

b) Application of Theorem 4.4 to H(X) := a}(X,1) and use of H* (1) = 0 for
k=1,...,6, which is verified through simple calculations especially using a)(1,1) =
Diax(1,1) = 0, yields
|E(ay(X, )| = p-|E(par(X,1))]
— 4 |BGPH(X)))

= e [BUPHE) — Y () HO ()]
k=0
1
= M'O(;)
= 0(1).

c¢) The boundedness of the variance Var(ax(X,p)) = E(a3(X,p)) — B2(ax(X, 1)) is
immediately deduced from b).

d) Here the desired order is already given by statement (4.20):
o(1) |E(p?ax(X,1)(X - 1))]

= |B(ax(X, 1) (X — )]
= |Cov(ar(X, u), X)].
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e) Define H(X) = (/\L_l_l(l — X*1))? with H(1) = 0. Then Theorem 4.4 (see also

Example 4.5) entails
|E(u"H(X)) - H(1)| = |[E(H(X))| = 0(%) (1 — ),

and, with regard to

2 X
Daax(X,p) = m(l - (E)A-H) =31

thus the needed boundedness
|E(u(Dzax(X, 1)’ = |[E(pH (X)| = O(1).
f) In order to prove |%C’0v(a,\(X, 1), X%)| = O(1) consider

%COU(G)‘(X,,M),X2)‘
_ %(E(a,\(X, 1) - X*) = B(ax(X, p)) - B(X?)|
= (B - X2 - B - (a4 )|

< %(E(a,\(X, 1) X?) = i’ Blaa(X, 1)) | + E B (X )

- %(E(u‘%ax(f, 1) X%) = B(ifan(X, 1))| + [B(ax(X, 1))

= HE(par(X,1)(X? - 1) + | B(ar(X, ). (4.27)

The second term is bounded by a). The order of the first term is determined analo-
gously to preceding proofs applying Theorem 4.4 resp. (4.24), namely

- 1
B(uH(X) - ZHO1)] = 0(-)
with here H(X) = ay(X,1)(X? - 1), H(1) = 0 and especially H?)(1) = 0 using
ax(1,1) = Djax(1,1) = 0. This gives

B (o (X, DX - 1) | = [BEGECD)| = [E@#X) - 5HOW] = 0()

and thus for the first term of (4.27) the order O(1), too.

g) Using the formula given in Theorem 4.1 b), Doax(X, i) = Daar(X, 1) as stated
in (4.26), and finally statement (4.20) and (4.22), the result is obtained as follows:

i 5B (x. )|



52

4. Properties of the Poisson Distribution

1
i+ [B(Daar (X, ) + 2 Covar(X, ), X))

- |B(uDaax (X, 1) + E(ax(X, 1) (X = )|
i | B(uD2ax(X,1)) + A = A+ E(p?ax (X, 1)(X - 1)

< e |B(uDaar(X,1)) + A+ | B(uan(X, 1)(X - 1)) = A
1
= H'O(;)-
h) For the proof of
82
pgrE@X.m| = o,

which is again done applying the formula for derived Poisson expectations given in
Theorem 4.1, consider the following decomposition:

IA

Using (4.26

i Blar (X, )

5 (B (o (Xu) + B(an(Xo) - ) = Blan (X))

B sz n (8,0) + Conar (X, ), ) 4 B (3 (o6, )
+Cov(ar(X, ) - % %) - %E(QA(X, )|

u‘E(%aA(X, u))\ (4.28)

4l (5har (X0 (- D) (4.20)

+ulB (5 (ex(X)- ) (4.30

(o) - (G = 1) (4.31)

] Blas(X, )| (432

), namely %a,\(X, 1) = Dqax(X, 1), respectively %aA(X, u)(% -1) =

Dyax(X,1)(X — 1), the second term of the expression, i.e. (4.29), is bounded by
(4.23). The same applies to the fourth term (4.31) by statement (4.21),

X X

plE@X, 0 - (= D) = [E(an(X 1) X (X - 1) = 0(),

7
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and to the last term (4.32) by g). In order to study (4.28), consider %(Z}\(‘X’, p) =

2
%()‘_2?(1 - (%))“"1)) = % : (%))“"1. The expected value ,uE((aaT)za,\(X, W) =
E(2X**1) is obviously bounded. This can also be seen applying Theorem 4.4, which
gives for H(X) = 2X*M! with H(1) = 2:

1 _ 0?

0(%) = [B(H(X) - H(1))| = |[EQX ~2)| = [B(uoar(X, 1) - 2)|

(On)

The boundedness of (4.30) follows immediately using
w-|BH(X)) - H(1)| = 0(1)

(Theorem 4.4) with here

X 0 X

H(z) = @(“/\(Xaﬂ)'ﬁ)
13} X X
= @a/\(Xv 1) - ﬁ —ax(X, p) - p
0 X X X
= @”)\(Xnu) _”)\(_71) E
and H(1)=0.

i) Using the formula from Theorem 4.1 b) gives for the derived variance

0

g, Var(a(Xp)l
_ 0 2 2
= g, (B )~ B (X))

J 2 X 0
— B (X, )+ Con(a (X, . 5) — 2B(0a(X, ) - 5-Ban(X, ) |-(439)
The boundedness of the last term has already been shown in a) and g), which assure
. 0 1
E(ax(X, ) - %E(QA(Xv n)=0(1) 'O(E)- (4.34)

In order to investigate the first term of (4.33) consider
0 0 = = =
@ax()ﬂ p) = 2ax(X, p) - @GA(X, p) =2pax(X,1) - Dyax(X, 1) = pH(X)

(Dya)(X,p) = Dyax(X,1) see (4.26)) with H(X) = 2a)(X,1) - Dyax(X,1) and
H(1) = 0. Thus formula (4.24) deduced from Theorem 4.4 can again be applied,
which, provided H(?)(1) = 0 holds, gives

B (X 0)] = [EH ()] = [E@H(T) - HOW[=0(). (439
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H®)(1) = 0 is proved with standard argumentation (cp. proof of (4.22)), just using
ax(1,1) = Dlax(1,1) = Dlax(1,1) = 0. The order of the second term of (4.33) will
be determined applying formula (4.25) again. For this purpose consider

X

Con(e}(X.10. ) = Eai(x,m-(%—l»
¢,1)- (X - 1))

= F

= 0. Simple calculations analogously to the
proof of (4.20) give H®)(1) = 0 for k = 1,...,4 and thus

_3 gy = 0(L).(4.36)
4! I
Statement (4.34), (4.35) and (4.36) finally establish the boundedness of the expression
n (4.33) and hence

(Con(ad (X, p), %n - |E<u2H<X>>—ﬁH<2>(1>——

‘—Var(a,\(X, w)|=0().

J) The stated boundedness of the derived covariance resp. %C(m(a)\(X, w),X) =

O(%), can be checked with known arguments. Application of Theorem 4.1 b) and
further calculations give

0
5, Co (@ (X, X)

= %E(aA(X, p) (X — )

op

= E(i(a,\(X,,u)(X—u)))—}— Cov(aA(X,u (X — ,u,X)
= EB(Dyax(X, 1) (X = ) — E(ax(X, 1)) + E(aA(X (X = )?)

= B(uDaan(Xop) - (5 = 1) = Blpar(5 1)) + Blptar(r1) - (o = 1)
= E(pDrax(X,1)- (X—1))+2
~E(uar(X, 1)) +

FE(i%ar(X,1)- X - (X 1)) = A -3
~B(ax(X,1) - (X - 1))+ A

with each of the last four terms being of the order O(%), which follows using the
auxiliary statements (4.19) — (4.21) and (4.23).

k) In order to prove %COU(&A(X, 1), X?) = O(1), consider the following transforma-
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tion, which is again done applying Theorem 4.1 b):

9 Cov(ar(X, 1), XY

op
0 9 J 2
= g - X?) = 5 (Bor(X, ) E(X?)

= E(%(aA(X, i) -XZ)) —}—%Cov(a,\(X, HE Xz,X) - ;—M(E(GA(X, ) (i + ,MZ))

= E(XZ%((J,)\(X, m)+ %E(aA(X, XX - p))

(O 0) - (1) = E(o(X.0) - (14 20). (4.37)

In the following M%E(a,\(X, w)) and E(ax(X, 1)) can be omitted, since the bounded-
ness of these terms was already shown in g) respectively a). Use of p? %E(a,\(X, p)) =

M2E(§_MGA(X7 1))+ uE(ax(X, 1) (X —p)) (cp. proof of g)), then gives for the remaining

terms in (4.37):
B(X* 50 (X.0) + B (an (X, XX — )
i 5Bl (X, ) = 2B (0 (X, ).

- E(M2X2%(a,\(X, m) + B(pPar(X, XXX - 1))

—E(uz%aA(X, m) = B(iPax(X,1)(X = 1)) = 2B (p?ax (X, 1))

- ,u(E(;ﬂa)\(X, (X -1)(X2-1)) + E(u%a)\(X, n - (X2-1))

2B (uar(X,1)) )

= p(BE(*H(X)) + E(uH (X)) - 2B (uH3(X))) (4.38)
with (cp. (4.26))
HI(X) = a}\("‘z7 1)(‘)_( - 1)("‘22 - 1)7
&\ 2 AT [ 52
HT) = - R )
H3(X) = ax(X,1).
In order to establish the boundedness of (4.38) and hence of the derived covariance
in question, it obviouly suffices to show

|E(p*Hi(X) = 6)] = O(-), (4.39)
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[B(uHA(X)+4)] = 0(%), (4.40)

BuHy(X) -1 = O(3). (4.41)
Now, since (4.41) equals statement (4.19), which was already proved in the beginning,
only (4.39) and (4.40) remain to be checked. These statements can be verified using

formula (4.24) and (4.25) again, namely

25 (%)) — (P @ L y® 3 @) — o}
[EG8,(X) - (GE W + 57870 + H0)] = o),
_ 1 1
Bt (X)) - 5B ()] = 00,
Simple calculations give for the derivatives of the first function H )( 1) =0 for k =

0,...,3andH1( )( 1) = 48. ForﬂgonegetsHQ( )( 1) =0for k =0, 1andH2( )( 1) = -8,

which establishes

1 3 3
L)+ a0+ Sa00) = 4 =,
1 (2) 1
—H;’(1) = —-(-8) = -4

and hence (4.39) and (4.40).

1) The desired bounding result ‘,u(C'ov(DzaA(X, w), X))+ 2) ‘ = O(1) or equivalently

1
Cov( Dqay(X, p + 2 —
[Cov(Dar (o), X) 42| = 0
was already shown in (4.23) since (cp. (4.26): Dyax(X, u) = Dyay(X, 1))
Cov(Daax(X, 1), X ) = E(Daax(X, 1) (X — ) = B (uDaar (X, 1)(X - 1)).

m) For the proof of ‘,LL(,uV(J,r(DZ(J,A(X, i) — 4)‘ = O(1) or equivalently

[V ar(Daax(X, 1) — 4] = O(+), (4.42)

let the following decomposition be considered:

[uVar(Daax(X, ) — 4

|uVar(Dqay(X,1)) — 4|

|E(1(Daax(X,1))?) — 4| + u| E*(Dyax(X, 1))

|E(uHi (X)) — 4| + p| E*(Ho(X))] (4.43)

IA

with
H\(X) = (D2ax(X,1))%,  Hy(X) = Dyax(X,1).
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Since Hy(1) = 0, Theorem 4.4 entails for the second term
1 _ _
O() = [B(HA(X))[ = [B(Dzax(X, 1)] = |B(Daax(X, 1)) (4.44)

and thus pu|E%*(Hy(X))| = p-O(%) = O(]ﬁ) Application of formula (4.24) (Th. 4.4)

and use of Hy(1) =0, Hl(z)(l) = 8, gives for the first term:
_ ]_ 2 = ]_
B(uth (X)) = S (1) = | B (X)) - 4] = 0().
Both statements assert (4.43) to be of the order O(%), which establishes (4.42).
n) In order to prove
4 1
|E<<D2a/\(Xa :u) - E(DZ(I’A(Xa M))) ) ‘ = O(’u_2)’
it suffices to show
1
|E((Daax(X,p)Y)| = 0(?)7 (4.45)
1
|EY(Dzax(X, )| = O(z) (4.46)

because the simple inequality (z —y)? < 222 +2y? (z,y € R), which gives (z —y)* <
8z* 4+ 8y*, can be applied to the term in question. Since (4.46) respectively the
stronger result ‘E“ (Dga)‘(X, ,u))‘ = O(Ml—4) was already shown in the preceding proof
(see (4.44)), only (4.45) needs to be checked. This result is immediately verified
applying formula (4.24), since for H(X) := (537(1 — XM")* = (Daax(X, p))* with
especially H(1) = HV(1) = H®(1) = 0 holds

|E((Dyax(X, )Y)| = |E(pH (X))| = |E(nH (X)) ~ %H(z)(l)l =0(-).

Hence the proof is complete. |

It should be noted that the statements in the preceding lemma also hold for the
expressions multiplied with 1/u" (r € RT), because u is bounded away from zero (for
example 1 E(a(X, 1))] < £ < 2).



5. Approximation of the Test Statistic

In this chapter, a suitable approximation of the goodness—of-fit statistic for both
distribution models, namely column—multinomial and Poisson, will be derived, whose
asymptotic normality will be shown in the chapter following. The asymptotics con-
sidered are the “increasing—cells asymptotics” already illustrated in chapter 2, i.e. the
expected total sample size pff | = Z}]; Zi‘;l i, and the number of groups J" tend
towards infinity. This is indicated by the running index n, which was chosen to in-
crease proportionally to the expected sum p’} , and in the case of column—multinomial
sampling, where u%} , and the total sample size Y", coincide, in particular to equal
this quantity. Apart from that, let the notation be as in chapter 2, where the ex-
plicit formulae for information matrix and score vector can also be found, which, as
seen there, are analytically identical. Hence X" = (X]nk)j,k is a J® x K table with
independent entries X7, ~ Pois(uj,) for j = 1,...,J" k=1,...,K, n € N and,
analogously, Y is a contingency table with the columns being independent multi-
nomials. Further, let both distribution models have the same underlying tables of
expectations " = (1) k-

In order to derive the normal distribution under the nullhypothesis

Mk

n

J+

Hy: 36, : = hc(B) Vi kn (€O CRY),

let, if not differently stated, for the single expectations p7 = u% (o) = ;L;?+ﬂ;’k|c(00)
be assumed.

For the further considerations of this chapter let now the following assumptions be
generally fulfilled:

(RC1) ngk|c(0) is continuously differentiable twice in 8  for all j, k, n,
(RC2) Je>0:7fc(0) > e forall jk,ndeW,
(RC3) IM >0: a)|[Derjyc(0)|| <M forall jk,n,6eW,
b) ||D§7T;‘k|o(0)|| <M forall jk,n,6€W,
(LCo) P(ajy >0Vjied{l,....,J"}) —1

with 47, =Y} if column multinomial and 47, = X7, if Poisson sampling is consid-
ered. The other conditions required in this chapter, which are not supposed to hold

58
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throughout, but will be stated every time needed, are as follows:

1
(LC1) EI”(,LL_"_’HBO) — I, positive definite,

(LC2) V(@ - b) = O,(1),
- 1

(LC3) (6" = 0o) = (I" ("%, 60))~'U™ (Bo) + Op(-),

(BC) Je>0:pj >e forall jk,n,

(MD3) ér;%}% ﬂ;‘km(()o) — 0 forall %.
(LC1) and (MD3) will only be used for proofs concerning column-multinomial sam-
pling. Moreover, for this distribution % — 0 will be required, which is a condition
needed in the next chapter to accomplish the assumptions concerning the marginal
distribution, especially (MD2) (cp. section 2.3).

For further considerations and proofs let now the following notation be introduced:

eA(M?+7W;Lk|C(00)) = E(ax( ]nknu?k))a H?k :H?+7T?k|c(90) (5.1)
(j=1,...,J" k=1,...,K,n € N),
JU K
mA (Y, 00) = D0 > ex(iy mirio(0o)) (5.2)
7=1k=1
= E(SDX(u%,00/X™)),
Z;\l('u-n+a00) = SDS\I(N-T;?BO) _mg(:u-n-}-aeo)' (53)

The notational convention provided in chapter 2 let also be maintained, so that, for
example, Z¥ (u?,, o) will denote the centered statistic for both sampling schemes and
Z3 (", 00| X™) the centered Poisson statistic.

For the following results a vector of Poisson expectations ¢} will repeatedly be used

(cp. Lemma 5.5):
K
A(plh,b00) = Z Z Dglog ”;Lk|o(00) ) COU(‘IA(X;‘%’ H?k)a Xjnk) (5.4)
7=1k=1
= —E(Dy(SDY(uly, 001 X") = m3 (17, 60)))
= Cov(SD}(ury, 00| X™), U™ (B X™)T).

The last formula, stating ¢} to be the covariance between SD?Y and the score vector
under Poisson distribution, is obvious by definition and will especially be needed in
the next chapter.

To eliminate the correlations caused by estimating, the further considerations of this
chapter will deal with a gradual derivation of an approximation for the test statis-
tic, which does not depend on the estimators anymore. Although in case of Poisson
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distribution the approximation will yield a sum of independent random variables
and thus allows application of the central limit theorem, the same does not hold if
column—multinomial sampling is considered because of the underlying stochastic de-
pendencies. This problem, however, will be circumvented applying Morris’ method
(1975), described in chapter 3. Since this approach provides a centering with the
Poisson expectation mY, the approximation steps will, for both distribution models,
be started by the statistic SD;‘(ﬂfl_l_,é”) centered with mg(ﬂﬁ_,é”), which has al-
ready been introduced as “centered statistic ZY”. Moreover, it will be seen that the
single reduction steps are invariant under the considered sampling schemes, hence
both distributions can be treated together and yield, analytically, the same final
approximation. For the proofs, however, a somehow different argumentation will be
necessary. In particular, an auxiliary result concerning column—multinomial sampling
is needed, which requires rather lengthy calculations and hence is given in section 5.1
prior to the actual approximation (section 5.2).

5.1 An Auxiliary Result for Column—Multinomial Sampling

The result given in the next lemma is only needed for one step of the approximation
treated in section 5.2 and for the column—multinomial case only. What will actually
be required is information concerning the asymptotic order of the difference between
the gradient Dy S DY and its Poisson expectation. If Poisson sampling and general A or
column—-multinomial-sampling with A being integer valued is considered, the order is
easily determined using Chebyshev’s inequality respectively elementary calculations.
To treat the column—multinomial statistic centered with its Poisson expectation in
the difficult case of A being noninteger valued, Morris’ approach (see chapter 3), which
provides just this centering, can here also be applied to derive a normal limit and
thus the asymptotic order of the difference.

For the following proof, several arguments could be adopted from Morris (1975), who
not only stated basic results in his article, but also derived the asymptotic normality
of the Likelihood Ratio Statistic in the simpler case of multinomial sampling and
without parameter estimation (Morris, 1975, Theorem 5.2).

Lemma 5.1 Consider the asymptotics n — oo and suppose that the assumptions
%I"(u_’l+,00) — I positive definite (LC1), 1oy > € (e > 0 constant) for all j, k,n
(BC) and maxi<j<n 7y p(0o) — 0 for all k (MD3) as well as 22— 0 hold. For
any given s € {1,...,S}, let be v}? the corrected variance of a%SSD;”(/L,";l_, 6o| X™):

) O crmin g ixvm) = n o
oP? = Var<8TSD,\’(/L.;|_,90|X )) - Zﬂq'-k,(%\'k)z
s k=1
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K
= V’”’(ZZ 9. Xy 5k (00) ) ZM.;-k )
1=1k=1
with
(? K
Yk (6‘0 Z (X?kaH?k(GO))’X?k),

where for column—multinomial sampling the column sizes ', = ny are known for all

k. Then for X € (—1,1] follows

170 0
o (ae SR BolY™) - (aTSD?(W+"’0|X">)>
A s
1 Jr K 8 . . Jv K 8 . .
= (X e 0 - (X Y. gra (i 60) )
A Nj=1k=1 J=1k=1
£ N(0,1),

in particular, —z = Oc(n) holds, i.e. v}? = O(n) and n = O(v}?).
A

Proof:

The result will be proved using the generalized version of Morris’ (1975) “fundamental
lemma” (Lemma 3.4). In order to apply the method described in section 3.1 and for
the sake of notational clarity, let in the following the explicit representation of SDY
as a sum be considered. For j € {1,...,J"}, n € N, let now the given functions be
denoted by ¢}; as follows (2 = (zjx); is an arbitrary nonnegative J" X K table):

g% Ny — R

z. gz 280 NE A CY)E

Obviously, these functions do not fulfil the conditions concerning expected value and
covariance required for Lemma 3.4, but as already performed in section 3.1, this can
be accomplished by a suitable transformation choosing

iz = ghi(z) — E(gh;(X Zm Zjk = Mik),
JTL
YV = Ni(XT), XGE)
'u+k] 1

(Z 5 (X 5 00)), X )

H+k
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( ]k» N;k(aO)) ]k),

H‘H\”]l

thus getting E(f3;(X7))) = 0 and Cov( 3]; (X7, 5]:1 X7.) = 0 for each k €
{1,...,K} (see (3.5)). The stated variance v§? equals the variance of the transfor-
mation under Poisson sampling:

J" J" J* K
Var(szj(Xﬂn‘)) - V”r(zgl\a X;) Z (X :“Jk))
g=1 J=1 j=1k=1
J" K
= V“T(ng\lj(X;)) - Z(’Yf\lk)Qﬂik
J=1 k=1
K K {
- Z Z Var( X '“Jk(eo))) - Z(’Yf\%)%ik
7=1k=1 k=1
= ov}?

(compare (3.7)). Since the asymptotics n — oo, J" — oo are considered, condi-
tion (BC) entails an increase of the column sizes ny (k = 1,...,K): np = pf}, =
237:1 Kk 2 Ej;l € = J"¢ — o0o. These considerations, in particular the choice of
I3 (7 =1,...,J"% n € N) and the assumptions made, assure that the situation of
Lemma 3.4 is met. Since further the probabilities p7, from Lemma 3.4 agree with
the 7% ,(6o) considered here, requirement (3.9) from Lemma 3.4 equals (MD3) and
hence holds already by assumption. Thus for every A € (—1, 1], the conditions (3.10)
- (3.12) remain to be checked in order to give the desired result:

1
n T Zf;\t](y}n)
(oL Var(fﬁ(X”)))?

(Z Z (90 ]k 'qu 00 (Z Z 80 Jknugk(eO)))) —C—> ]\7(0, l)

7=1k=1

for all A € (—1,1]. It remains to be shown that the standardization of the Poisson
statistic 23];1 f)’\’](XJ") meets the Ljapounov Condition for the central limit theorem,
thus yielding asymptotic normality (3.10) and the Feller Condition (3.11). Secondly
(3.12), which grants convergence of the conditional distribution, must be checked.
Since both proofs expect the variance to fulfill n/v? = O(1), this will be proved first.
Therefore more generally v}? = Oe( ) will be shown, which additionally requires the
easily verified inverse condition v?/n = O(1). Hence the rest of this proof divides
into three parts:

(i) o§?=0.(n),
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— ZE( (fx;(X7) ) — 0 (Ljapounov Condition),

Uy j=1
. L ((% :
(177) }111_>rr551711psunp WE<(Z(]TJ(L? + Mj) - f;E](L;L))) ) =0 (Ae(-1,1]).
v J:1

Here the column multinomials L™ and M" as well as the sequence v" and h € R¥ are
defined as in Lemma 3.4. Condition (iii) will only be checked for A € (-1, 1], whereas
(i) and (ii) are easily derived for arbitrary A > —1.

(i) To determine the exact order of v}? = 237:1 YR, VGT(B%SGA(X;EMM%(OO))) -
K

b 1(’y)\k) 1hy let v}, be considered first. Simple calculations using 8%3;1?,6(00) =
a a :
13+ 56, ”jk|c(90) = N?+7T§lk|o(90)_aa_, log ”?k|o(90) = [y * 07 108 7T?k|c(00) give

e = ( ]ka N?k(OO))a ‘Y;'Lk)

/'L+k]1

In
= ,L:-k Z (9?9 :ugk (o) - (COU (D2GA(X§LIC7M?’C)’ Jnk) +2- 2>

A, 1 500 o
= N]k (6o) + " — aa. A1k (00)- (COU(DzaA(ng Hjk) jk) +2)

'“+k +k =1
2 = 0 (00)
= H+k Z,u-}-k 96, ]k|n 0

1 Jﬂ 8 n n n n
:“+k 2(80 log 77ﬂc|c(90)) "Mk (COU (DZQ)\(Xjkvl'ij)vXjk) + 2)
7=1

1 Jn 8 n n n n n

= = 2(87 log wl i (60)) * 145 (COU (D2a)\(Xjka M)y Xjk) + 2)-

lu+k j=1 E)

Since pfy (Cov(Daax(X Ty, p3y.), X73)+2) and 8%Slog n;kw(eo) = m.%ﬁymc(eo)
are for all j, k, n bounded by Lemma 4.81), respectively (RC2) and (RC3), there exists
a positive constant ¢ such that

Pik
n n
AL S

1 =
P
7=1

Mg
Jn

vl < i log 75y (00) |- | (Cov(Daar (Xi, 1), X i) +2)|

IA
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for all k£, n holds, thus giving

Jn
Vi =0(=—) forall k. (5.5)
By
The boundedness of L=~ = L* T2 — I which is implied by condition
Tk “+ " “++
(BC), e.g. since n = Z Dy Wiy > Z] (K e = J"Ke, already yields for the
second term of vf\ﬂ = Ej:l Zk:l ‘/ar(maA(ka,u;k(Go))> i‘ L(v)? piy the

order O(J") and hence O(n):

K Jn K n
Z('rﬁk)QuikZO(l)Z( iy = 0" Y e = O(J").

k=1 k=1 +k k=1 M4k

To obtain v}? = O(n), it thus suffices to show 2 Y . Var( —ax (X7, ,u;-"k(eo)))

J
= O(n). In the opposite case, where

no_ 1 — o)
vy 1 Jn12 V‘““( 90, a)\(X;'Lk?H?k,(GO))) Zk 1 (73)? Ml

has to be checked, the stronger condition Jn—n — 0, which is used only at this point

of the proof, immediately yields * ?yzl('yf{k)zuik = o(1). Consequently, the proof

n
of v}3? = Oc(n) thus reduces to

%szar( MX D 13 (80))) = O (1). (5.6)

Simple calculations now give

_ZZVar(ao X, 2 (60)))

1=1k=1
1 Jr K 9
= —Zz‘far(ag H]k(GO) Dza)\(XJk,,qu))
7=1k=1
Jr K

AL 80 w10 (60))Var ( Daax (X3, 12 )

7=1k=1
_  ony n o n
J a LR :
(HO)H Al T<D20A(Xk Mk))

Z“HZ 80 ko (fo) ) oy
] 1

Provided for all j, k,n holds u%y Var(Daax(X%, u%)) € [c1,c2] with ¢; and ¢, being
positive constants, the lower bound can be obtained as follows:

—1 n
- Z iu]+ Z 80 ]k|C ) | (Ho)u]ﬂ ar (DZaA(Xﬂm /ij))
] 1
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Jn

> 1y, (00))
]221 J+Z 80 ]k|0 0 k|C(00)

1
= E (In(,u,n_,_, 00))5,5

with (I"(u",60))s,s denoting the s—th diagonal element of the information matrix.
L(I™(u",00))s,s is positive and has by assumption (LC1), i.e. 2I™(u™,60) — I
positive definite, a positive limit thus giving

1 P A,
Cl;(In(M-n+a 00))3,5 Z C1 Hrllf ;(I (,u.+a 00))3,5 > 0.

For the upper bound follows analogously

1
———— " Var(Dyax( X5, u”
]Zluﬁz 30 Tikjc (80))* AL (Daax (X, 1) )

1
< easup (I"(4%, o)) < 0
and hence (5.6). To see the remaining argument
pVar(Daax (X, ufy)) € [er,e2] CRY - forall jkym, (5.7)

consider a Poisson distributed random variable X with expected value g > ¢ > 0. If
for the variance term regarded as a function of p holds

uVar (Dga)\(X, ,u)) € [e1,c0) C RY for all p € [e, 00),

(5.7) immediately follows since u7 > € > 0 for all j, k,n (BC). Now Lemma 4.8 m)
guarantees the existence of a constant ¢ > 0 such that

‘H‘/QT(DQQ)\(X, ,LL)) - 4‘ < 5 < g for all p > e, (5.8)

hence puVar(Dyax(X, u)) < cg for all g > € is given. The other inequality follows if
pVar(Dyax(X, p)) is continuous in p, has a positive limit for increasing u, and does
not equal zero, thus yielding
wVar (DQQA(X ,u)) inf uVar (Dg(l)\(X ,u)) =:c1 > 0.
pE€le,0)

Now pVar(Dgax(X, i) is continuous in g by Th. 4.1 since this holds for Dyay (X, i)
which is further dominated by an exponential function. lim . uVar(Daax(X,p)) =
4 is given by (5.8). To prove uVar(Dyax(X,p)) > 0, suppose Var(Dyay(X, 1)) = 0.
Then by definition holds

2 JY

Va,r(Dza,)\(X,,u)) = Var(/\—}—l(l_(ﬁ))‘ﬂ))
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= (= E((EP - B((E))
= 0.

This yields P((%))‘H = E((%)A'H)) = 1 and hence the distribution of (7 XA+ g
degenerated. Since A > —1, this contradicts X ~ Pois(u) with g > € > 0.

(ii) Using v§? = O.(n), which especially means ’U]Tz =z 1 =0(1)-1, it suffices to
A A

show
.
Y E((RG)!) =o@?)  (n o)

to assure the validity of the Ljapounov condition. Applying the simple inequality
(z —y)? <2224 2y? (z,y € R) twice, splits the sum into two parts,

"
> B((5,x0))
- ﬁE((gzj(X;w B(g3,(X}) Zm o))

n
< SZ:E((!J,T\LJ‘(XJ‘ - E(gy;(X ))+SZE((Z’Y,\k Mgk))4)a (5.9)

for which the asymptotic order o(n?) will be determined separately. Now for real

valued variables z1,...,2x generally holds
K K K
(Z mk)z = szkmz ka‘l'z:?kaz
k=1 k=11=1 k<z
K K
< ka+z z3 + 2?) Zmi%—Z(K—l)mi:ZK-mi (5.10)
k< k=1 k=1 k=1
ensuing
K K 9 K 2 K
et = (Ce?) < (KX af) <K*Y s, (5.11)
k=1 k=1 k=1 k=1

hence for the first term of (5.9) follows

ZE((gzj(X;.) - Bgg(xm))

K 0 4
ZE((Z ( gk?ﬂ?k(eo)) - E(a—osak(X?k’“?k(eo))))) )

: k=1
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IA

K?’z;E(Z(a A 15 (80)) — E(%“A(X?kvﬂgk(%))))4>

- K3 Z Z 10g e (00))* (1)

7=1k=1

'E<(D2GA(X?1€7 pir) — E(Daax(XGy, M?k)))4>-

4
Since 8%3 log w;kw(oo) and (u;‘k)zE((Dza)\(X;‘k, 1) — E(Daax (X7, ,u;‘k))) ) are for
all 7, k,n bounded by assumption (RC2) and (RC3) respectively Lemma 4.8 n), the
terms of the last sum have the order O((u%,)?). This, N%’“ = %% < 1 and condition
(MD3) then yield

Jn J* K

X B (a3, - B (x0)) = 0 Y
K Jn

= 0(1) Y _(W4)* D _(7fp)”
k=1 7=1
K

< O X (i) max wip
k=1 - =

= o(n?).

For the second term of (5.9) similarly follows
7"
ZE<(Z7Ak H]k))4) KSZE(Z (V3% ka—/t?k)4)
J=1 =1

K Jn

= K33 ()t Y B0 — 1))
k=1 7=1
K Jm

= K7 (v Do B3(5e)* + i)

k=1 7=1

IA

gn

K
= 0 Y Y

k=1 j=1
where the last equality holds using (5.5) and (BC), in particular v}, = O(%) =0(1)
+

and ML < ¢ 1 for all j,k, n. Argumentation as before finally gives for the second term
Ik

of (5.9), too, the asymptotic order o(n?). Hence the Ljapounov Condition is verified.

(iii) For the proof of (iii) let the notation be as in Lemma 3.4: v™ = (v2,...,v%)7T

is a bounded sequence, L™ and M"™ are product-multinomial distributed J” x K
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tables with columns L% = (L%,...,L%., )7 ~ Multis(ng + Ve /T, Ty p) and
M7~ Multign (hi/ng, 7T-T;<:|D) having the same underlying probability vector 77_7;ch =
WTZ|D(00) for each k = 1,..., K. The sequence v" und h = (hy,...,hxg)T € RX are
assumed to be such that for each k the sizes I} = ny + vp\/ng and m} = hy/ng are
nonnegative integers. Further, all columns L%, ..., L%, M%,..., M’ are supposed

to be qtochaqtically independent.
Using n2 = 0(1), as shown in (i), the result follows, if for A € (-1, 1]

1 I 2
2(( (A3 = 5(5))") = Il 01

holds. Inserting the definition of the functions f{; yields for the expected value

il 2
E((Z (£ + M7y = F5(L2)) )

K
= ((Z(g)‘] (L7 + M7) — g3;(L7) ) Zkz:l%\k ) >
K

2E<(Z (gf{] L3+ Mj) — gx;(L] ))) > ‘|‘2E<(ZZ7I\L’€M;’C>2>

7=1k=1
n n n a n n 2
= 2E<( a)\(ij + Mjk?iujk(eo)) - 870)\(ij7ij(00)))) )
7= lk 1 8
J” 2
+2E<(27§kZMfk> )
k=1 7=1

The general inequality (5.10), (5.5), i.e. 5% = O(an), and MJ: = 1" = O(1) for all
Tk

+k Tk

IN

Jn K

k, gives immediately for the second term

K Jn K
E((C v M) = (O i)’
k=1 7=1 k=1

K
< KDY (vwmp)®
k=1
K N
= I"Z(’Yfk)zhénk
k=1
K
< K bl D (08)

k=1
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K n

= ||h||3nax ' Z

k=1
= ||h||3nax0(]n)
)-

and since Z- is bounded the order ||h||2,,, - O(n). Hence it remains to establish

((ZZ( g LM 15 (80)) = 5oy (L 1560))) ) = Bl O (). (512
J=1k=1 5
Obvious inequalities, the assumed regularity conditions, which imply |80 log ﬂ']k|(,( 0|

< ¢; constant for all j, k, n and Lemma 8.1 b) now give

K " 5 5
E(( Z Z (aT“A(L?k + M3y, 15 (00)) — 56.°
k=1j5=1 s

5

/\(L?kv H?k(eo))))2>

K I 9 2
< K) E((Z (ath)\(L?k + My, 155 (60)) — aTaA(L?mH?k(GO)))) )
k=1 7=1 s s
<

K Jn 9
KZE((Z|80 log 7% (60)
k=1 1=1 s
2
A | Daan (L + M) = Daaa (L))

+ M} L”
(Zm#?k /\i—l—l(l (]kT)'\H) /\_2|_1 (1— (ﬁ,{:)'\H)DQ)

IA
=

M hl
=

Jn n
n 2 Jk+ Jk A+1 ﬂ A+1 2)
(X eumes il = =2+ GO

k=1 =1
P 9 L+ M I ,
= Kr%éE((;MﬂCA—}_l(( ]k,u?,k ]k))‘+1_(ﬁn:))\+l)))
K e 2
< Kc%iE((Zc((M;k) 4 M kajk)))z)
k=1 j=1 Hik
,22K Jn( n)2 n )2
< K3 2B((Y L ) (Z B %))
k=1 j=1 M3

with A(L7, pf) =1+ i1 -+ LnJ’“ and ¢ = max{2, y*7}. For the proof of (5.12) it

thus suffices to show

B((S <Mi’k>2>2> ((zﬂ (L)) = he-O(m) forall k. (313)

=1 Mk
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Now let in the following any k € {1,..., K} be given. Using the notation zU) =
7 (z—i+41) for i,j € N and the Kronecker—delta 4,;, for the first expectation

holds
Jn n \2
(M3)"\ 2
(5 55))
(=)
J” (Mn) 2) Mn 9
- E 7k + 7k >
Jm n \(2 Jn n
(M'k)() 2 M\ 2
< E<2 — >+E<2 B
(X5 (=5
JroJn n n\(2) J©J" arnopn
_ 2E<22(Mjk (Mk) )‘I‘QE(ZZ Jkﬂfzk>
J=1:=1 'ujk'ufk ]lzlujkufk

= 23N () ) ()

7j=114= luﬂkulk

+46i; (4(mg)(3)(ﬂ;k|D)3 +2(mp) A (x % p) )) + QZE< Z Mﬁ“) (5.14)

'u]kll'uzk

233 () (7))

<
j=14i= 1ﬂak“lk
J7l
5 (1 () + 20m0) ()?) ) 4230 (5.15)
=1 ’qu
I g, gk|D) (m ;,k|D)2 " hgn ( gk|D)
= ZZ +4 2
j=1i=1 T ikID zk|D j=1 ni( jk|D)
i 2 ]k|D) hnkﬂmD)
=1 (ﬂ-]k|D) o1 T DE
4 2J" Jn
= 2(h§+hi 1/2+hk +h2 6)
= h-O(J"). (5.16)

In (5.14) the factorial moments of the multinomial distribution (see Johnson/Kotz,

1969) have been inserted (in the case ¢ = j through simple tlansformations) and

(5.15) and (5.16) deduce from assumption (BC), which implies HT L for all j,k,n
ik

Innk = % = O(1). Using the independence of MY and L%, for the second term
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of (5.13) follows:

il 2

Jnogn
= B(Y Y MpMEh jk,u?wh(f;?k,u?k))
7=11:=1
= I= 1:<;
o
< D0 E((MR)Y)E(h* (L, 13y)
j:'l
+ Z Z E(MJMR)E(R* (L, 150) + b* (LY, 1)
=S
J" ’I’L 71.

S B B L)) + 3 S BB i)
j:l ] 1z<1
+ZZE B E(h* (L, 1))

J=1i=
i>]

= ZZE B)E(R (L%, 1))

lel

g
= ZEhQ ]k?lu"]k E(Mjnkz
=1

= ZmZ’E( G ) E(R* (L, 15)).- (5.17)

Now provided that

E(n*( Tk thk)) = O(1) for all j,k (5.18)

holds, which will be proved in the following, the second term of (5.13) also has the
stated order:

Jn Jn
Y mpE(MR)E(R* (L, pj) = Y (mp)*mhyp - O(1)
i=1 i=1

Jn

= Z hinkﬂykm -0(1)

j=1
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= hi-O(ng).
Thus only (5.18) remains to be checked. Applying (5.10) now yields (k € {1,..., K}):

L 2u”, L 20",
E(R* (L, u)) = B((1+ =5 + 525)7) <34 3B((—25)°) +3E((25)°)-
I Tk ( py L +1 ) ( M3 ) ( L +1 )
Since (BC) entails - = —&— = O(1) for all j, k and further
Hik PET kD

Be _ MR URTE gy T _0(1)  forall k
N Nk ZZ

holds, the first expectation is bounded:

Lz, 1
B(C2Y) = g (Brn(l - whyp) + (Brjyn)?
(,u].k ) (/‘jk)2( ik|D 3k|D ik|D )
T B(mhp)® + Ry pn)?
(nkﬂ'?k'D)?
7 1 w1 n
ke nkﬂ.jk|D ne nNg ng

Using L7 > 0 & ﬁ < ﬁ and the following formula for the inverse factorial
ik ik
moments of a binomial distributed random variable # ~ B(n,p) (Johnson/Kotz,
1992),
E(((z+09)1) = (((n+0)Op) ! .<1_ , pal_pw—a),
((@+0D)7) = (e +)Dp) ™) > (7 )=

J=0

the second expectation is also bounded:

W) B(( o)) < (ui)E(

L% +1

2
(L + D (L + 2))
, 1= (1- 77?k|D)1Z+2 -+ 2)77;k|D(1 - W;km)lﬁ]
Ik +2) (1 + D (7yp)*
1
Ik + 2+ D (75 p)*
2"1%(”?“13)2
(R p)?
Nk 9
E)

= 0(1).

n

= 2(Mjk)

IN

2(#;%)2

IA

= 2

Hence (5.18) is shown, thus completing the proof. O
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5.2 Approximation Steps

In the following, i.e. in Lemma 5.3 — 5.6 and 5.8, the centered goodness—offit statistic
Zp(jn.,0m) = SDR(jin., 6™) — my (", ") will be gradually approximated through
the “true” statistic SDY(u",0) — my(p7,0y) and additional correction terms. As
explained in the beginning, the centering term m%(u”_, ) is the same Poisson ex-
pectation for both distribution models (see (5.2)). In Corollary 5.9 stated thereafter,
all steps will be summarized. This corollary thus in particular gives an informative
overview of the proceeding in this section.

The now following Lemma 5.2 is an auxiliary result needed in the next chapter for
the variance estimation and only stated here because the first approximation (Lemma
5.3) is proved by analogous argumentation.

Lemma 5.2 Consider the asymptotics n — oo and suppose that /n (6" —0) = O,(1)
(LC2) holds. Let be given a compact and conver neighbourhood W C © C R® of 6,

and a function
H":R°>0 — R
0~ H(i,0)
J* K

= Z Z h(ﬂ?—}n fjnk(e)%

7=1k=1

: n )
with h and [} defined as follows:

f]”k:RSDG) — R™ (méeN)

0 — fil(0),
h:RI xR™ — R,
(z, f1(0)) — h(z, f(0)).

For z > 0 let be h(z, f7;.(0)) continuously differentiable in 6.

a) If there exists a constant ¢ > 0 such that for every j, k and n holds
supgew || Doh(z, fi1.(0))|| < - ¢ for all > 0, then follows ﬁ(H”([L,”_I_, ") —
HP (7, 00)) = Op(1) (1 = 0).

b) If there exist constants ¢ > 0 and € € (0, 1) such that for every j, k and n holds
supgew || Doh(z, fj1.(0))|| < ¢ for all z > €, then follows %(H”([L”_I_,é”) —
HO (i, 80)) = Op(1) (1 = o).
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Proof:
a) Let any 6 € (0,1) be given. To be shown now is the existence of a constant M
such that for almost all » € N holds

P( (a7, 0™) — H™ (™, 00)|| > Ms) <6

1
_||Hn
N
with fi7y being the vector of row sums Y} resp. X, . To enable Taylor expansion in
6, which requires ", being positive, consider the following decomposition:

1 ni-n an n{sn
P(ﬁHH (2%, 0") — H" (%, 00)[| > Ms)
1 ni~n An n{~n jn i o ]
S P(IHM (A0 87) = B %, 60)ll > Ms A 0" € W A iy > 0¥5)
+ P ¢gwWv3jpp=0). (5.19)

Assumption (LCO) P(i7, > 0Vj) — 1 and the convergence of 0" to 6y € W in
probability implied by (LC2), guarantee the existence of a constant ng € N such that
for all n > ng

PO ¢W)< <, P(3j:if =0)<

W &
W &

holds. Hence for the second probability in (5.19) follows
P@"¢WvV3j:pl,=0) < P@ ¢W)+P(3j:a% =0)

2
< =9 (5.20)
3
for almost all n. To study the first term of (5.19), let 67 = 6 + Z(6" — 6y), z € [0, 1],
be a value between 6" and the true parameter 6. For #” € 1 and hence 67 € W and
fi7+ > Oforall j, application of the mean value theorem (0-th order Taylor expansion)
gives:
1 n{sn gn n(sn
TR0 = B )]
1 1 R
= — DgH" (", 67)dz- (6" — 6
Tl [ Dot ity 02)a=- 0~ )|

1 . 1 I K
< Lén—s / Doh(i%,, f2(67))dz
I =l 3 3 Dohi 50
1 . Jn K 1
< 2l = bl S [ Doht £62))dz
\/ﬁ ]Z:;]\; 0 i+ J gk
J* K
<

1 n N n
7l = ol - D2 > sup [IDoh(f, ;. (0))]]

j=1k=10€W
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1 . J" K
< Lig a3
\/ﬁ 7=1k=1 ’

- ﬂ”
= 0" - 00) - vl e

In case of Poisson distribution, the Poisson limit theorem immediately yields Z# =

++
Xz P . . . .
u:{+ —+ 1, which together with the assumed proportional increase of n and puff,
++
. fy Xy o . . . . .
gives £t = Z4t B (1). If column-multinomial sampling is considered
n uyy n p ’

@y =Y = pt, = n holds and hence %T+ = 1. These arguments together with

assumption /n(" — 6y) = 0,(1) (LC2) now guarantee the existence of a bound M;
such that for almost all n holds

[ (i, 67) = H (i 00)|| > Ms A 6" € W Ay > 0V j)

P(H
< P(H(W—%)WH-%-»M)

< (5.21)

—_— W] >

5.20) and (5.21) in (5.19) finally establishes the result.

Inserting
b) Taylor expansion as in a) and use of supgeyy || Doh(fi}y, f71.(0))|| < c for all j, &, n,
gives for 6" ¢ W and fij+ > 1> efor all j the inequality

J* K

167 = 6ol - > > sup || Deh(jify, i (0))]

j=1k= 19€W

< |I(6" ~ 6o) - v/l \/—K c

and hence J\/—,:(H”( 67 — H™ (", 6p)) being stochastically bounded. O

1B (@, 67) = H™ (A%, Bo)|

IA

In the following lemma, a first order Taylor expansion in 8" around 6 gives a linear
approximation of the centered goodness—of—fit statistic with an error bounded in
probability.

Lemma 5.3 Suppose the assumptions (BC) and (LC2) hold, i.e. 7, > € > 0 for all
4, k,n and \/n(8" — 8y) = Opy(1). Then for the centered statistic Z} defined in (5.3)

follows

Z (i B7) = Z (i B0) — DaZ§ (i, 00) - (6" — 80) = 0,(1) (n— o0).
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Proof:
The proof of the statement will be structured similarly to the proof of the preceding
lemma, thus considering a Taylor expansion for positive row sums fify, ..., 7., and

using 17} , /n = Op(1). Since in contrast to Lemma 5.2 a concrete statistic is consid-
ered, here a more detailed investigation of the error term will be necessary, requiring
additional analytical arguments such as ?—n’“ resp. X"+ € [0,
for both sampling schemes. Hence it quﬂiceq to consider Y™ (47 =Y), representing
both column multinomial and Poisson distribution (the following arguments also hold
writing X™ instead of Y™ with g7 = X7).

Let now be 07 := 6y + 2(0” —#y), z € [0,1], a value between #" and the true para-
meter fp. Further let be W C © a convex compact nelghborhood with 6, € W C O.

For positive 7 (u]_l_ > 0 for all j), fn € W and hence 67 ¢ W, first order Taylor

1], which obviously hold

expansion of ZY (a7, ™) in @ around 6y yields (see also Lemma 5.2):
125 (A%, 07) = Z3 (A%, Bo) — DoZ3 (A7, Bo) - (6" — o)

~ 1 ~
= 116" = 00)" [ (1= DiZ3 iy 02)dz 6 - o)

< 6" — o)
1 v K
| (1—z)jglkgl)\Dz(aam,ﬂygyﬂo(e:))—ex(ﬂ;u, T (02)) [ 4=
<167 - 62
Jr K
> sup | Dj (ax(Vi, i34 70 (8)) = ex(ity, m (6)) |
7=1k= IGEW

with ey being the Poisson expectation of ay (see (5.1) respectively (5.1) — (5.3)). If
now for all j, k, n holds

sup | D3 (ax (V. i w210 (0)) = ex (e e O)))| < iy - (5.22)
€

with ¢ € RT constant, then for the considered case, 6" € W and 174 > 1for all j,
further follows

123 (7, 0) = Z5 (7., B0) = Do Z3, (1., 60) - (6" = o)l

n

K
167 = Boll* - >0 D iy e

7=1k=1

IA

= [1" = Bol|* - phy - K -
= (|0 = bo)v/mll? - B K

Analogous arguments as in the proof of Lemma 5.2 a) then yield the result.



5.2. Approximation Steps 7

Now it remains to establish (5.22) for f74 > 1. As already mentioned, from here on
only analytical arguments which hold for both distribution models apply. Considering
the distance function first, the existence of a constant ¢ € Rt will be shown with
sup | DF (ax(Vih, i miio (0) | < ity e forall jikm (i3, > 1) (5.23)
4
The term in norm brackets can now be stated as follows

Dga,\(y}‘r;m ﬂ?+77?k|0(0))

N T]; n

= Mo DZa,\(%, 7Tjk|c(9))
Hj+

n

AT n —Yk n n
= [y (D;)F”mo(@) 'Dgax(ﬂzﬁr Tkl (0)) - Do o (6)
J

+D2a,\(u— Tikic(6)) 'Dﬂﬂ'jkw(o))' (5.24)

~n !

For § € W the generally assumed regularity condition (RC3) assures Dgﬂ'?kw(ﬁ) and
Dgﬂ';‘k'(j(ﬁ) being bounded for all j, k,n. The derivatives

‘T;% n 2 YT;C 1 A+1
Daax(—— o) = ——= (1= (=5 —=2¢)
i | A+ 1( %, ﬂjk|c(0) )
and
Diax(=2=, mie(0)) = 2(Z)M ()M
iy e ke ®)

yn
are obviously also bounded, since it holds u# € [0,1] and ﬂ';lk|c(0) > € > 0 for every
i+

jyk,n and § € W (RC2). These bounding results for the terms in (5.24) thus give
(5.23).
The inequality for the second term of (5.22),
sup ||D§e)\(ﬂ;-‘+,7r§‘k|o(0))|| <fify e forall jk,n (c€ R™ constant), (5.25)
oew
with 7, > 1 being the row sums of a column multinomial resp. Poisson contingency
table, will be verified by showing that for each j, k, n holds
sup ||D§e)\(u;-‘+,7r§‘k|o(0))|| <piyoe forall pfy € [Ke, o) (5.26)
oeWw
(e < % without loss of generality). This result combined with fi7+ > 1 then establishes
(5.25.) for both dis.tribution rn.o.dels. Using pf(0) = pfy - 77,0 (0) and ex being
a Poisson expectation by definition, ex(u],, ﬂ';lHC(H)) = Euyk(g)(aA(X;lk,ugk(t‘)))) =:
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E(ax(XJy, 15,(9))) yields

Dﬁex(u?;, F;’kw(g))

— DIun(0)- wﬁ%,fcwmmxyk, W(6))) - Doyl (6)
+%wa;k, W (6))) - D (6)

= (14)? - Di e (9) - MCWE(%(X?I:’“?I:(‘Q))) + Domiyio(6)

n 8 n n n
Ty WE(QA(J jkvﬂjk(g))) ’ Dgﬂmo(@)

n 2
/"Lj‘l' T n 9

= ui (W Dy ﬂ'jk|c(9) ‘H?k(e)WE(aA(J ]”k,u?k(t?))) -D,gn-;lkw(@))

1 (G P02 (X 500) - Dic )

Since for # € W 1 () = k|0(0) is bounded away from zero for all j, k,n

e
using regularity condition (RCQ) and p7, > Ke (BC), Lemma 4.8 shows the bound-
edness of %E((z;\()&;}c 17 (0))) and u?k(ﬂ)(a%rsz(aA(X;‘k,,u;-‘k(H))), since it

holds (statement g) and h))

iz E(n(Xo)|

IA
o

2

g (5o

IA
o

n

(c € RT constant) for X ~ Pois(u) with g > ¢ > 0. The boundedness —uﬁj(?) =
Jk

W, Dg(ﬂ;km(())) and D}(r Jk|(v( )) for 8 € W follows from the generally assumed
regularity conditions (RC2) and (RC3).

O

Since after the first approximation step the derivative still depends on the estimator
for the nuisance parameters, now in the second step 7, will be substituted by u”,,
using Taylor expansion again.

Lemma 5.4 If all ezpectations are bounded away from zero (BC), it holds

J7L
DoZ3(fi%y,00) = DoZ5(p,b0) + ZO Pty (n— o).
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Proof:

The decisive arguments in the following proof apply to column—multinomial as well as
Poisson distribution, thus consider a column-multinomial table Y™ (47, = Y} ) repre-
senting both samphng schemes. Since by definition DpZ% (1", 6) = DpS D} (;L_+, 6)
— DgmX (a7, 60) holds, and the result can be proved treating the two terms sepa-
rately, let the derivative of the goodness—of—fit statistic be considered first. Hence for
given § € (0,1), there is to be shown the existence of a constant Mj, such that for

almost all n holds

(H \/“7 (GA(YJIZ,ﬂ?+'ﬂfk|c(90))—aA(Y{é7u?+'ﬂ?k|c(90)))H>M5>35(5-27)

—1
for all j € {1,...,J"}. Then the difference is stochastically bounded giving

DySDX (7, 00) — DgSDY (1", 6o ZO ,LL]_I_ (n — o0).

To prove 5.27, let in the following any j € {1,...,J"} be given. In the case of
fi5+ > 0, now for the term in question holds

Hr 5 (on 055+ e B0) — x5 )|

IN

mzuaww e ) - Do (o0
J
- MZH Dg ? ]k|0(00) DZa}\(Z}Té %ﬂ';ﬂc(oo))

(5.28)

INA
5
I

Eol
uMz
S
)

A
E
Q

e n
N

i

@) is in the second component continuously differentiable arbitrarily often on (0, 00).

Y5 i Y
Hence for M” > 0, Taylor expansion of ; ” -Dsa ( e R (00)) in —&t
Hiy T ugy TIklC i+

Y”l
1 gives Dzak( = ]kw(oo)) plus an error term (for clarity of notation let the explicit
formula of the derivative be considered):
i Yy i
5t Doay (=25 ﬂ.ﬂ%c(go))

n 2 n ’,.n

Hit Hyt
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80
_ oMy 2 1_(ﬁ.%.#)k+l)
pi A+1 Ky By ke (Bo)
- 2 (i_(%)—k( Yk )AH)
A+ LN\ gy K50 (6o)
= 2 (1 ()
A+1 uj_l_ﬂ'jk'C(HO)
12 un A Yii A1
+ [ g A+ 2 = 1) 7O ()M ) d
0o A+l ( Hy+ 154 o (Bo) )
(=) (529)
Hy+
with ( (# )“H) = D2a}\(ﬁ 7" ~(60)). The error is now dominated
)\-H “j+7rjk|c(60 uryt jk|C
as follows
4 —(A+1) Yk A1 A+
1+/\(1—|—z( 1)) (M) (SR )
‘/ A1 o K (bo) Kyt ‘
Yk 54 e
H(—=, = me(00) - | = = 1
Hj+ Hi+ Hi+
with
Yoo
H(—=, —2% wo(60))
Hi+ Hj+
15y —(A+1) Yik A+1
= sup 1+ A1+ 2(5 - 1)) (S gy
2€[0,1] ‘ At1 ( Kyt “j+77jk|o(90) )‘
being continuous on [0,00) x (0,00) X (0,1). This inequality for the error term in

(5.29) gives for (5.28)

et

K

o (Vi - miic(00)) = Do Y2 ax (Vi - wige(60))) |
k=1

Yii Gy Ay — My
Z ||D07Tjk|c(00)|| ( TJ, ) z, ) 3k|0(00)) ‘| ’ " : |
k=1 P+ Hi+ [

and hence for the probability in (5.27):

1
(I

K
Do 3 (o (Vs Wi () — o (Vi iy (00)) | > M5 )
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K

< (| =D0 3 (a0 5w (80)) = an (Vs 3 g ()| > M
Hiy k=1

AR, > ow) +P(3j: it =0) (5.30)
K ﬂn
J

n Yk [L 1+ n + 'un+ T
P Y Do @)l H 2 22 ) - |2 225 > i, > 0)
k=1 i+ Hi+ it

IA

+ P@Ej:at =0)

K o e n
=P iHD n @) (i) - H(2 P o gy P H sy
- 977jk|0( 0)” N(:uj-l-) ( n ' n jk|C( 0)) | " | > é
k=1 'u]+ MJ+ MJ-I-
+ P@Ej:ify =0). (5.31)

Considering the second probability, assumption P(/:L?_I_ >0Vjedl,...,J"}) —1
immediately yields for sufficiently large n
1)
2’

hence the first term remains to be studied. Apart from assumptions holding in both

P(3j: 5 =0) < (5.32)

distribution models, up to here only analytical arguments and basic properties of
probability measures have been used. In order to obtain the stochastic bounding
result for the first probability in (5.31), information about the underlying distribution,
in particular Var( J’,’\A) < B3y for all j,k,n, is necessary now. This clearly holds
for column multinomial (where each component is binomial) and Poisson sampling.
The assumed independence of the columns in both distribution models further yields
another required condition, namely Var(Y}) = Var(i},) < uj, for all j, .
Application of the Chebyshev Inequality now gives

P(‘iﬂ% _M?-I-‘ > L) < 5-Var( Py ) <4é

and hence
- 1
|—'uﬁl+ — 1] = 0p( = ) forall j. (5.33)
I+ My

n

This further asserts T+ = 0p(1) for all j and ”“ = 0,(1) for all j, k using #
Hit Hiy

v
HJT‘* = M” For the function H now holds by Lemma 8.2 for fixed j
Jj+ i+

IN

InN(iEy) - H (=25, =25 770 (60)) = Op(1)  for all k. (5.34)
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an _ yr

Here ZJT+ corresponds with the sequence X™ and M#,Tr;‘k'o((‘)o) with the vector Z"
it j

from Lemma 8.2. Further assumptions as the continuity of H and the variance

condition are met as seen before. The boundedness of Dg?T?HC(Oo) (condition (RC3))

as well as statements (5.33) and (5.34) now guarantee the existence of a constant Mj,

so that for the first probability of (5.31) holds

X n ~n Y'JZ ﬂ?‘l‘ n '&;,4' B 'u;,-l- 0
P> 1 Doy (Bo) | - In(fi7y) - H(—=, ==, Ty (0o)) - |7n| > Ms) < 5
k=1 Hi+ Hit VH+

for almost all » € N. This result, combined with (5.32) (inserting in (5.31)), finally
establishes (5.27) for both column multinomial and Poisson sampling. Now it remains
to be shown

JTL
Dom3(ji’y, 60) = Dom (1, 6o) + OP(Z \/N?+) (5.35)
7=1

for both distribution models. Since for the Poisson expectation mY of SD} by def-
inition holds m}(u”,00) = Z}-le SR ek(”?+777?k|0(00)) with eA(N?+a7T?k|c(00)) =
E(ax(X7, p3;)) (see (5.1), (5.2)), this can obviously be proved by establishing
1 a AT n 8 n n
\/TT(aTe)\(lu“j-}-’ Tk (00)) = 5a-ex(igy, ij|c(90))) = Op(1)
i+ *

for all j,k and s € {1,...S}. Using analogous arguments as in the proof of (5.27),
it suffices (cp. (5.30)) to verify that for every & € (0,1), there exists a constant Ms,
such that for all j, & and almost all n the inequality

1 0 0
P(ﬁ

95 N Wi (80)) = gaex(45s Wi (60))] > M, iy > 0V )
1 ¥ ¢ a ¥ 1) n a n n
P( — '1N(Hj'+) ) ‘—80 6A(#j+v77jk|o(00)) " 96 6A(#j+v77jk|o(00))‘ > MJ)
VHi+ s s

IA

)
< -
- 2

holds. Since (47, )nen is for every j a sequence of random variables with E(4},) =
Wiy € [Ke,00), this follows from Lemma 8.3, if for all j, k, n

;—Ha%e)\(u,ﬂ?kw(ﬂo)ﬂ <c forall p> Ke (c€RT constant) (5.36)

can be shown. To see this, one has to prove for every j, k,n

g 0 .
g g T B)] < ¢ € RY  forall 4, > Ke
i+ 9%
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which yields (5.36) by definition of ex. Now it holds

0 0 n o n
|m876/\(ﬂj+aﬂjk|o(00))|
7 s
0 3} 0
= a7 mike00)] - | 57— E(ax (X, 171wk 0 (60))
06, " IkIC ‘aﬂjﬂ(} (Hj+ gk Hj+ % 5k|C )‘
9 n
|(9—057Tjk|0(90)|
9 9 n _n 0 n n _n
g (Gugy 5 o) g 02 (O e (o)
0 3} 0
o O] — (7™ (00) —— E(ax(X%. gt 7 (6
|8057TJ’“|C( o)| ‘aw?mo (ﬂf’“w( 0)3#?+F§Lklo (@3 (X5 154 0))))‘
9 .
|8—08ij|0(90)|
a n n n
-\—% 7 B (X ey ()
J
0 (00) + a2 W (B0) - oo Blan (X iy g (60)))|
' T My T ey v CON L) Iy
jk|c(Po 87Tjk|0 J+ k0 \%0 (8ﬂj+7"jk|0)2 ARGk Hj+ 7 R0 \Y0
9 .
|8—0$ij|0(00)|
8 n n n
"mE(a/\(XjkaHj+77jk|c(00)))
J J
82
im0 (00) « m g B (e (X, i o (0
e (00) gz B (Gl 540 (00)
|877Tjk|o(90)| : ‘ME(M( Ty Hok)) + B WE(GA(Xjkvﬂjk))‘
s J J

< ¢

for some constant ¢ € R, using the generally assumed regularity condition (RC3)

and in particular ﬁE(”’A(X;‘Eka?k)) and N?k(ﬁﬁﬁE(aA(X?kaN?k)) being bounded
for all pjy, = pj, 7% (00) > € (see Lemma 4.8 g), h)). Since by assumption (RC2)
the probabilities ﬂ'?kw(@o) are bounded away from zero for all 7, k, n, the expectations
ex, regarded as a function in p7, , are bounded for all u?, € [K€, 00). This establishes
(5.36) and hence (5.35). O

In Lemma 5.5, the gradient can now be replaced by its Poisson expectation. This is
immediately obtained in case of Poisson sampling applying Chebyshev’s inequality.
In the column—multinomial case, where two distributions have to be compared, the
result will be proved using the auxiliary result from section 5.1.
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Lemma 5.5 For both distribution models assume /(8" — 6p) = O,(1) (LC2) and
Ky > € > 0 for all j,k,n (BC). In case of column—-multinomial sampling, sup-

pose that additionally 2= — 0 and the conditions (LC1) and (MD3) hold, i.e.
LI (u, 00) — Ino and maxi<j<in ”;MD(HO) — 0 for all k. Then for X € (—1,1]
if column multinomial and X € (-1, 00), if Poisson sampling is considered, follows

(DoZ3 (. 80) + (17, 80) ) (6" = 85) = Op(1) (n— o)

with X (u", 0o) defined in (5.4), for which in particular holds

A, 00) = —E(DeZy (i, 06/X")).
Proof: ]
Using ¢ (u", 0y) = ijl SN Dglog ﬂ?km(()o)CmJ(a)\(X;lk,,u?k),X;-‘k) as defined in
(5.4) at the beginning of this chapter, let first be verified that cY is the stated Pois-

son expectation. This is immediately shown applying the formula for derivatives of
Poisson expectations given in Theorem 4.1 (for notational reference see (5.1) — (5.3)):

E (Do Z3 (47, 60| X))
J" K

= ZMZI( (Doan(XJi, 2y 71 (Bo)) = Doex(tiy, wic(60))))
J=
& ) 9
- ;L;Dgu?k(Bo)-(E(@a)\( ;’“’“?’“))_augf(“*( ﬂwﬁ)))
_ éépau]k (60) - (_@ Cov(aA(X;’k,u?k),X;lk)>
Jr K
= — Jz::l kzz:l Dy log ﬂ?kw(Oo) -Cov (a)\(X]”k, ,u?k), X]"k)

= —Cg (:u-n+ ) 00) :

Since now /n(" — 8y) = O,(1) and plt, —nc— 0 (c>0)is presumed (in particular
n = pf, =Y/ in the column-multinomial case), it suffices to determine the order
of the difference between derived statistic and Poisson expectation,

1 n n n n n
ﬁ(DHZ,\ (4, 00) = E(DoZX (1., 60| X ))) = 0p(1),

with A € (=1, 1] in case of column multinomial and A € (—1,00) in case of Poisson
sampling. Now by definition holds

DyZ3 (7., 60) — B(DoZ3 (24, 06| X™))

= Dy(SDR(uly o) — m3 ("%, 60)) — B (DoS DS (1, 60| X™) — Do (Y., b))
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= Dy(SDR(, 00)) — B(DoSDR (1, 60| X™)).

hence the result follows, if for each component, i.e. for every s € {1,...,S},
1 0 3}
m(ag SDX (., bo) — (80 SDX(u"y, B0l X ))) 0,(1) (5.37)

can be established with A € (—1,1] (column-multinomial) resp. A € (—=1,00) (Pois-

son). In case of Poisson sampling, where especially SDY(u”,00|X") is considered,
(5.37) immediately follows if for every s € {1,...,S} and A € (=1, 00) holds

)
Vi 005

since then the Chebyshev Inequality can be directly applied giving

Vv ar( - SDX (", 6| X" )) < ¢ for some constant ¢ € R, (5.38)

c

<m‘ae SDR (s, 8o X") = B(p-S DY (2, X)) | 2 /%)

) 1 0
< Var( 2= DYty 0lX7))

VI 08,

<46
(6 €(0,1) constant). (5.38) can now be seen as follows. It holds
0
Dy Oo| X"
( /—H++ 00, Ey Rl (:u -+ 0| ))
1 L i ( 0 )
= — Var{ a7-ax(Xjy, ik (6o))
Fit 5= k=1 095 Y
'K )2)
ik Wik (60))
“++J 1 k=1 kel
2
= M i - E((Daax(XGy, pi)
:“++J 1k= 1 ’ (( e ) )
) x(( )
= ke (00))" - E{ ( Daax(Xy, 1)
“++J = 1 ag Jk| gk Fj

2
log 7010 (00))2 - 1 B (e (Daox (X i 1547010 (60))) )

:“++J 1k= 1 0
K

“++J 1 k=1
= C
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for some ¢ € RT constant, since W and z5- 7rjk|0(00) are bounded by assumption
Tiklc

(RC2), (RC3) and E(,u;‘k (Dga,\(Xjk, ij)) ) by Lemma 4.8 e) using 7y > € > 0 for
all 7,k,n (BC).

To prove (5.37) for the much more difficult case of column multinomial sampling (cp.
preliminaries to sec. 5.1), Lemma 5.1 in section 5.1 has been stated. Based on the
method introduced by Morris (1975), this lemma provides under the given conditions
the asymptotic normality of the column multinomial statistic %SDK(MZ_,HMY")

centered with its Poisson expectation E( -SDY(ply, o X7 ))

( o SR 80lY™) = B (SR 6017 ) 5 N (0, 1)

(A € (=1,1]) with v}? being a certain Poisson variance with the order O(n). Since
the standard deviation is of the order O, (y/n), this result and n = p}, immediately
give (5.37) for this distribution model as well:

(g SDR (4 BlY™) = B3-S DR, 80 X™)) ) = 0p(1) (A€ (-1,1)

VG \ 08 08,

O

Using the assumed approximability of the parameter difference through information
matrix and scores and the immediately determined order of ¢¥, it is now possible to
pass on to an expression without depending on gn anymore. Resuming the preceding
approximation steps, thus for the correction term concerning the parameter estima-
tion " derived in the first step (Lemma 5.3), an approximation through a sum of
independent variables is given.

Lemma 5.6 Suppose all ezpectations are bounded away from zero (BC), then for
the asymptotics n — oo holds

S0 = O(™)
with ¢ defined in (5.4). If further the assumption 6" — 6, = (I"(un, 00)) 21U (Bo) +
Op(L) (LC3) is met, this immediately establishes

R(u%00) (0" — 60) = AWy, B0) (I" (T, 80)) ™' U™ (B0) + Op(1)  (n — c0).

Proof:
Since all expected values are bounded away from zero, Lemma 4.8 d) yields for all
jk,mn Cov(aA(X;-lk,u?k),ka) being bounded. This, together with the presumed re-
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gularity conditions thus gives
K

X(w, bo) = - Z Z Dy log F;Lk|0(00)) - Cov (GA(ka’H?k),— jnk) =0(J").

7=1 k=1
Further using the approximability of the estimator through information matrix and
scores yields

ni n an ni,n n(,n —l7rn 1
Ry, 00) (0" = 00) = Ky, Bo) (1" (174, 00)) 1T (60) + Op(=))
n n n n - n Jn
= AW 00) (1" (1, 00)) 7' U™ (8) + Op(—)
and Z- = O(1), which follows using (BC) and “'T;TﬂL = 0(1), gives the result. O

Example 5.7
Considering Pearson’s X? Statistic (A = 1), the expectation m7 does not depend on 8

. . n n n n (X7 —pm )2
since for every j, k, n holds ey (u7,, 7rjk|c(00)) = E(ay (X7, 1)) = E(J’“inﬂ’“) =1.

M
Using
Jv K Xnk
DoSDY(ury 01X7) = 3° 3 e (0) (1 = (5-57)*) - Dolog e (0),
7=1k=1 Mﬂk
gives
G, b0) = —E(DeZy (i, 00| X™))
= —E(DoSD} (u7y,60|X™))
Jv K
= Z Z Dﬁ ].Og W_?HC(HO) .
7=1k=1

O
The last missing step from ZY (47, 6o) to Z3 (47, 6o) (cp. Lemma 5.3) is probably the
most difficult one of the whole approximation. To get the error small, a second order
Taylor expansion of ay in both components is necessary, which yields Z}]n1(ﬂ?+
1ty )%/, as an additional correction term with 4%, = Y/, resp. i, = X7, (column~—
multinomial resp. Poisson). This term equals Pearson’s X? Statistic (A = 1) for the
row suins: Z}Zl (ﬂ?+ - M?+)2//L?+ = 237:1 al(ﬂ?-}-a H?+)'

Lemma 5.8 When all expectations are bounded away from zero (BC), i.e. Wi >
€ > 0 for all j, k,n, then for the asymptotics n — oo holds

W
23, 00) = ZR(un,00) - 3 it 1) *Z‘)(w/u ).
J+

=1 i
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Proof:
The statement will be proved in two parts, separately for goodness—of-fit statistic
and expectation:

Jn (7
nisn n n 'LL 'LL
SDR(i ) = SDRG )~ Yo L) o, (Z =) (539)
j=1 '“J+ ]+

m3 (7, 8o) = m5 (47, 6o) + O, (Z ) (5.40)

.7+
Since in this step of the approximation the nuisance parameters are treated just like in
Lemma 5.4, this proof will be similar and particularly the essential arguments will be
identical. Hence consider, just as in the proof of Lemma 5.4, a table Y” representing
column multinomial and Poisson sampling (47 = Y} ). For the proof of (5.39) now
for every & € (0,1), the existence of a constant M; € R will be shown with Mj;
chosen such that for every j € {1,...,J"} holds

K (An R
) 5 = 15
Py | 30 (a5 s - Wiy (B0)) = ax (Vi ) + == 525 > M
k= 7+
Ay > 0)
+ P(3j: iy =0)
) (5.41)

for almost all n € N. As seen in the proof of Lemma 5.4, it suffices to study the
first probability. Therefore let any j € {1,...,J"} be given and the difference

DY ((1)\( ]k"u]-l- ?k,|(}(00)) a,\(Yk,,qu)) be considered, which can be written
as follows for a7, > 0:

K
3 (Vs 3 g (80)) = ax (Vi 50))

k=1
K n
n ik n n
= 3 (mOGh i 2) — oV i)
et o
yn
gk 'u.]+ Jk
= Y uk =) —aa(—-, 1)) (5.42)
Z ’ ( ]k 'M.H‘ ’LL?k )

The distance function ay is differentiable arbitrarily often on Rt x RT and hence
can be expanded for fi; > 0 (consider especially ji; = Wiy > 0, fij = iy > 0) and
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Y}; > 0 in a second order Taylor Series around (1,1):

YR i 1Y"h i Yii g T
a)\(iv—]) = (L_lv—]_ )'DQQ/\(lvl)'(L_ -2 _ ) +Rnk(:a‘)
AT 2 pum whe e
Yr o
= (2 - L)+ R(iy)
Fie Myt
with D%ay(1,1) = ( _; _; ) and ay(1,1) = Dyay(1,1) = Dgay(1,1) = 0 (deriva-

tives of ay see Lemma 2.2). Let o denote a tupel (a1, az) € N3, then the error term
states as follows
n (-~ (1 — Z e Y ﬂ]
i) = [ U5 S o (i a0 1B
J 0 2 |Ot| 3 Ot. ( lu’]k ’ lu’]+ )
Yyn i
(= ) (g = 1)
Hik Hy+
For fi; > 0 and Y}j, = 0 holds

ﬂj)_i.ﬂj_(o ﬂj)2+( 2 ﬂ_(ﬂ]y)

T N A

ax (0,

This result combined with the Taylor expansion now gives for the difference in the
case f17, > 0 (inserting in (5.42)):

K
> (Vi iy - wige (00)) = ax (Vi 13))
k=1
VI yn
Jk Hy+ L
= I (@ =) —ax(—= 1)
Z ’ ( i Hik )
k [L]+ 2 n 2 ﬂ?‘f‘ ﬂ?+ 2 n n [ an
= S (G - B O G~ () + NGRS,
ZJ Wi 1y ORI T Ty gy SRR
1 (g~ 1)~ INDRAGE))
o ORI T N 7k \Hyt
(A% — uy)? ) .
= L R — R ()
Hj+
with
K 2 ﬂ /L
Rok () Wi Loy (Vi) (5= o = (550)7) + In (Vi) R (7)) )
7k \Hj ]Cz:la({}a M1, ey J J)
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This and further inequalities yield for the first probability in (5.41)

(M‘ Z (”)‘ JkH“J+ Jk|C(00)) ax( Jk"ujk)) + Wﬁ_;ﬂ#‘ > Ms
Ay > 0)

- P( “?+

= P(\/”: In (A7) - ‘Z( o (A4) = ?k(“?+))‘ > MJ)

< P(M'lN(ﬂg’q—)'|ZR§’k(ﬂ§"+)|+\/ﬁL§T+'1N(ﬂJ+ ZRJk p)| > My),
k=1

hence it suffices by definition of R;‘k to show

.
= (i) - Ry ()| > My A i, > 0)
=1

K 1) nn
o n n 2 1y Ky n ~n
N (454) Z Hijk (1{0}(ij)(>\_|_ 1 Hil: — (_/;l:)Z) + In(Yj) Ry (2 +))
k=1 J J
1
= OP(—n ) (5.43)
Hi+
and
K
.y n n 2 n/on 1
N(Ae) D i (1{0}(ij)(—>\+ 7~ D+ In(; )Rjk(u.+)) = Op( — ) (5.44)
k=1 VHi+

Considering (5.43), the following inequality holds

2 ’ J+ 'A.?-I- 2 n Y 7}
1 ] ( " ) ) ( ]k) ]k( +))‘

K
1) - 3 i (1o (Vi) (<
k=1
K
> i
k=1
n oy 2 3.
.‘1N<uj+>-1{o}<m<“1 = o))
J J

+1N(er;c)/01 (1—2) Z 2:D ax(l—}-z(zik— ),1—}—2(%—1))

2t s o I [
yn o
Gk -y (B gy (549
Pk Myt

The asymptotic order of the term in absolute brackets can now be obtained using ob-
vious conversions and inequalities first, and explaining the final arguments afterwards:
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(consider any k € {1,..., K}):

~n n 'a?'l‘ 2 'uJ+ 3
In(A) oy (Vi) - ((=55)° - =) (=)
‘( 7 {o0}\45 H]-|— A_i_ 1 N]-|—
'(1-2)% 3! Y s
+1in(Y] / —_Dday(1+ (- 1+ 2(—2= -1 d)
NG gDt (L - D - 1)
yn
(= 1)
Mg
Yi I
SENGANDY a,\(l—l—z( — 1), 14 2(-2E - 1))dz
lal=3 Hii Kyt
a#(3,0)

Y” L
=1 (=)

Pk P+

2 Mgy
A+l N

n (1= 2)? Y ,u
.7

! yr in
Fn(YD) - / 2 pay (14 2(2E — 1), 14 2(t 1)) a2
’ |§3 ‘ o 20 al ( i Hiy ) ‘
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= 0,(1)-0,(—=). (5.46)

Except for the last statement, similar to the proof of Lemma 5.4, up to here only
arguments were applied, which do not use specific information about the considered
distribution models. To see the validity of the last equation sign, now additionally
Var(Y],) < pfy for all j,k,n is needed, which implies Var(a7,) < pfy for all jin
and holds for column multinomial as well as Poisson sampling. This gives on the one
Ais—Hiy ; : " -
hand o Op(1) for all j (see Lemma 5.4, (5.33)), and in particular (K = 1)
Y —u”
Lﬁ:ﬂ“ = Op(1). On the other hand, this variance property is necessary to apply
vV Hjk

Lemma 8.2, which yields for every j, k

n o leé H
IN(Y) - sup |[DPax(142(25 - 1), 14 2(-2E _1))‘
2€[0,1] ,LL]k HJ+
Yi [f yn an
= ooy (25, 525) - sup D%y (14 (=25 - 1), 14 2(52E — 1))
Hok Hit =€) Iy o,
k k
= g (—i =) (=, 0F)
i My Mok Hjy

being stochastically bounded for « € N2, |a| = 3. Further, the continuity of f on

R* x Rt was used, and ( Yk Z”) takes the role of the random vector X” in Lemma
jk i+

8.2.

Statement (5.46) concerning the asymptotic order of the term in absolute brackets in
(5.45) thus leads to (5.43), since it holds

s n n 2 ﬂ?+ N ~An
‘ Z Kk (1{0}(ij)()\—+1 : MJT+ - (Ng+) )+ In(Y) Ry (4 +))‘

The last equality follows because each ﬂ;‘km(f)o) is bounded away from zero (condition
(RC2)) thus giving Bp — 1 O(1) for all j, k. Analogous argumentation as in
Hik i (00)

the proof of (5.43) yields for the more simple statement (5.44) the same asymptotic
order and hence (5.39) is shown.

To prove (5.40) for m%(u",00) = 3];1 Y5, ex(iy, 7y (0o)) as defined in (5.1)
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and (5.2), it obviously suffices to show

~T n n n 1 N
ex(fijy, Ty (00)) = ex(ujy, Tiio (Bo)) + Op (” MT) for all j, k
J+

respectively (cp. Lemma 5.4, proof of (5.35) and (5.27))

~ T ~T n n n 1 .
NG (3 W0 00) = ex(bia o (60))) = Op(y | 5)  Forall ji k.
J+
This follows from Lemma 8.3, since for both distribution models the required condi-
tions are met (in particular Var(47,) < u7, holds and the expectations u7, of the
row sums are bounded away from zero), if for every j, k, n holds

iy MGA(H%’F?HC(OO))‘ <ceR" forall y? >e (ceR" constant). (5.47)
J

Since ey is a Poisson expectation, this term can now be explicitly stated as follows

n 8 n n
iy mek(ﬂjq.yﬂ'jkw(eo))‘
n 8 n n n
= Mt gm E(QA(ij7/Lj+7Tjk|C(00)))‘
7+
N A 9 v o
= My W(Hj+7"jk|0(00)) E(ak(}/}k’“j+ﬂjk|0(00)))‘
I+

Opy 7o (o)

0
= i mic(0o) | s~ Elax(Yg, 1y 7o o (fo .
Tk (60) - | ) (ax (¥, 53 e (60)) )|
Using pfy, = u?+77;‘k|0(00) being bounded away from zero for each j, k, n, the required
inequality for (5.47) immediately follows from the auxiliary results given in Lemma
4.8 (Lemma 4.8 g)) thus completing the proof. O

As a conclusion of the preceding lemmata, the following corollary summarizes all
steps of the approximation. Above all, it gives the final approximated statistic, which
then will be further studied in the next chapter.
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Corollary 5.9 Consider A € (-1, 1] if column—multinomial and X\ > —1 if Poisson
sampling is given. Further suppose that all assumptions from Lemma 5.8 to 5.8
are met, i.e. /n(0" — 0p) = 0,(1) (LC2), 0" — 6y = (I"(u,00)) "' U™ (B0) + Op(L)
(LC3), pi > €>0 forall j, k,n (BC), and, in case of column—multinomial sampling,
additionally Z- — 0, LI"(u" ,0y) — Io (LC1) and max;<j< Tiep(fo) — 0
for all k (MD3). Then all results together yield for Z3 (A", 0") = SDY (", 0") —
my (A%, ") the approzimation

SDAGIL0) = MG ) = W5, = mEL )
M+ 1 1 1
)+ 2 0p(D((=5)7 + ()7
z D(SHF + (%)
RV nen f gr (g, —ply)? o ninog (g n
with 95, = SO0, ) = £ S < g, >(f (120, 00))71 07 (Bo) (6§
as defined in (5.4)) and Poisson erpectation m?(u E'( N(uly, Bo| X7 ))

Stating both distribution models separately gives

L0~ )’
R (Y7)=SDR(uly, Bo[Y™) — 3~

n — R (W7 00) (1" (7, 60)) ~ U™ (8] YT,
7=1 N.7+

(X — i)’
R (X7)=SD5 (17, 60l X7) =) S 5= —cS (e f0) (17 1y, 60)) 71U (ol X7).
7=1 J+

Proof:
Combining the single approximation steps from the preceding lemmata yields

SDR (i, ") — m3 (A%, 6

= ZA( +’0n)
— Z{(y, B0) + DoZ (il 00) (6" — 60) + O, (1) (5.489)
Jn n .
= Z3(il%, 80) + DaZ5 (1, 00) (0" ~ 60) + Oy 3 (“;:)a) +0,(1) (5.49)
Jn n .
= ZR(%%. 0) = R0 B0) (87 — ) + Oy ( L (2H)%) + 0,1 (5.50)
It on

= ZR(% 00) = "% 00) (17, 00)) U™ (80) + Op (3 (H5)) +0,(1) (5.51)

Jn
= H+a Z :u]-|-7:u]-|- (Nn+700)(jn(iun+a00))_1Un(00)
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Jn Jn n
1 1 iy 1
+0,( Yo (5)7) + 0,( S (F2H)7) + 0,(1) (5.52)
7=1 H]‘l‘ 7=1 n
Jm
= SDR(u, 80) — mA (k7% 00) — D0 ar (i, 154) — A (ul, 60) (1" (17, 80)) ™ U™ (o)
7=1
T" ]_ 1 I" Mn_l_ 1
+0,( 3 (5)7) + 0p( D (F2H)7) + 0,(1).
7=1 ’uJ+ 7=1 n

In (5.48), (5.50) — (5.52) the results given in Lemma 5.3 and Lemma 5.5 to 5.8 were
adopted. In (5.50), which is the only step not holding for arbitrary A > —1 since it
has not been verified for A > 1 in the column-multinomial case, DgZ} (pt.4, 6p) was
replaced by its (Poisson) expectation E(DgZY (ft.4,00|X"™)) = —c3 (g4, 00). Assump-
tion /7 (0" — fy) = Op(1) (LC2) and Lemma 5.4 stating

n
DyZ3 (i ,00) = Dazg(uzr,goprop(z \/H]T+)
7=1

finally yield (5.49). O



6. Limiting Results
for the Goodness—of—Fit Statistic

In this chapter, for both distribution models, Poisson and column—multinomial, the
asymptotic normality of the test statistic under the nullhypothesis will be proved.
Starting point is the approximation W%  derived in chapter 5 (see Cor. 5.9). This
statistic, which is, as seen, analytically identical for both distribution models, will be
shown in section 6.1 to have a normal limit. In the case of Poisson sampling, this
will be done applying the central limit theorem. When column—multinomial sampling
is considered, the approximated statistic is, unlike the Poisson model, not a sum of
independent variables; hence the central limit theorem cannot be applied directly.
Instead, the asymptotic normality will be derived using Morris’ method (1975) as
presented in chapter 3. Since for both approaches the “true” and hence unknown
standard deviations will be taken, which for a concrete application certainly will
have to be estimated, in section 6.2 the consistency of the variance estimation will
be shown. With this final statement, as a conclusion to the preceding results, the
main theorems of this thesis can be given, namely the asymptotic normality of the
goodness—of—fit statistic with estimated mean and standard deviation.

Since this chapter is a continuation of chapter 5, the situation described in its begin-
ning is restored. In particular, the regularity conditions (RC1) — (RC3) and (LCO)
are again assumed to hold throughout the chapter, other requirements to be explicitly
stated each time needed. As already announced in section 2.3, where the final test
statistic was introduced, now additional assumptions concerning the variance and the
marginal distributions will be required. The latter ones will only be necessary for the
main results in section 6.2, and will be given there together with the other conditions.

6.1 Asymptotic Normality of the Approximated Statistic
The asymptotic normality for the approximation ¥, — mx(u?, 0o) of the difference
SDy (A%, o) — my (il 6™) derived in chapter 5, where mY is the Poisson expectation

of SDY as defined in (5.2), will, as already mentioned, be proved using the central
limit theorem in case of Poisson, and Morris’ method (Lemma 3.4) in case of column—

96
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multinomial distribution. Considering the Poisson expectation of WY, it holds

(X g
(Zal J+’“J+) E(Z—H) Zl_J"
J=1 ’uJ+
and
K
E(U" (6l X™) ZE P60l X7)) = 30 15 DY log i (60) = 0
7=1k=1

thus giving
B(W5,(X"))
Jn
= E(SD} (il 00l X™) 2 (X7 154) = R (10, 00) (17 (174, 00)) ™ U™ (60] X))

= (u7y ) — "

with ¢} being the covariance between SD} and the score vector U™ in the Poisson
distribution model as defined in (5.4). Since both approaches require a centering
with the Poisson expectation E(¥% (X")), the expected value of the correction term
derived in Lemma 5.8, i.e. E(al(X;E+,,LL§L+)) = J", must be incorporated. In the fol-

lowing, the recentered statistic ¥%, — mx(u’, o) + J" will be considered.

Since the approach for Poisson sampling is clear, and in order to clarify the pro-
ceedings and theorems to come, let Morris’ construction method concerning column—
multinomial sampling from section 3.1 be recapitulated for the special case considered
here. As already explained in section 3.1, an application of this method is necessary
to meet the covariance condition required for Lemma 3.4. Starting with

(2) = Z\IIAJ (zj.)

K

M) = D an(zes 15e) — ar(zig, 1) — Xy, 00) (I (1, 80)) ™ UT (2., 60)
k=1
(z = (2k);k is a J” x K table with nonnegative entries), let for j € {1,...,J"} now

functions f)’"] be defined as follows:

Fi(z) = 935(z.) — BORR(XF)) = D2 vR(zim — 1)

with a correction term
n
1 J

i (9557, X5)

H‘H”]l
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K
= ( > aa(XJ, 1), X]nk)
“+k] 1 k=1
1 &
- an (X7, 1), X5
Wy j—l (1( o i), Jk)
(e (2 80) (17 (1 00)) U (60, X7, X
M+k] 1
n
l n n n n
= m (COU(QA(Xjkaij)ank)_ﬂ'jk|0(00))-
H+k j:l

The last formula for 4§, is generated through simple calculations. With such chosen
fx;» the covariance condition for Lemma 3.4 is met (cp. sec. 3.1 (3.5)). This Lemma
will now be applied to prove the limiting normality of the column-multinomial sum
23];1 (Y =83, (Y")—E(¥5, (X")) in question, scaled with the Poisson variance
Var(Z;-]; f3;(X7)). The proof consists of two major parts: The condition for the
convergence of the conditional distribution as well as the Lindeberg Condition for the
central limit theorem for the transformed Poisson approximation

an an
>0 R [Var (Y fy(X
7=1 7=1

with
Jn K
YOG = ORA(XT) = 0D (X — i) — B(PRL(XT)
7=1 7=1k=1

have to be verified. Since this Poisson statistic, up to the additional correction term,
coincides with the pure Poisson approximation, both statistics will be treated together
in Theorem 6.1, where the validity of the Ljapounov Condition will be checked for
both. In Theorem 6.2, the asymptotic normality of the approximation for column-—
multinomial sampling applying Lemma 3.4 is shown by proving the remaining condi-
tion concerning the convergence of the conditional distribution.

Theorem 6.1 Suppose that the assumptions p% > € > 0 for all j k,n (BC),
L1 (1", 80) — I positive definite (LC1) and

m K

Z Z H]k /()" =o(1)

7=1k=1

hold for the asymptotics n — oco. For each j € {1,...,J"}, n € N, let the function
N [0,00) = R, 2. = (zj1,.--,2jK) = UR,(z5.) (= = (25%)jk is an arbitrary
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J" X K table with nonnegative entries) be defined as follows:

K
% (25) Z Mz 101) — an (zig, 154) — (e, 80) (1™ (17, 60)) " U (25, Bo)

with especially ¢3 (7, 60) = Y37, Timy Dolog w0 (o) Cov(ar(X i, 153), X ) (see
(5.4)). Hence U3 (2) = ZJ 1 U3;(2j.) coincides with the analytical definition of the
approrimation derived in chapter 5, Cor. 5.9. Now consider the Poisson statistic
UL, (X™) and the transformation ¥§_ (X") - Z K Yk (X Tk — 1), which have
the variances

X (1, 00) = Var(¥R.(X")),
K

S, 00) = V‘“"( A (XT) = D0 D> YAk — 'u?k))
j—l k=1

with vy, = 1/p%, Z'j]:l (COU((L)\(JY?]C, ,u;.‘k), X;.Lk)—ﬂ;‘kw(ﬁo)) =O(J" /). For these
let the variance condition J" [o3*(u".,600) = O(1) (VCP) and J"/s5* (7, 60) = O(1)
(VCC) hold. Then the standardizations of both statistics fulfil Lja,pounov ’s condition
for the central limit theorem. Using E(¥% (X")) = E<\I/§+ (Xm) — Z 1D Dy

(X ik —,u;-”k)) = m}(uly,00) —J" (m} is the Poisson expectation of SDY ) in particular

holds . . .
YL (X7) = mR (e f0) + T

— N(0,1),
o.n(lun_l_’ 0 ) ( )
oro(X") — Xk m)—mi(u",00) + J"
)\+( ) Z] IZk 1%\k( #Jk) A(#+ o) £, N (0,1).
S/\(:uml-v 00)
Erhaustive calculation of the variance further gives
K
N(uly,00) = V‘“’(Z > GA(X?kaN?#T?mc(eo))) +2J"
j—lk—l
+ Z—_QZ ZCOU (Z)\ ]k‘?lu’]k‘) (X ))
J=1 Kyt j=1 B+ o
I K
+ 4227‘-]“0 CO’U((Z)‘(J ]k7u_7k) Xnk)
7=1 k=1

= Ry, o) (1" (1, 00) ™" (R (1, 00))
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Proof:
The stated standardization terms for both statistics are immediately checked: Using

E(U™(00|X")) =0 and E(ay (X7}, u7,)) = 1 gives (cp. preliminaries)

it
J* K

B(W, (X" = 30 3 (e — ) = B(¥5, (X)) = m (17, 60) — J™.
7=1k=1

oy*(u?,0o) is by definition the variance of ¥%_ (X"), and for the variance of the

transformed statistic holds s3°(u%., 60) = o3 (u"y, o) — SK, 1y (Yix)? by construc-
tion (see chapter 3, (3.7)). In particular 7%, = O(J"/u},) holds, since (BC) — i.e.

phy, > € for all j,k,n — implies l;ink = O(1) and Cov(ax(XJy, 1), X73) = O(1)
(Lemma 4.8 d)), hence

Jn

i = 3 (Covlan(X i, 1), X3b) = wiyo(60)) = O(J"). (6.1)
7=1

The detailed formula for o}? (p7, 80) will be verified at the end of the proof.

For the approximation and the transformed approximation, both being sums of inde-
pendent random variables, Ljapounov’s inequality will now be shown in the form

u+,00 ZE(( - B( Kj(X]n.)))A‘) —0
respectively

K 4
ZE(( (X3) = 3 BelX = 1) = E(3,(x7)) ") — 0.
k=1

/L -+ 00
Since J" /o{?(u? ,00) = O(1) (VCP) and J"/s5*(u", 6p) = O(1) (VCC) is presumed,
it obviously suffices to show

JTL

gE((wzj<X;%>—E(\If’;jm»)“) = o((J")Y),  (62)
I 4
> ({00 Zm - 1) — B(BR,(X7) ) = o((JM?).  (6.3)

Considering the statistic in (6.3) and the simple inequality

Jn

ZE(( A (X5 — B( Z’YAk M]k))4)
< 8.3 B((wy ) - B Kj(Xﬁ)))4)+8-ZE((Zm ~ ),
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the proof of (6.3) can be traced back to that of (6.2) concerning the pure approxima-
tion. Additionally, only

f:E((Zm X5 - )" ) = o((77)?)

has to be shown, which will be done first. Using (Xh_; 2x)* < Sh , K3 - 2} (see
(511)), 7% = O /) (6.1) and further B((X}y — )") = 3(a)" + i =
O((u3,)?), this is verified as follows:

iE((Z%\k N]k))4)
EE(Z K3 (v3w)* - :“?k)4)
= ZK VAk) ZE — 1))

IA

Jn I
= o (2" S
M+k 7=1
, 'un Jn 2 J" "
= You (- T S
k=1 +k Fry) 35
a s (J7)? = 2
= > 0 (I =g D (1) (6.4)
= (M), (6.5)
Equation (6.4) follows with condition (RC2), which assumes # = mlc(fo) > €>0
+
for all j, &k, n and hence ’
M3k = = 1y 1
e = Y ph=ph ey ppy=epty, = —HE<-0 0 (6.6)
/L.7+ j:l j:l M+k €

Finally (6.5) is the presumed condition concerning the marginal distribution.

For the proof of (6.2), consider now ¥} (X") — E(¥} (X")) written as follows

R (X7 - B(T5,(X™)
I
= SN (XT) - E(T5(XD))

=1
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K K

Jn
= z_: (Z Koo t5) = an (X4, pigy) = (Z E(ax(Xjk, 1jk)) = 1)

= k=1
~RlnTy B0) - (107, B0)) "+ (U7 BolX3) = U7 (Bol))-

Using this representation, application of the Cauchy—Schwarz Inequality splits the
expectation in (6.2) into three parts:

B((w3,(57) - B3, (5)’)

K 1
< 8- B( (X o) - an (X3, ) - (3 Blar(Xo ) ~ 1)) )
k=1 k=1
4
50 (R0 00) - (1707, 00) ™ (U7 (BolX3) = U7 ol ) )
K 4
< 8'E<<Z(I’)\(ng7/~5gk) (Xg+a:u]+ (ZE (I,\ X]k?:u]k)) 1)) >
k=1
+ 8 flehuny, fo) - (I (%, 80)) 71 E(IIU;‘(HolX;?) — UGl (6.7)
The single terms can in the following be studied separately. For the first term holds
K 4
B35 o) - o i) = (3 Blor (i) - 1)) )
k=1
K 4
< E((Z%(J ko Hgk) + 1) )
k=1
K
< E(3(X ax(x ) +8)
k=1
< 8—7132]5' aX(X ]y, p)) +8
k=1
K
< 8K®Y c+38
k=1
= 8K'+38

for some constant ¢ € RT. The general inequality (5.11),1.e. (X0, 22)* < Th, K3
z3, and the boundedness of the fourth moments of a) was used here, the latter holding
due to Lemma 4.8 b) since Wi, 2 € for all 7, k,n (BC). Hence the first term of (6.7)
is bounded:

K K

B(( 3 a0 0 G — (30 Blar(Gowz) - 1)) ) = 00). (69



6.1. Asymptotic Normality of the Approximated Statistic 103

For the second term, condition (LC1), which immediately yields (I"(u",6p))~" =
O(L) and ¢} (", ,60y) = O(J"), which has been shown in Lemma 5.6 using (BC), is
needed. This, together with p7, /n = O(1), gives
n n n n - Jn Jn
e (17 B0) - (1" (124, 60) ' [I* = O((5)") = O (") (6.9)

n P+

Known arguments and especially condition (RC2) and (RC3) finally yield for the last
expectation in (6.7):

E(||U"(00|Xﬂ> — U7 (Bol)|I*)

_ E(||Z ~ 13 DJ log w30 (60)|*)

IA

((Z 13X ~ 15 DF log w20 (40) ) )

K n n
n Xk = Mk ‘4>

= o) B( X ()| e
ik

k=1
K
- o(;(ugkf). (6.10)

The statements (6.8), (6.9) and (6.10) concerning the asymptotic order of the terms
4 n

n (6.7) thus showE((szgj()g;f) ~B(¥3,(X7)) ) = 0)- (1+ ()" i (u)?)

31 Pom (1)

G — 0 for the sum in (6.2) follows

and combined with

J" 4
> B (8,00 - Beg,(5))

=O0(J") + (=—)*- Z Do) -0(1)

O((J™)?) - (O(L (J")* Z(Jﬂif):k 1 (15)? )
O((J")?) - o(1)
o((J™)%).

This establishes the result.

Let now the additionally stated formula for the variance o}*(u" " ,6p) of the approxi-
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mated statistic be verified, which is calculated as follows:

Var(¥34 (X"))

= Var(SD3(u", 00| X™) X7y 154) = Ay, 80) (I (12, 00)) U™ (80| X™) )

Jn

2o

Jn
- V(],T'(SD /J/_|_700|X Z_: ]+"LL-7+ >

R 00) I (0l 00)) ™" - Cov(U™ (B0l X™) - (R 00) (I (07 00) ™)

— 2Con(SDR (7, 80]X™), (07 B0) (1" (17, 80) U™ (Bl X))
Jn
+ 2001)(2(11(X]+,,u]+) cg(,u_”_l_,00)([”@_”_'_’00))—1Un(00|Xn))

J=1

= V(ZT(SDK(H.H+a00|X Zfll J+"LLJ+ )

+ R 00) (1" (17, 60)) (CA(M.+790))

— 25(uly, 00) (I (7., 60)) ' Cov (SDR (., 60l X™), U™ (6| X™))
.

2681 00) (1" (17, 00)) 7' oo (30 an (X7, ) U (801 X))

— (i, 00) (1™ (1, 60)) ™ 1(C§(M"+790))T (6.11)
= Var(SDgf(,uﬁ_,BdX ) —I—Var(Zm X3 ugy) )
Jn

- 2C’01)(SD” (17, 00| XT), Z g+"uy+ )

— A (un, 00) (1™ (17, 00)) ™" (A (u7y, 00)) T

= Var(SDf\l(,uTl_l_,HdX ) ZV&T(%W)
J

il K
23 Cov( 3 an (X ), an (X 183,
7=1 k=1

— R, B0) (I" (7, 00)) ™" (R (T, 0))
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— Var(SDf\‘(,u."_l_, 90|Xn)) +§: (2 + i)
s — J

m K X7 — " )?
— ZZZCOU(G,\(X;Z,H?I@)’ M)
7=1k=1 N]-I-

- cg(:u-n-i-v 00) (In(:u;n+7 90))_1(02(%17 00))T

Jn
= Var (SDK(ML, BolX”)) 27"+ %

It
K
— 23 (—Cov(ax (X, ), (X5)7) = 27310 (B0)Cov (ar (X 1), X3k ))
j=1k=1 'uJ-I-
- CK(/'L.n-|-7 00)( (/~L.n+a 00))_1(("2(:“.”4-7 00))T (6'12)
K LA
= Var(ZZa)\ Tk k) ) +2J"+ZT
j=1k=1 j=1 Hyt

- 22 ZCOU((I,\ X 3x)5 (X) )

j=1 /"LJ+ k=1
Jv K
+ 4ZZ7TJk|C eo)COU(a)\(ngnu]k) n)

7=1k=1

- CK(:MZ-’OO) (In(iu{-veo)) (C)\(IM-HOO)) :

Here (6.11) and (6.12) are obtained through simple calculations, which give

Jn
Cov (D ar (X4, 1), U (06| X™)) = 0
7=1

and

(X7 —pp)?
COU<QA(X‘?k7M?k)7%) =
Fi+

Hence the proof of this theorem is complete.

1
—Cov (GA(Xgnka 135)s (X]nk)z)
Hy+

=271 (60) Cov (a)\(Xgnk? 1ok, X]nk) :
O

In the following theorem, the limiting normality of the approximation under column—
multinomial distribution will be shown using Morris’ method. As already mentioned

in the beginning, the major part of the proof will treat the required convergence of
the conditional distribution, since the validity of the Lindeberg Condition for the

transformed Poisson approximation could easily be derived together with the pure

approximation in the preceding theorem.
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Theorem 6.2 Consider the asymptotics n — oo and let ¥y, = Zj:l U3, be defined
as in Theorem 6.1, i.e.

Y

Kj(zj') = (Z,\(ij, :u?k) - (Zj+7 :u‘?-l-) - CK (:ufl-}-v 00) (In(:u;n+7 00))_1Uf(2j., 00)
k=1

(z = (zx)jk s an arbitrary J" X K table with nonnegative entries). Just as in
Theorem 6.1, let o} (17, 6o) denote the variance of the approximation under Poisson
distribution, o3*(u% , 00) = Var(¥5 (X")), and s} (u", 0o) the corrected variance:

322(H.n+7 o) = H o+ fo) — Z H+k 7>\k

with

Ve = (X 1810, Xgi) = e (80)).

H+k 7=1
If the assumptions 1™ (u"  6y) — I positive definite (LC1), ,u;lk Z e > 0 for
all j,k,n (BC), maxigj<in 77y p(6o) — 0 for all k (MD3) and w = 0(1)
(VCC) hold, then under column—multinomial sampling the appmmmated goodness—
of-fit statistic is asymptotically normal as follows:

W, (V) — A Go) 4T e,
8,\(M.+, fo)

N(0,1) for A€ (—1,1].

Proof:

In order to prove this theorem using Lemma 3.4, which is based on Morris (1975),
and applying the construction method outlined at the beginning of this section resp.
explained in chapter 3, sec. 3.1, let for j € {1,...,J"}, n € N, functions f; : RX -
R be defined as follows (z is a J” x K table):

Rz = WR(z) — B(RR(X1) — Y viw(zie — ).

By construction holds C’ov(zﬁl (X3, 237:1 X)) = 237:1 Cov(f3;(X7), X7) =0
and E(ffJ(XJ”)) = 0 for all j, k. With such chosen f};, the situation of Lemma 3.4 is
met (ff corresponds with f7 from Lemma 3.4). Moreover, except for the probability
vectors, which here are called " Y the notation is the same. Finally, condition (3.9)
coincides with (MD3) and hence holds already by assumption.

If now the remaining conditions (3.10) — (3.12) for A € (—1, 1] hold, then because of

Jm Jm Jn
D) = D) = D B
7=1 7=1 7=1
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= (V") - B3 (X))
() = R )+
(cp. p- 97) and

.
Y Var(f3(X7)
j=1
Jn Jr K
= Var( B0 - 33 (X - )
7=1 7=1k=1
K
= Var(Z X)) = 3 ()
k=1
K
= o (uly,00) = D (V) ik
k=1

(cp. sec. 3.1, (3.7)) follows the result:

l ny __
(S Var(fa(Xm)Y2 2 Zf“ )

for A € (—1,1]. To check the missing conditions (3.10) to (3.12), it suffices to verify
(3.12), because the validity of the Ljapounov Condition for the statistic

S A S (B (6 - BT (6) - K 05 (6, - w5)

sy (1, 0o) sx(u, 0o)
X5 W00 — m (kY 6o) + 7
Sg (/L~n-|-a 00) ’
which implies the Feller Condition and the asymptotic normality (3.10) and (3.11), has
already been shown in Theorem (6.1) for arbitrary A > —1. The condition concerning
the marginal distribution required for Theorem (6.1), is here fulfilled because of the
stronger condition (MD3):

lIl§-|-(Yn) - mg(ﬂ-”y bo) +.J" i>

N(0,1
S Bo) 1

J* K ij (] )2 K ]% Jm (,]")2 K
(") ZkZ = kZ 2 Z moup (00))° < p ;mfxﬁkm(%) =o(1).
=1 1 177 j=1 =1

Now it remains to establish (3.12) for A € (-1, 1]:

hm sup sup ;E(<§:f"(lﬁ +M?) - f”(L”))Q) =0 (6.13)
50 g 822 ('u;n_}_’ 00) = AJ\Hg J AJ\Tg
with o™ = (v}, ...,v%)T being a bounded sequence and L™, M" column-multinomial

distributed J" x K contingency tables, for which holds L% = (L%, ...,L%..)T ~
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Multign (nk + o /i, iy p) and M ~ Moultign (hgy/mie, 0y p) (h= (b, . S hi)T

Kk =1,...,K). All columns LY,..., L%, M4, ..., M are supposed to be
stochastically independent and the sizes are abbreviated by I} = ny + vi/n; and
my = hiy/ng for every k € {1,..., K}.

Since = O(1) (VCC) is presumed, instead of proving (6.13), it suffices to

__Jr
522 (H.n+ 760)
show:

B((S R+ M) = £520)) = [lar - OU™) (w3 00). (619

Before verifying (6.14), it should be mentioned that in the following proof it will be
possible to adopt some results from the proof of Lemma 5.1 respectively from Morris
(1975, Theorem 5.2). Lemma 5.1 has also been derived using Morris’ method, i.e.
Lemma 3.4, and hence considers the same situation, especially the same tables L"
and M"™.

Stating now the statistic in question explicitly and using the general inequality (5.10)
yields

.

p((S s+ - 1))

= E((fj(%(L;’;JrM;’) w3 (L7) i')/AkM;k))Z)
2((}

=1 k=1

K
Z L + My, 15) — ax(Lig, 1)

||M§

n

- . ( ( ]+ + ]-|-7:u;"l-|-) - al(L;’-knu?-l-))
J

S

Il
-

Jn
= 3 (R0 B) (27 (., B0)) T U (L], + M, o)
7=1
— Ry, B0) (1" (7., 80)) ™' UF (L}, 60))
Jr K
- Z Z 7)\kMgnk) )
7=1k=1
Jr K 2
< 4E((Z D (an(L + My, i) — ax(Liy, H;Lk))) )
7=1k=1

—I—4E(<Z( V(L34 + M7y, gy _al(L?+’“?+)))2>

J=1



6.1. Asymptotic Normality of the Approximated Statistic 109

Jn
44 ( (37 (R0 0) (10 80) U (85 4 M )

i=1

— (1, 00) (1" (17, 80)) ~ U (LY, 00)))2>

K 9
+4(k§=)1 Yaemi)

To prove (6.14) now for each of the four terms of the dominating sum, the order
|]|maz - O(J™) will be determined. Hence one has to show

J’Il
B3 (500t 00) ("0 00) 7 U (L + M3, )
7=1
2
—CK(M,Oo)(I”(u.’L,00))‘1U?(L§’.,00)))) = [Pllmaz - O(J"), (6.15)
K 9
(SS28mk)” = [hllmas - O(™), (6.16)
k=1
Jr K 9
B((X Y (L + M i)~ ax(Zo i) ) = [hlmas - 00", (647
7=1k=1
Jm 9
E((Z(“l(L%"‘Mﬁv“ﬁ)—al(L?+v“?+)))) = |[hllmaz - O(J"), (6.18)
7=1

where (6.15) and (6.16) are briefly verified and will be given prior to the proof of
(6.17), which requires lengthy calculations.

For the proof of (6.15) now ¢4 (u", 60) (I" (17, 00))~" = O(L>), which follows from
(BC), (LC1) and (LC3) (cp. proof of Theorem 6.1, (6.9)), the generally assumed
regularity conditions (RC2), (RC3) and - = O(1) are needed to obtain the desired
order:

"
B (35 (R0 80) (1" (7 60)) T U L5+ 3, 60)

=1

—R0 B0) (7 4 60)) U L3, 60)) )
_ E((cﬁ(,u,”_l_, Bo) (I (", , 60)) ™ Z (Up(zn + pz, 80) — UP (LY, 00)))2>
= E((cg(;ﬁzr, Bo) (1™ (1", 80) ™2 3 S M DY log w;kw(eo)) )

7=1k=1
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K

- n( n n 2
< K ZE((C,\(M._,_,%)( (1”4, 0o Z kDaTlOg”jkw(eO)))
k=1
K
< K R 60) (I (1", 60) 71 (||Z 7Dj log w7y (60)])

= KiO((%)z)-O(l)'E((g ynk)2)
- K ZO( ) mp)?

_ ' (J”)2
- ||h||max O( n )
= |Allmas - O(J").

Using pf} 175, = neySy = O(J"), which follows from (BC) and has already been shown
in the proof of Theorem 6.1 (6.1), now for (6.16), similar to the proof of Lemma 5.1,
follows:

K

K
( Z ’Yfkm;:)z < K Z(’ngm;cl)z
k=1

k=1

- I&'ZO((i—n)z)hink
k=
O(L) - [ - " Z—"

= ||Allmaz - O(J").
For (6.17) one now has to check

Jm K 9
B(( X (0a e+ M) = ox(Bo i) ) = hllnas - O

7=1k=1

Since change of the summation signs and inequality (5.10) give

K J»

E(( SO (ax(Lh 4+ My, 1) — ax(L%, H?k)))z)

k=1 j=1

< K- ZE<<Z ax Lgk"‘MkaHJk) /\(L;'Lknu?k)))2>v
7=1
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it suffices to show for each k € {1,..., K}:

J" 2
B (S oaleo4 M) - (T, 1)”) = -0 (6.19)

J=1
For the proof of (6.19) (for A € (1,1]), let in the following any & € {1,...,K} be
considered. Using the inequality given in Lemma 8.1 yields

gn

E((; (ax(Ey + My, 13) — ax(L3, N?k)))2>
< E(<§|aA(L§’fk+MfkaH?k)—‘IA(L?'M“?"«)DQ)
< 2p((S (SR g nirgm))
J» n )2 J"
< () e rems)’) o

with h(L%, p7) = |L7 — ,u?”(ﬁ + ﬁ), ¢ = max{2, /\L-I-l} For the first expecta-
tion, the desired order is already given by the proof of Lemma 5.1, where the same
variables are considered, and only (BC) is used to assert (5.16), namely

o~ (M;)*

E<(Z M3

J=1

)2> = by - O(J").

In (5.17) (Lemma 5.1) further

Jn 9 Jn
(S0 bz i30)°) < X m BOL B (L, 1)
7=1 7=1

has also already been shown, just using the independence of L. and M. and not the
concrete definition of the function h(L?k, ,u;?k). Now provided that

1
E(h*( ?knu?k)) =O(—) forall j k,n (6.21)
ik

holds, the second term of (6.20) will have the desired order as well, since then follows
(”;k,m = ”?km(eo))

n n
J J 1

Zsz(Mfk)E(hz(L?kaM?k)) = Z(mZ)ZW?HD'O(T)
=1 =1 Hijk
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Jn ) 1
= hink g - O(———
JZ=:1 " "R jk|D
= hi-O(J"),

thus establishing (6.19). Hence only (6.21) remains to be shown. Now it holds

IN

IN

where in (6.22)

R ;’Lkv u?k)

(; 2
5 (ij, - Mjk,) 192 (ij - ij)2
(13,)? (L7 + 1)
L™ — )2 Ln — )2
(ij) (ij + 1)(ij +2)
L S VL e Nt X VLY Vo
(H?k,)Q (L?k, + 1)(L§’k +2) (L?k, + 1)(L?k +2)
(L% — 1)
9 J J
(H?k)2
+402((L?k + (L +2) — (3+2u3) (L + 2) 2+ ph)? )
(L3 + D (L5 +2) (L3 + 1) (L5 +2)
L7 — p)? 34+ 2u”, 24 u”
2( 7k _ szk) 14 2(1 _o0 ik _ ( H]kn) ) (6.23)
(Mjk) L7 +1 (ij + 1)(ij +2)
L" 7 < L" Z oL 20 has been used. Computing the expected

value of the expression in (6 23) gives for the first term

E((L;‘lk - M?k)2)

(#?02

- (,@%E ((L?k — MkTjp — VRV R D T v,’;\/@r;lkm)?)

B (N?%E (( Ji = R p)” + (/i ip)” + 2L, - IZ'”;MD)UZ\/ﬁﬂ;HD)

= (H?ﬁ (llrclﬂ-;kﬂj(l — mogp) t (UZ\/ﬁvr;‘km)?) ) (6.24)
Using the notation 2(/) := }7 (@ —i+1) with i, € N and the formula for the

inverse factorial moments of a binomial distributed random variable @ ~ B(n, p) like
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in Lemma 5.1,

£((+ ) = (104009 7) - (12 (" Y - o),

gives for the expected value of the second term of the sum
E(l— 3+ 217, (24 p7)? )
D1 0L+ 2)
1-(1- 7T;MD)IZ-H
e+ l)ﬂ';‘kw
1-(1- F;LMD)IZ-I'Z —(Ip+ Q)F;k|n(1 - ﬂ;km)lz‘ﬂ
G+ 2 + 1) ()7

= 1-(3+2uf)

+(2+ 1)’ (6.25)

Because of
34205 <A+ Apf + (uh)? = (2+ uf)?

and
L < 1—70p 1o 1—7T;‘k|D—I-(lZ+2)7r?k|D
- (27 (I +2) 7%
(1- ”?km)lzﬂ (1- ”;lkm)l:-l_l 1- ﬂ-;lk|D + (g + Q)W?HD
@ n n — n n ' n n
(I + U7 p Ik + D)% Ik + 277
=) (R )7 p (1 A )
Tk + D+ 2)(7"?k|D)2
holds
(34 2,m) (1- ”]k|D)lZ+1 < (24 pn)? (1- Tr;lk|D)lZ+2 + (I§ + 2)7,p(1 - ”?km)l:-H
g+ 1)7T;lk|D a ’ (I + (g + 2)(7r§lk|D)2

thus giving
1-(1- ”;km)lzﬂ
G+ V7%
1-(1- T?ku))lg“ - (¢ + 2)77;k|D(1 - F;km)lgﬂ
(7 + D F +2) (7 p)?

— (34 2u7y)

+(2 +H?k)2

1

S - 3 + 2/”Ln n n n !
(34 205) G+ D0+ (e )

e+ 2+ )’
(x+ D% !
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i.e. (6.25) is majorized as follows:

3+ 2n 24 )2
P - T )

Lh+1 (L5 + (L5 +2)

3+ 27 24 uh)?

(I + l)ﬂ-?k|D (I + DU+ 2)(7"?k|D)2
For ny sufficiently large holds

342l 2+ p5)° )< B4 2uf (24 pfy)”
L +1 (L +D(R+2)) Gy () mp)*

since in this case for the right-hand side of (6.26) the following equivalences hold:

34 2p7, (2+N?k,)2 _3+2M?k (2+H?k,)2
R+Va%p  (G+DIE+2)(xp)* — Grtap ) p)?

1

1
— 2" _
(3 +2045) (ZZW?HD (IF + l)ﬂ-;lkm)

n \2 1 :
< (24T ((lz)z(ﬂgbkm)? a (17 + 1)(1Z+2)(”?k|17)2)

E(1 (6.27)

1 2 R+ DUE+2) = ()
G +1) TR+ 1)+ 2)7"?14[)
B+ 2merfyp) (R + 277y < 2+ mmjyp) (317 +2)
2(10) e (75 p)* + BUR) 7o + 4k (m5yp)* + 61k
< BEnE(nhp)’ 4 120k p + 120 + 208 (7 p)” 4 8nkmiyp + 8
(e.g- holds 2(1%)*ny (77, ))? < 3IEnE (7, p)? & 2(nmk + vffy/Mi) < 3np & 207 < /).

For ny, sufficiently large, statement (6.24) and (6.27) thus yield for the expectations
of the terms of (6.23):

|

(3 +2u3) (24 1)

11

n n 2 n_n n n n
E (h2(ija ,ujk)) < (AR (lkﬂ-]’k|D(1 — Tikn) + (7)k\/nk7rjk|D)2)
IR

342u%, A+ 4ul + (u?k)2)

( lkﬂjkm (lk)Q(ij|D)2

(6.28)

Since the presumed boundedness of v gives % = O(1) and 7% = O(1), multiplication
) k

of (6.28) with p7 now yields for the terms of the right—hand side

n 2 n n n n n
Mk (W (lkﬂ-jk|D(1 — Top) + (Ukvnkﬂjk|D)2)>

JR



6.1. Asymptotic Normality of the Approximated Statistic 115

_ 2<(nkﬂ?k|D + Ulrclvnk”?km)(l - Tr?k|D) L (Ug)znk(”?km)z)

MET 5D PET LD
= 0(1) (6.29)
and
3+2u”, A4+ (um)?
oy act(1- i A + (Mg;) )=o), (6.30)
B n (%) (ﬂ-jk|D)
where the last equality follows from
245, (1) 2ng | mi
ik L= o=+ Zovar = mTp - \1— 7 + 7nng
ik ( lkﬂ']‘k|D (lk)z(ﬂ'jkm)Z) 3k|D ( I (lk)z)
n (llr\", _ nk)z
= e e
ok, ()
— E B ﬂ-jk|D . T
= 0O(1).

Hence statements (6.29) and (6.30) concerning the terms of (6.28) give
- B (B(L i) = O(1),
which establishes (6.21).

The finally missing statement (6.18) can now for the major part be verified using the
preceding results. First, just as in the proof of (6.19), holds (cp. (6.20))

E((é( (L3 + ]+,u?+>—a1<L?+v”?+>))2>
5 E((z|a1 B+ ) - (23 5)1) )
< am((x(! > M o))
(e >><<z>>

with g(L7,, p7,) = |LJ+ lL]_|_| 7+ , since in this case, A = 1, the absolute value can

be studied using the concrete definition:

‘ (L0 + MY — g )* (L4 — ”?ﬂz‘

| (L4 + M7y, pgy ) —an (L, pgy)l = n n
iyt Hj+
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_ ‘(Mﬁ)z _2Mp (LG, - “?+)‘

Kyt Kyt
(M) e
= 2( n T Mj n )
'uJ+ HJ+

For the first term of (6.31) one gets applying inequality (5.10) twice

=1

CRI)) - e((L - aw))

Hyt el Mt
< E((Z;%%K;( 52)2)2)
< ZE«;%k<@ﬁ)
= [[Allmaz - O(J").

The last equation sign holds since already in Lemma 5.1 (5.16) for each k& € {1,..., K}

B((S)

(M;’k)2)2) = hy - O(J") has been shown. The second term of the sum

also has The desired order:

Jn 9
(M o))
71=1

K Jn 9
= p((S M o))
k=1j=1
K Jn 9
< K- ZE<(ZMJHIC 'Q(L;‘l+a,“?+)) )
k=1 7=1
K J»
< K3 mpE(M) - BAL ) (6.32)
k=1j5=1
K Jn K oLn, — ™,
= K- Z Z(mZ)Z)’T;LHD : E(( Z uf)
k=1j=1 k=1 ot
K J» ,Mjk/ 2
< Zthnkﬂ'ka K- ZE(( ) )
k=1j=1 k'=1 'u]-l_
Jr K K L-;—/L-/
S |h||ma:r Z Z Z 'u]k (( ]kun = )2>
j=1k=1k'=1 k!
Jr K K

= Bl K203 (

) (6.33)

n
j=lk=1k'=1 Hke
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Jr K K

= |llae - K223 > 0(1) (6.34)
7=1k=1k'=1

)

Inequality (6.32) follows again from the proof of Lemma 5.1 (see (5.17)), where

E(( J2 M5 h( ;’fk,ug"k))z) <Yl mpE(M5)E(h*(L7,, 17,)) was established us-
ing the presumed stochastic independence of the columns of L™ und M™ and not the
specific shape of the function h. Statement (6.33) has already been proved as well

(see (6.24) and (6.29)) and (6.34) holds since (RC2) assures 77 = 773 ~(fo) being

Hy M3+ Tkl e
bounded away from zero for every j, k, n thus giving & = ¥ K¢ — JHC — (1),
b b
Higr FixTine  Tikle

O

6.2 Asymptotic Normality of the Test Statistic

In the preceding section, for both distribution models the limiting normality of the
approximated test statistic, scaled with the true unknown variance, has been derived;
this section now will start with the proof of the consistency of the variance estimation.
With the Poisson variance s§? of the transformation being just the variance % of
the Poisson approximation plus an additional correction term, and since the proof
needs not distinguish between the sampling schemes, it suggests itself to show the
consistency of the variance estimations o§*(47, , ") and s} (i, ™) together. The
proof will require rather technical results such as those given in Lemma 5.2 and the
appendix; comprehensive calculation will be necessary. Thus a major part of the
bounding results summarized in Lemma 4.8 is solely needed for this proof.

Lemma 6.3 For the asymptotics n — oo, let in both distribution models, column—
multinomial and Poisson, the conditions

I
=o(J") and Z \/,LLZT_ =o(VJ"n) (MD1)

Jr 1

as well as (BC), (LC1) and (LC2) be fulfilled, i.e. % > € > 0 for all j, k,n,

L1 (u , 00) — I positive definite and /n(8" — 6y) = O,(1).

Consider now the variance o} (17, 00) of the Poisson approzimation and the vari-

ance 322(,u_”+,00) of the corrected approrimation, both given in Theorem 6.1. For

these let be assumed —m o~ = O(1) (VCP) and —mrn—~ = O(1) (VCC). Then
SN (M.+700) Sy (M.+700)

the variance estimation is consistent:

2
W, b) P S

Uf\m (/l;n+v gn) 322 (:[L-TL+7 0”)
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Proof:
In order to prove the result, respectively

R, 0") — oRP (Y, B) _ o SR (0, 07) — S8 (uty 00) _ O
o3 (174, Oo) ’ 3 (1%, fo) e
and since J" /o3 (u",0y) = O(1) and J"/s%*(u",0) = O(1) was presumed, it
obviously suffices to show
R (i, 07) — 0% (s, B0) = 0p(J")  and - SRE(, 07) — s37(ny, B0) = 0p(J").

Writing 73, = 73 (1", o) for £ =1,..., K and using the definition of s4?,

K
322 (,LLZ-a 00) = O-/T\L2 (H;n+a 00) - Z Hik (F)//T\Lk(:u;n+a 00))2a
k=1

the proof now divides into two parts, i.e. one has to establish:

y 2(r, 87) = 2 00) = op(J™), (6.35)
S e (3 A, 67)% = (i, 00)%) = 0p(J7). (6.36)

Although the first expression concerns both sampling schemes and the second only
column-multinomial sampling with especially u}; = ny being the known sample size
of the k—th column, the proofs of the statements hold, as preliminarily mentioned,
for both distribution models and need no differentiated argumentation. Considering
(6.35) first, let for reasons of clarity and brevity v{*(u? ,6y) denote the Poisson
variance of SDY and the correction term concerning the nuisance parameters:

gn
USLZ(H_”_I_, 6y) = Var (SDf\l(,u_”_l_, B X™) — Zal(ﬂ?+7“?+))
7=1
Jr K i 1
= ‘far(ZZaK(X]nkHu;’k))+2]n+ZT
7=1k=1 j=1 3+
= 1 u n n n\2
-2 Z o Z Cov (aA(J ko ) (X )
7=1 'u]‘l' k=1
Jr K
+4 Z Z 77;“0 (HO)COU (ak (X]nh /L;’k)7 ‘X;k) .
7=1 k=1

For the proof of (6.35), now the following 6 statements have to be checked:

Ly, 07~ T 60)) = op(1), (6.37)
LI B~ T 00)) = op(D), (6.39)
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1

2 (R 07) = R (A%, 00) = 0p(1), (6:39)

(BT 00) = R0, 00) = op(1), (640

SR ) = R 00) = 0p(1), (6.41)

S (R B0) ol B0)) = op(1), (6.42)
Provided these hold, (6.37) and (6.38) assert

(IR 87 = T, 00) = op(1), (6.43)

which combined with assumption (LC1), %I”(,LL,”_I_,HO) — I, positive definite, im-
mediately gives the (stochastic) convergence of n(I"(u" , 6o))~" and n(I™ (a7, 67))!
to IZ!, thus in particular

n(I"(p%,00)70 = 0(1),
n(In(ﬂﬂagn))_l = Op(1).
Multiplication of both terms to (6.43) further yields

(I B70) 7 = (I (0 80)) ™+ 0p(),
This, the trivial conclusions from (6.39) to (6.42),
@07 = A(uy,bo) +op(J"),
oRP (A, 07) = oRP Ty, B0) + 0p(J7),
and (BC), which provides ¢} (u7 ,6y) = O(J") (Lemma 5.6) and, together with “17+ =
O(1), further 2= = O(1), then establish statement (6.35):

R (@, 07) = o (', 00) = oRP(A, 07) — vR* (17 o)
R %) (I 87) 7 (R 7))
R (T, B0) (I™ (17, 80)) ™ (R (1l B0)) T
" Jn 2
= Op(-] )+Op<( n)
= op(J").

In order to verify the statements (6.37) to (6.42) now, let first those concerning
the estimation of the finite—-dimensional model parameters be examined, i.e. (6.37),
(6.39) and (6.41), which will be proved applying Lemma 5.2. Considering an arbitrary



120 6. Limiting Results for the Goodness—of-Fit Statistic

component of

K

ni~n l n n
Impt,e) = ZHH WDgﬂmc(B)DWmo(e)v
=1 k=1 " jk|C

the comprehensive assumptions (RC2) and (RC3) concerning 77 . assure the condi-
tions of Lemma 5.2 a) to be met, since it holds (8 red{l,....S})

1 0

;;%HDG(FL”WO—&W%C( ikl ( )H
= = ;;g;” (ﬁa%ﬂ’“'d e ®)]

< @y -e, cconstant.

Lemma 5.2 a) thus gives

1 n/an  An n(an
%(I (A%, 07) = I (0, 60)) = Op(1),
and hence (6.37). To prove (6.39), let the s—th component (s € {1,...,S}) of ¢} (for
the definition see also (5.4)) be considered,

Jn

K
(eX(ply,0) ZZf(:u]+a ]k|0 )’8?9 ]k|0(0))

7=1k=1
with

n n a n
f(#j+a ko (0), 0—057%'0(0))

8 n n n n n
= 20, log T (0) - Covgur, an () (a)\(Xjk, W7o (0)), Xjk).

Let the subscript of the covariance term in the following be neglected. If W is a
convex and compact neighbourhood of 6 in the R® and if for every j, k, n holds

:;JVI[)/ HDgf(,uJ_I_, o (0), %ﬂ';’dc(@)) H <c€RT constant (6.44)

for all u?, € [Ke,00), Ke < 1, the requirements of Lemma 5.2 b) are fulfilled. For
each component and hence for the whole vector then follows

VI G 87) — (3. 00)) = 0,1,

in particular (6.39). In order to establish statement (6.44) consider

3}
Dﬂf(:u‘?l-}-’ ﬂ-;’k|0(0) 00 ]k|0(0)>
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0 n ) n n n
= Dg(aTlog ﬂjk|o(0) -Cov (tl)\()ijk,ﬂj+77]‘k|c(0))a jk))
a n n n n n
= DgaTlog ko (8) - Cov ((J/A(Xjknuj+7rjk|0(0))’ jk)
a n n n n n
+55 log mjc(6) - DgCov (a,\(th 1547k (0)), jk)

a n n n n n
= Daa—eglog ij|o(9) -Cov (a/\(Xjk,’Hj+77jk|c(0))7Xjk)

8 n n
+87 log wji 1 (6) - Dglog 7y (0)
0

X oynoan o (0 ny
@y O (B (e K4 (0). X51)

'M?+W?k|c(9)

With p7, > Ke and 6 € W the expectations u;‘+ﬂ;‘k|0(0) are bounded away from
zero and Lemma 4.8 d), j) thus gives for all 5, &k, n

‘COU@*(X?kvN?+7T?k|c(9))v ?k)‘ < ¢ (6.45)

8 n n n n
Cov(ar(Xjj 1y mhc(0), X5 )| < ¢ (6:46)

15+ ko (0) 5 ——ar
‘ s Tk )a/‘j+”]‘k|0(0)

for some constant ¢. The boundedness stated in (6.44) now follows using these results
and the generally assumed conditions (RC2) and (RC3), which assure 1/7% (),

Dg?T;LHC(e),_Dg?T?k'C(e) and hence especially Dglog 77 (6) being bounded for all
j,k,m, 8 € W. The latter arguments will in the following be continuously of evidence
and not be stated explicitly each time needed.

The proof of (6.41),
1 n2/sn  An n2/an
J_n(UAZ(H-+7 ") — UAz(H-+7 fo)) = op(1),
will also be done applying Lemma 5.2 b). Hence the condition corresponding to (6.44)

for the inner terms of the sum v§?(p",, #) has to be checked, which is again done using
the results given in Lemma 4.8. For the proof consider the representation

mOK mK
R0 = DD Al mie(0) =20 falply, e (8))
7=1k=1 7=1k=1
K 7
‘|‘4Z Z fs(tfys minye (0)) + 2" + Z n
=1 k=1 j=1 M+

with the last two terms not depending on the model parameters and

Fi(ugys F;Lk|0(0)) = Var (”’A(Xjnkv “?+7T;lk|0 (0))) '
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n n l n n n n
Fo(uiys me(0)) = MTC"”(“A(XWHj+”jk|0(9))7(Xﬂc)z)’
Jj+
P T (8)) = o (0)Cov (ax (X, 1y whic (60)), X11).

Now there is to show the existence of a constant ¢ € Rt such that for every j,k,n
and ¢ =1, 2,3 holds

Sup 1D (45 o (O S o for all 4 € [Ke, o)
€

(cp. (6.44)). Lemma 5.2 b) then immediately yields (6.41). Since for pf, > Ke and
f € W the expectations ,LL;-‘_I_W;‘MC(()) are bounded away from zero, Lemma 4.8 i) gives
for the first term

sup ||D0f1(/t]+’ ]k|C( N

oew
0
= sup || Dgp” 0) 5= Var{ax(X, pt 7l -(0
o H J+ ]k|C() 0,%4-77]“0(9) ( ( gk Fg+ ]k|C( )))H

= gsélvl; HDalogFmo( ) 15 () - OM;Z( )‘ W(a,\ X7 15 ( )H

n 8 n n
< sup | Dolog e (0)] 13(6) - M (ax (X 13(0) ) |

< ¢, c¢é€RT constant,

with the variance and the following expectations being Pois(u?+7rglk|0(0)). Analo-
gously Lemma 4.8 j), k) provides the boundedness of

sup || Do fa(pfy, mike (0)) ]

oeEW
]' n n n n
= sup TDGCOU(Q/\(XjkvHj+77jk|0(0))7(Xjk)z)H
oew " Hj+
1 0
= sup |—— Do () - =——=Cov(ax(X%, u%(0)), (X5)?
GGVIT)/ ’u?_l_ Hlugk( ) a’u?k(e) ( )\( ik H]k( )) ( ]k) )H
0
= Don, (0)  ————— X7 0 (0)), (X7)?2
sup | Doy (6) au?k(,,)Cov(m 5 1 (0)), (X507 |
n 8 n n n\2
< sup |1 Doy ()] ‘Ww) Cov(ax(XJi, 13 (8)), (X31)?)|
and

sup || Do f3 (14, wike (0)]
0w

= ;élg{)/ HDa( mc(‘g) 'COU(“/\(Xgnk’M?+”;k|0(0))’X;E’“))”
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< sup [ Doy (8)] - |Cov an (i 15:(6)), X55)|
ew

0
D 7 X7 i (8)), X5
+asup || 97T]k|(' ‘y’]k au‘?k(g) CO’U((Z)\( Jk’”]k( ))7 Jk) 3

which completes the proof of (6.41).

The statements (6.38), (6.40) and (6.42) concerning the estimation of the nuisance pa-
rameters will now be considered. (6.38) immediately follows using (A7, — u7,)/ (/17

= Op(1), which has already been used several times and can for example be shown
applying Chebyshev’s inequality. Then it holds

1 NG nge,n
_(In(:u--}n 00) —I (H-+a 00))
K 1

= _Z (A = 1) D ™ (80) )DgW?k|o(90)D6W?k|c(90)
k=1 " jklC\70

_ Z \/7 “J+ “J+ o(1)

with the last equation following from Z- = O(1) and assumption (MD1). In order to
prove (6.40), one has to show for each component of ¢}, i.e. for every s € {1,...,S}:

7 (Z Z 56 108 o (00) - (F (54 Tho (00)) = F (154 Wiio (40)) ) ) = 0p(1) (6:47)

7=1k=
with
4 T (00)) = Covgun n o)) (an (ks 1740010 (B0)), X )

The subscript of the covariance will in the following again be omitted. Lemma 4.8 j)
now gives for all j, k, n the boundedness of

" 0
|Mj+ —0H+f(ﬂg+» Jk|c(90))|
J
0 n n n n
= 3#?4. Cov (az\(ij Hj+77jk|c(90))7 Xjk) ‘
0 0

Cov(a,\(X]nkaH?+7T§lk|o(00))v ]nk)‘

]+7Tgk|C
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_ ‘Hn on 9
7+ " jk|C 8,&?

= Cov(ar (X, 1m0 (00)), X3 )| (6.48)
+"jk|lC

(cp. (6.46)). Hence the assumptions of Lemma 8.3 are fulfilled and it follows

1

i.e. for each & € (0,1) and j there exists a constant Mg, so that for every k holds

() (£ e (80) = (s Tie(B0))) = Op(——) for all j,F,

~ 7 ~T n n n 5
P\ Juy - ING) - [ Fes we (B0) = £ mh(60))| > Ms) < 5
for almost all n. This combined with assumption (LCO0) resp.

o )
P(3j: 45, =0)<

2 for n sufficiently large,

gives the inequality

P(\ i | F T (80)) = F(2 Wi 60)) | > M)

< P( i | £ miie(80) = FOiy wie(60)| > M, iy > 0)
+P(3j : fij, =0)
= P(\/ih - 1N - [ £ Ty (80)) = S5y, T (60))| > M)
+P(3j: 45 =0)
< § 4 1)
- 2 2
and hence the stochastic boundedness of the expression:
~T n n n 1 .
F (s 30 (80)) — £ (12, Wik (60)) = Op(——=)  for all j, k. (6.49)
VHi+
Inserting in (6.47) and use of condition —= Y27, —~— = o(1) finally yields (6.40):
g ( ) T Z]_l \/m ( ) yy ( )
1 1 Jr K 1
F(Cg(ﬂ."q.’ fo) — Xy, b)) = Tn > Dylog e (bo) - Op( —)
. 7=1k=1 V ’u.7+
1 o
= gn 0,(1) z_: M
J=1 \/ I+
= op(1).

In order to verify (6.42),

l n ~ T n n
R B0) = 0307, B0)) = 0 (1),
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which can again be done using arguments analogous to the preceding proof of the
statement concerning ¢%, i.e. (6.40), consider

022(ﬂ~n+a 00) - ’U;\ﬂ (/L-n+a 00)

Jr K
=33 (Al 7o (60) = fr(ky T (60)))
7=1k=1
-
+ 3 (a4 7ok (60)) = falpy T (80)))
=1
’ J* K
-2 Z Z <f3(ﬂ?+7 77-;Lk|6’(00)) - fB(H?-}-a ﬂ-;lk|0(00)))
=1 k=1
]J" K
+43° 3 (Falh wgo(B0)) = Falpifs, mkic (60)) )
7=1k=1
with
iy, mie(6o) = Vm‘(a/\(kavM?+7T§Lk|c(90)))7
1
fZ(M?+a7T?k|o(90)) = falujy) = e
Kyt
1
f3(,u?+7 W?km(eo)) = ECOU (a/\(X;'Lka?-l-W;LMC(HO))v (X]nk)2>7
J
Faies 70 (80)) = o (B0)Cov (ax(X g, 1m0 (80)), X ).

What will be shown is a bounding condition corresponding to (6.48), namely (1 <
i<4):

|H?+%fi(#?+, mikjc (o)) < c € R* constant for all j,k,n. (6.50)
Application of Lemma 8.3 and analogous arguments then entail each term to be of
the order Zj:l Op(ﬁ) and the assumption concerning the marginal distribution,
T 23];1 Op(ﬁ) = 0,(1), gives (6.42). Use of condition (BC), which implies
MJ% < #-, and Lemma 4.8 f), i) — k) establish (6.50) as follows:

n 8 n n
|,Uj.|. —am+ fi (,uj+7 7Tjk,|(:(00))|
J

n 8 7 n n n
iy m‘/ ar (a)\(lem /Lj+77jk|0(00))) ‘
0

Op i o (Bo)

n 8 n n n n n
Kyt - =My Tikio (0o) Var (a)\(XjIm Hj+ k| (90))) ‘
Opgy
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IA

IA

IA

n

Hsk

: aj;k Var (aA(ka, H?k)) ‘

¢ forall j,k,n,

0

s g T W e o))
J

154 -

1

Hiy
1
Ke

g 1
ity 1y

for all j,k,n,

0

|,u;‘+ mﬁ(ﬂﬁ-a 7T;Lk,|(:(00))|

n
Mt

n
Hjq e

0
+6/JJ;L+ N]+7T]k|C( 0)

Hi+

% (/LJ%COU (a/\(X.?kv i+ ke (o)), (Xjnk)2>) ‘

(= G Con (03X 15 (00, (K30°))
0

n n
OMG4 T ko

@) Cov (ax(x ik 151k (00)) ( w;@2) ‘

%COU ((I)\(X]nk, H?k)v ( Jnk)z) ‘

+‘F?k|c(90) : %Cav (aA(XJ"k, 1k (ka)z))‘
i

¢ forall j,k,n,

0

|,u?.|_ mh(ﬂﬁa 7T;L1\~,|(:(00))|
J

n
Hyy

% (#2410 (B0) - Cov {an (X3, 2y Wi (00)), X ) )|

0
= ‘H?—I-F?HC(OO) “ g Mo+ ikie (o)
Hi+

(9 n n n n
Cov (a,)\(Xjk, Mj+7rjk|o(00))a Xjk) ‘

‘ﬂ';klc(f)o) G iC’ov (a,)\(X]’-‘k, 15), ;lk)‘

oy

¢ forall j,k,n,
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With (6.42) and hence (6.35) now being proved, statement (6.36),

K
>t (A, M) = (Ve (i, 80))) = 0p(J™),
k=1

remains to be verified. Writing f(u7, , ﬂ';‘HC(HO)) 1= Cov(ax(XJy, u7r), X‘?k)_ﬂ?k|0(00)
then by definition of %\‘k holds (see Th. 6.1 and p. 97)

(o))

Yok (Hgy 00) =
+k 7=1

so that the term in question in (6.36) can be rewritten as follows:

K

e (73, 07)2 = (Vi 00))?)

k=
K

= g#ik ((Zf 51 ko ( ) (Zf (V. ]k|0(00)))>
K Jn on

- Y= (ZZ( 2% 7 O) £y g )
k=1 7j=11=1

—F (s o (00)) F (i’ Fﬁqg(‘%)))) .

Because of the double sum, the determination of the order will be done using slightly
different arguments as before. Since, however, essentially the same approach will be
considered, and this modified argumentation will only be needed at this point of the
proof, just a short outline will be given. In order to show the result, again two steps
are considered:

K

1 I S
= lm(;;( s T O F (0 7o 0)

(B W O F R T @0)) = oplD), (65D
- "2 (;;( 154 Tk (00)) f (A7, T (o)

e W Co) ks T 00) ) = oplD): (65)

The proceeding for the proof of (6.51), is the same as in Lemma 5.2: using a Taylor
expansion in 8" on a convex compact set W C R with fi5+ > 0, which yields the



128 6. Limiting Results for the Goodness—of-Fit Statistic

inequality

g an

(ZZ( FG s mkie O) F (A, 7o (0))

—1'“+k j=11=1

gy

—f(/l?+akam(f)o))f(ﬂﬁv77%0(90))))H

<17 = o]l - ¥ Vi ] ZZSUPHDG( 4 e O) i i (0)))|- (6.53)

k= 1“+kg 11=10€eW

If now holds

sup HD@( [ ko (0)) f (it W;}Cm(G))) H < ¢ for some ¢ € RT constant, (6.54)
hew

(6.53) is dominated by

16" = b0) il - —= SIS LSS —%)fﬂzu""

k1'u+k] 11=1 +k

The presumed (stochastic) boundedness of (8" —fp)/n (LC2), J"/uly = O(1), which
follows from (BC), and known arguments, then give for the expression in (6.51)
the order Op(ﬁ)’ and hence the stochastic convergence to zero. Similar to prior

argumentation, (6.54) follows using the results from Lemma 4.8.

Statement (6.52) can now be verified similarly to the previous proofs concerning the
nuisance parameters, where especially the condition given in Lemma 8.3 was to be
checked. The approach of Lemma 8.3, a one-dimensional Taylor expansion, will now
be transferred to the case considered here, which, because of the double sum, requires
an evaluation in two variables. The essential arguments are the same, however. Let
now ¢ denote the product on the inner terms of the sum, i.e.

g4, ity ”?k|o(00)a ﬂ'ﬂqo(‘%)) = f(ify, ﬂ'?k|o(00)) - fad, ﬂﬁc|0(00))7
and for j # [ now consider the following Taylor expansion:

1N(/l?+ /l?+)

g (54, ity w5k (60), ik (00)) — 9(154s 1, Tikjc (00), T (60)) |

1N(/:L?+ /:L?+)

1

‘ /0 (D19(M?+ +2(f7y — 1) my + 20 — 1) ke (0o), T e (fo))
(A5 = 154)
+Dag(pfy + 2(A7 1 — pis ), iy + 2(A0y — 1), 77%0(‘90)7 7717;@|c(00))
(iy = H?—}-))d'z"
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Splitting the error term and examining the first derivative yields for it the following
majorization:

In(A4 - Ay - |G — 1y
- sup |Dig(pjy + 2(@54 — p5p), iy + 2 (A — iy ), wikie (00), 7 (60))|

2€[0,1]
nom s =g
- 1N(Mj+'uz+)-%
7+
iy

. sup ‘ — - —
sefon] Myy +2(A — piy

i (W3 +2(05, — p3y)

Drg(piy + 2y — wiy), miy + 200 — piy), 7o (fo), w,”,;|c(00))\

. . ~n M"
The last inequality follows from 1N(,uj+) SUP.¢lo,1] |Wlﬁ75| = 0,(1) (compare
Lemma 8.3), (A7, — w4 )/ /1)y = ) and the boundedness of

(Nj+ + Z(Mj+ - Hj+))

Drg(piy + 2074 — i)y + 20 — 1) 7ike(00), Ty (6o))

(Wi +2(A54 — 134)

Sudy + 200y — mi'y) s mige(80)) - D f(egy + 2(854 — 154)s Tike(6o)
for positive 47, and fif,, which holds using the same arguments as in Lemma 8.3
and additionally, since a concrete function is considered, the bounding statements

(6.45) and (6.46) adopted from Lemma 4.8. Analogously for the second derivative of
the error term, the order Op(\/%) is obtained and argumentation as in the proof of
I+

(6.40) resp. (6.49) yields

951 s iy s 7o (B0)s Tk (B0)) — 9 (15 s iy s Thkio (Bo) s T (o))

1 1
Op(—=) + Op(—=)
VHI+ VL
for all j, I,k (j # 1). Further, including the case j = [ and using the assumptions

concerning the marginal distribution, gives in conclusion 6.51 as follows:

1 K JnoJn

(ZZ( (4 50 (60)) F (i i o(B0)

k1'u+k j=11=1

= (4 W0 B0 (1 7 00))) )
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1 K 1 JnoJn 1

] J"k1u+k(21§(0”(\ﬁ f”zo )
-y LS

k= 1“+kg 1 u]+
K i
= JnZO —) )
lu"]+ k= 1H+k
= op(1).

O

All lemmata and theorems stated in this and the last chapter, in particular all condi-
tions listed in section 2.3, now finally yield the following main results of this thesis,
namely the asymptotic normality of the goodness—of—fit statistic under the nullhy-
pothesis. In the next theorem, the result for Poisson and in the adjacent theorem
that for column—multinomial sampling will be given. For these statements addition-
ally the conditions concerning the marginal distribution will be needed, which have
not been used so far. These are necessary to handle the error terms caused by the
approximation steps concerning the nuisance parameters, i.e. by the transition from
fly to py.

Theorem 6.4 Consider the Poisson distribution model and the asymptotics n — oco.
Assume that the conditions (BC) and (VCP) hold, i.e. p%y > € >0 for all j,k,n and
W =0(1). o%(u",,6) is the variance given in Theorem 6.1:

K
022(:“-”4-’ 00) = V(IIT‘(Z Z a’)\(X]nka :u?+7r;lk|0(00))) +2J"
J=1k=1
+ Z—_QZ ZCOU (Z)\ ]k‘?lu’]k‘) (X ))
—1 Mot el
K
+ 42 Z ikjc (00)Cov(ax(Xjy, 1), Xjk)
7=1k=1

- CK(MQ"+790)(1'"(M."+,00))_1(CK(ML”+,00))T

with ¢ (p?y,0) = Z‘]n SN Dylogm k|c(00)00v(a)\(X;‘k,ujk) X7;) as defined in
(5.4). Suppose the sequence of estimators gn accomplishes the conditions \/n (0” -
bo) = Op(1) (LC2), (6" — 60) = (I"(u7y,00)7'U" (B0 X") + Op(5;) (LC3) with
LI (un , 60) — I positive definite (LC1). Further assume that the conditions (MD1)
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and (MD2) concerning the marginal distribution are met:

Z\/MI— ViImm),

With mY being the Poisson expectation of SDY, mi(u? ,600) = E(SDY(u? 00| X™)),
then under the nullhypothesis Hy, i.e. 1y = ,u]_l_ﬂ]k' (6o) for all j, k,n, holds

LA

= o(VJm).

5=1\/Fj+

SDR(ji%y, 6" X") — "fA(H-+79 )+J £, N(0,1).

US\L (/l;n+ ’ en)

Proof:
Using condition (LC2), (LC3) and (BC), Corollary 5.9, which summarizes the single
reduction steps of chapter 5, gives for the centered test statistic the approximation

SDR (A%, 071X ™) = mR (@, 07) + J"

Jn ( n _ ,n \2
ng,n n “*J Hy ) ng, n n(, n - n n
= SDX(N~+700|‘Y )_ E : J+'un = C/\(N~+700)(I (H-+700)) U (00|‘X )
j=1 J+

—m3 (W, 60) + " + O, (Z )+0 (Z “J+) 0,(1)

= UYL (X") - B, (X)) +0(Z n)+0(2 K5t 4 0y()

Pyt
with
- (X7 =y )? _
K+(X")=5D?(u!”+,90|X”)—ZW—CK(M.%90)(1"(M."+790)) U™ (6] X7).
j=1

In order to meet assumption (MD2), now J"/n — 0 or, even stronger, (J")?/n — 0
is required, as seen in section 2.3. Condition J”/n — 0 can also be deduced from

(BC) and (MD1), since it holds

,/— Ke= /7o Z\/Fg/ M:%i\/@—ﬁo (6.55)

This, i.e. Jn—n — 0, gives 2 W 0, which, combined with EJ Dy 1(M]k) (1h4)%
then asserts the conditlon concelnlng the marginal distribution required for Theorem
6.1, namely

(Jm)?- ZJ" POy 1(H]k) _ ( J" )2 E] Dy 1(H3k)
(hy)* (Why)?

= o(1).

n
Hi+
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Further using (LC1), Theorem 6.1 thus gives the asymptotic normality of the stan-
dardization:

c

(\I/§+(X”) _ E(WK+(Xn))) —5 N(0,1) with Var(¥5,(X") = o3> (u%,0).

JVar(es, ()

The consistency of the variance estlmamon oy (,LL+,0") is provided in Lemma 6.3,

which uses (LC1), (BC), (VCP) and ,n Ejnl \/M— —— 0. The last condition is

fulfilled because of the stronger assumption (MD2).

These statements, combined with the variance condition J"/o3*(u", 6y) = O(1) and
the assumptions concerning the marginal distribution (MD1) and (MD2), finally give
the result as follows:

SDR (%, 07| X™) — mi (i, 67) + "
ox (A%, 0m)
VR, (X" - BB, (X™) Rkl o)

a5 (2, o) o (A, o)
+OP(Z£1(“Z+)1/Z)+0p(237"1(w+)1/2)+0 (1) . NG ~ah(ury, 0o)
VI o (. 00) o (", 0
(\IJ§+ X") - B(V}, (X"))+0p(1)_0(1)> o3, 0)
ol u+,00) Uf\l(/ﬁﬂ’en)

N(0,1).

O

As a second conclusion from the preceding results, and as the main result for column—
multinomial distribution, now the asymptotic normality of the test statistic under the
nullhypothesis is given. Apart from the approximation, the most important statement
for the following theorem is the asymptotic normality of the approximated statistic,
given in Theorem 6.2, which was derived using Morris’ approach and hence, of course,
leads to standardization terms being Poisson.

Theorem 6.5 Now assume column—multinomial sampling and for the asymptotics
n — oo the conditions (BC) and (VCC), i.e. puy > € for all j,k,n (¢ > 0 constant)
and J" /%2 (u, 80) = O(1). The Poisson variance sy* is defined as in Theorem 6.1:

K

SN2 (1, B0) = o8 (T, 00) — Y i (VR (K, 60))
k=1

with correction terms %, (u7, 00) = ”ik Zj:l(Cov(a)\(X;Lk,u?k),X]’-Ek) - Wfﬂo(%))

and known column sizes ny, = plyy for k = 1,..., K. The approzimative variance
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o2 (u",00) of the Poisson statistic is just as in the preceding theorem (Theorem
6.4) resp. Theorem 6.1. For the parameter estimators 0" assume (LC2) and (LC3),
i /(0" — 0y) = 0,(1), 0" — 8 = (I" (1", 00)) " U™ (Bo]Y™) + Op(L), with (LC1)
LIm(un,60) — I positive definite. Further let (MD1), (MD2) and in particular
(MD3) be fulfilled:

Z\/#JT— Z

Then the test statistic has a normal limit under the nullhypothesis, i.e. pfy = pl, -
k|0(00) for all j,k,n, as follows (m% is the Poisson erpectation of SDY):

" (VJn),  ax, mikip(00) — 0 for every k.
J+ I

s’i(uﬂv o)

Proof:

The essential arguments to deduct the limiting normality of the test statistic from
the preceding theorems are clearly completely analogous to the proof of Theorem 6.4
concerning Poisson sampling. Corollary 5.9 provides the approximation as follows

J" n n
= SD?(u™ . 0,Y") — (Y+_Nj+)2 — ™ (u™ O (I (u™ . 6 —lUn 0V ™
= SD(u, 00lY™) Z—”. A B0) (I (., 60)) ' U™ (Bl Y™)
7=1 J+

m3 (U7, 60) + J" +O(Z o )+O(Z u]+)+0()

Jjt+

= - raoen 10,5 (1) 0, (S o0

with E(P}, (X)) = m}(u?,0) — J". For the centered approximation ¥} (Y") —
E(WY, (X")), scaled with the (Poisson—) standard deviation s}(u” ,fp), in Theorem
6.2 the limiting normality has been shown using Morris’ method (1975), and, in
contrast to the preceding theorem, especially condition (MD3). Lemma 6.3 gives
the consistency of the variance estimation and (MD1) and (MD2) guarantee the error
terms to be of the order 0,(v/.J"). These arguments combined with variance condition

J" /52 (u", 8) = O(1) (VCC) now give the result:
SD3 (i, 0" Y™) = m3 (it 6) + "
(A7, 07)
(B0 B | VT )
sx (1% o) X (1% 0o)
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(B - BT L s 6)
_ ( P n ,,(1)) !
£ N(0,1).

O

Finally, it should be mentioned that the variance conditions (VCP) and (VCC), which,
for reasons of clarity, have been presumed for the main theorems, Th. 6.4 and Th. 6.5,
can certainly be relaxed. Considering the derived variance for column—multinomial
sampling first,
K
SN, 00) = oX* (17, 00) — D> itk (VR (1, 00)) 2,
k=1

it is easily seen that the second term disappears in the limit. Theorem 6.1 gives
Ve (B, 00) = O(MJn,n ) for each k and hence
Tk

K

n n n 2 K (Jn)z
St (e, 00)7 = D O(

n
k=1 k=1 Hik

).

n ny\2 n\2
Since condition (MD2), i.e. Z;le HL = o(V/J"), requires U—HL = U1 ;0 as seen

n n
it B4

in section 2.3, and the regularity condition (RC2) further implies Zi% = O(1) for

1k
each k (see (6.6), proof of Theorem 6.1), it follows
n\2 n\2 n
(Jn) = (Jn) ' H:+ = 0(1)a
Hik Fi+  Hyg
and hence the stated zero convergence. Condition (VCC) might thus be replaced by

condition (VCP) concerning o}?.

Referring to the variance o} (1", 8p) concerning both distribution models and us-
ing # — 0 again, the correction term ¢} (u",80) - (I"(p",60))~" « (<% (1", 60))"
which has the order O(ﬁ‘]—:ﬁ) (see e.g. proof of Lemma 6.3) turns out to disap-

pear asymptotically, too. Hence, it would also be possible to formulate a variance
condition directly for the first part of o},

SDR(uy, 00| X™) — 372, an (X2, pny).

Now, as a final example for Theorem 6.4 and Theorem 6.5, the derived formulae for
Pearson’s X* Statistic will be given.

which merely concerns the variance of

Example 6.6
For Pearson’s X* Statistic SD?(u7.,00) (A = 1) with especially SD}(u", 00| X") =



6.2. Asymptotic Normality of the Test Statistic 135

ok (X—nh)? : oK V- )?
s K Mui"km in the Poisson and SDY (u7y, 6o|Y™) = 37521 Yopey % in
the column—multinomial distribution model, the standardization terms can be stated

explicitly:

my(pl,00) - J" = J'K-J",
Jn K
1
o (u, 0) = 2J”K+ZZ—+2J”+Z——2I&EZ+2J”)
J=1k=1 7=1
=} (00) (I" (., 60)) ™" (¢ (o))"
J” 1 K 1
= 2K -1)+) =} s +1 - 2K)

j= T M ]k|0(00)

=€ (B0) (1" (., 60)) ™" (e (B0))
K

SRy 00) = o, B0) = 3 ik (95 60))?
k=1

with

jm

K
i (bo) = ZZDglogﬂ-?kw(Ho),
j=1k=1

1

V(1 6o) ke (fo))  for each k.

n
’u+k j:l

Hence the relevant test statistic for Poisson sampling is

(fi X J+”gk|0(9n))2 (K - 1))
or X’}I_,Go j=1k=1 k|(‘(0n)
with
1 & 1
oP (X7, 0) = (2Jn(_K—1 +ZX » — 4 1-2K)
=1 it k= 17T]k|00
L
e (0" (1 (X, 07) 7 (e (67) )
and

J* K

(6 ZZDg logﬂ']kw ).

7=1k=1
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Similarly for column-multinomial sampling, where especially p’, = ny is the known
column size for every k, the derived statistics states as follows:

XK Yfllc ]-I-ﬂ-gk|0(0 ))?

n Z Z - ']n(K - 1)
ST Y+’ sT(Y, 60) ( k= YT nk|o(9n) )
using
K 1
SV 00) = (oF(V2,00) = 3w (Y, 00))?)
k=1
K 4 Jn N
n n n 2
= (01 (Y, 60) — Z jk|C(00))2) ,
k=1 Mtk j=1
oy K 1
or(¥i0) = (2K -1)+) (X —— +1-2K)
j=1 "7+ k=1 ﬂ-]‘k|0( )

=

e (6") (1" (Y2, 67) 7 (e (07))
Here the centering term mq (p?,6p) — J" = J"(K — 1) coincides with the column—

multinomial expectation E(SDY(u”,60|Y™)) of the pure Pearson Statistic.

Referring to the preceding discussion of the variance, and since the first part of o7'2,

le. 2J"(K - 1)+ Z] 1R (K, 7) + 1 — 2K), has obviously the exact order
k|C

J™, in this case (A =1) the variance conditions (VCC) respectively (VCP) are met.

O



7. Final Remarks

In conclusion, it may be said that in this dissertation, through the consideration of an
“increasing cells” approach, goodness—of-fit tests for Poisson and column—multinomial
sampling were derived, which meet the common situation when data are sparse. Since
in these distribution models the marginal distribution of the (covariable) groups is
not given, nor is it fixed by modelling, here the case of asymptotically infinite many
nuisance was treated for the first time in this context. However, as already discussed
in chapter 2, the deduced tests suffer in view of applications. This especially affects
column—multinomial distributed contingency tables (case—control studies), since, as
the parametric models in question, only quite generally the ratios
n
ke (0) = Hifnw) respectively  puly (0) = 7l 0 (6), 0 € R®
J+

j=1,...,J" k=1,...,K, n € N) are considered, which have turned out to
be inadequate for this sampling scheme. As seen by the discussion of a different
parametrization, the so—called “odds-ratio” models, which for example contain the
well-known logistic regression models and only model the dependencies within con-
tingency tables, do not fit, in the case of column-multinomial sampling, into the
model class considered here. An exception can only be made if further restrictive
assumptions are fulfilled, which guarantee that the row expectations u7, and the
modelled ratios W;EMC(G) do not depend on each other. This property is required for
the approach considered here; in the case of case—control studies, because of the given
column sizes, it is in general not met. In regard of this important application and
in order to allow utmost variability for the marginal distribution — which is usually

of no interest — it is reasonable for further efforts on this subject to consider the
parametrization and models suggested in chapter 2 (see (2.6), sec. 2.2), namely
exp(vg + ¥5i(8))

n n n
e = T ) = S oG + (8
Here only the odds-ratios ¢} = ¢;k(ﬂ) are modelled, and, in particular, no assump-
tions concerning the marginal distribution are made. An approach to derive the
limiting distribution of the family of test statistics SDy (A > —1) for this model class
in analogy to this thesis, would especially require a modification of the approxima-
tion steps in chapter 5. The results from chapter 6, where the asymptotic normality
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of the approximated statistics was shown — for column—multinomial sampling with
Morris’ (1975) method — then could be adopted without major changes. Since this
chapter treats the true and not the fitted expectations, the essential arguments are
just the same. Hence, although the tests deduced for column—multinomial sampling
are of rather theoretical interest, the proceeding of this thesis nevertheless provides
a method for further proofs concerning this distribution model.

Beside the advisable extension of the results for column-multinomials to the con-
sideration of pure odds-ratio models, it would certainly also be desirable to tackle
this systematically for conditional Poisson models, as there are Poisson, multinomial,
row—multinomial, column—multinomial and hypergeometric distribution as the best
known representatives. These distribution models underly most epidemiological stud-
ies and hence are of major interest. An approach with odds-ratio models would in
particular also affect the results for (unconditional) Poisson sampling derived here,
where some slight generalizations would have to be taken up. Hence, as continuation
and generalization of this thesis, the next problem to tackle is the derivation of the
limiting distribution of SD) for models which specify the odds—ratios only and for
sampling schemes being conditional Poisson. In order to obtain information about
the power of the deduced tests, the limiting distribution should not only be derived
under the nullhypothesis, i.e. the model holds, but also under the alternative. State-
ments concerning the distribution of S D) for the increasing cells approach under the
alternative hypothesis are hitherto available only for row—multinomial sampling (Die-
ter Rojek (1989)). In contrast to conditional Poisson models in general, this special
case is relatively simple to handle, since the marginal distribution of the covariable
groups is fixed. Hence Rojek needs not deal with an infinite number of nuisance
parameters. Moreover, he investigates this distribution model directly and does not
touch the aspect “conditional Poisson” at all.

Subsequently, when the distribution of SDj) under both null- and alternative hy-
pothesis is given, the goodness of the tests deduced should be discussed. For this
purpose, the power has to be studied and simulations in general are necessary. In
this context, it would certainly also be of interest to investigate the role of the pa-
rameter A, especially which A should be preferred — perhaps contingent on possible
situations — in order to obtain the most reliable results. To improve the goodness
of the tests, it would further also be desirable to derive higher order approximations
such as edgeworth— and saddlepoint—approximations as carried out by Osius (1994)
for the row—multinomial case.

Finally, as well as for the results deduced here as for the intended results concerning
pure odds-ratio models, the aspect of applicability has to be discussed in greater de-
tail. Here several open questions arise, which require clarification: How can concrete
designs be embedded in the asymptotics considered here, so that the mathematical
assumptions are met? In which situations should the tests not be used? Are in these
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cases alternatives available and, if yes, which?

For an illustration of the theoretical results, the derived goodness—offit tests should,
of course, also be applied to concrete data sets. Most interesting for this purpose are
doubtless case—control studies, which are frequently performed in practice and often
meet situations where data are sparse. However, since for this sampling scheme and
the models of interest the mathematical theory is still incomplete and not trivial at
all, one will probably have to wait another while until a suitable test can be realized
for this important application.



8. Appendix

8.1 Central Moments of the Poisson Distribution

Consider the r—th central moments of the Poisson distribution with parameter p

ni= Y i (€N,
1<i<r/2

By Theorem 4.3 then, for the coefficients a,; holds agp =1, ¢, o = 0 (r > 1) and the
following recursion formula

Qr g = (T‘ - 1) clr_24-1 +i- Gy_1,4 EN
forr>2,1<i<r/2 (ay; :=0fori>r/2).

Tabulation of the coefficients for 2 < r < 10 (a,o = 0):

| ari Uy 2 Gy 3 Uy 4 Uy 5
2 1

3 1

4 1 3

5 1 10

6 1 25 15

7 1 56 105

8 1 119 490 105

9 1 246 1918 1260

10 1 501 6825 9450 945.
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8.2 Technical Results

Lemma 8.1 Consider 2,y € Ng, u € RT and the distance function ay defined in
Def. 2.1. Then for A € (=1, 1] holds:

a) )

Jax(z +y, 1) — ax (2, )| < 2(% +y bz, )

with h(z, p) = [z — y (% + ﬁ), ¢ := max{2, AL—}-I}’

b)
/\L_HH((IE : y)AH - (%)AH) < C<%2 +y- h(:t,#))
with h(z,p) =1+ =+ %, ¢ := max{2, AL—I-I}
Proof:

a) The result obviously holds for z = y = 0 and z > 1,y = 0, so only the cases
x> 1,y >1and 2 = 0,y > 1 have to be studied. The following simple inequalities
will be used repeatedly:

logz < z-1 forall z>0, (8.1)
1
X(z)‘ —1) < z—1forall A€ (0,1) and z > 0. (8.2)
(8.1) is well known and (8.2) resp. 2* < A(z — 1) + 1 holds because z* is concave for
A € (0,1) and hence every value of 2* lies beneath the tangent Az+1-X = A(z—1)+1

of 2% in 2 = 1.

Considering x > 1,y > 1, application of the mean value theorem to the term of in-
terest yields

1 1
slaa(@ +y,p) —ax(z,p)l = Fy-[Diaa(z +ty, p)l
17z +ty\A
() -1 a0
- s 4y (8.3)
y|log — (A=0)

for some t € (0, 1) (derivatives of a) see Lemma 2.2).
If x 4+ ty > p, the mean values are dominated by the term belonging to A = 1, i.e.
y(x';ﬁ — 1). Using (8.1) resp. the equivalent statement —z=* < —logz™* — 1 &

log 27 < z7* — 1, this can, for A € (—1,0), be seen as follows
1 1 -
vy (501 = v 500G )
1
DY

(1 — log (mﬁty)_’\ _ 1)

< vy
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(VAN
<
R

The penultimate term, i.e. ylog z';ﬁ, equals the case A = 0, thus only A € (0,1)
remains to be considered. For these values, however, (8.2) immediately implies

AR - <oEE )

For y(x’;ﬂ — 1) now the desired inequality is given:

y(mzty—l) Sy(x:zy—%) =y(%+(r—u)é) S%?erlm—ul(%eril)-
In case of z 4 ty < p the expressions in (8.3) are as follows:
S5 -0 = (-5 ez,
y‘logm:ty‘ = ylogmﬁty (A=0).

At first, the case A € (0, 1] can be traced back to A = 0, since by (8.1) holds log 2* <
P-1e1-2"<—logz* =Alogl e $(1-2*) <logi and hence,

1 T+ ty\A
—(1- <yl
for A € (0,1]. Applying (8.1) again further yields

p 1
< —1).
vray < Varey Y

The same term also dominates the mean value for A € (=1,0):
o (CE) < (o
1 -
(e

y(xﬁty _l)'

Here inequality (8.2),i.e. =x(27*—1) < z—1 (=X € (0,1), z > 0) was applied. Hence

for z +ty < u, A € (-1, 1]_, follows

ylog

1 1 1
50 1D1ax(@ +ty,0)| = =3y Drax(e +ty,0) <y( = 1):
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_ (p-z) < 2(‘;:{:) finally give the

Simple inequalities as z > 1 & “"xi <2 E£-1

required result:

y(mHy—l) Sy(%—l) §2y(5;x) Syﬁerylw—ul(%eril)-

If x =0,y > 1 one has to show
2

1 Yy Yy
—Mwwu%ﬂMWwHS7;+y%®4027;+y+@u

with
Lyt for X\ 0
%|a,\(y,u)—a,\(0,,u)|= ‘A (( y) ok )‘ "
‘y(log;—l)‘ for A=0.

Considering ax(y, i) — ax(0,u) > 0, the difference is dominated by ylog% if A€
0 and for A € (-1,0) it results from (8.1) and

(—1,0]. This is obvious for A
log(A+1) < 0:

(51 = (-0 )

YA 3T
1 py=x 1
< (=) 750 )
= 1)\ (/\log +10g(/\+1)>
1
< —yllog ~
_ Y
= ylog=.
i
Using (8.1) gives
2 2
) ) ) )
ylog= <yl=-1)]< =< =+ y+cyu for A e (-1,0],
u (u ) g o : (=1.0]

thus only A € (0, 1] remains to be studied. However, in this case (8.2) immediately
implies the desired result since

(G 5 =1) <o () -1) <o)<
If ax(y, 1) — ax(0,p) < 0 (8.2) yields for the term (A € (—1,0)
1 A1 1 -2 1
(@) - (0
1 )—k

I\ N A
I
= —A+1>
Y (A+1)

s
0
):

1
CeE(
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with ¢ = max{2

1
» A+1

IA IA

IA

}. If A =0 application of (8.1) immediately gives

I

—y(log%—l)zy(logngl) Sy(§—1+1)=uéy£+y+cyu-

The same follows for A € (0, 1] by repeated use of (8.1) resp. —z < —logz — 1:

l((%))\

1) =

IA

<

<

1
y%()\log % + log(A + l))
y(logg—l— %(A—}— 1-— 1))

I
y(g‘””)
L

b) If y =0, 2 > 0, the inequality obviously holds. In case of both variables z and y
being positive (z > 1, y > 1), application of the mean value theorem yields

2

A+1

n((

2 1
:c;l;y)AH_ (%),\-H) _ /\+1Hy(w-;ty)/\(>\+l)p
= 2y(m+ty)A

I

for some t € (0,1). Considering (x';i)’\ <1 and (m:ﬂ)k > 1, gives for A € [0,1] :

2y

T+
Ju)

ty

))\

IA

Zy(l n

2y(1 +

2

33—}—ty)

T4y
M )

2(% + y(% +1))
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2 2 2
’A—ﬁ-l}(%+y<1+%+mfl>>'

Analogous argumentation and z > 1 < % < ﬁ leads to the same result for the case
Ae(-1,0):

< max{2

2y(m—;ty)>\ _ 2y(m£ty)_/\
< 2y(l+xfty)
< 2y(1+%)
< 2 (1+x2—f1)
< max{2,% (%2+y(1+%+m2—+’_‘1)).

For y > 1, = 0 finally holds

2 2 :
m“(%)m < m“(l + (%)2)

max{2, ,\iﬂ}(yﬁ +y(2u+ l))

IN

= c(y;2 + yh(0, ,u))
O

Lemma 8.2 Consider a sequence of discrete random vectors (X"),en with values
in N§, X" = (X7,.. .,Xg)T. For each i € {1,...,p} and n € N assume E(X[I') =

p? € RY and Var(XP) < uR. Let X" denote a scaling of X", XI' := ijﬁ? for

2

i € {1,...,p}. Further let be given a stochastically bounded sequence Z" with values
inI CR™ (m € N) and a function f : RP X R™ —» R, (X, z2) — f(X,z), which is
continuous on (0,00)P x I. Then for the asymptotics n — oo holds

1(0700);9()2”) . f(Xn, Zn) = Op(l).

Proof:
Let an arbitrary but fixed § € (0, 1) be given. It will be shown at the end of the proof
that there exists a positive compact set K} C (0, 00)P with

i i 5
P(X"¢ K}) < P(3i€{l,....p}: X' =0) + S forall neN. (8.4)

Since Z™ = Op(1) holds by assumption, there further exists a compact set K} C I
with

P(Z" ¢ K}) <

N S

for almost all n € N. (8.5)
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The implication
(X", Z" e Ks x K§ = f(X",Z") € f(K; x K§)
moreover entails
P((X",2") € K} x K}) < P(f(X", 2") € f(K} x K})) (8.6)

with f(Kj x K§) being compact since f is continuous on (0,00)? x I D K} x K3.
Assuming now 0 € f(Kj xK}), which can, in accordance with the previous arguments,
be done without loss of generality, and using (8.4) — (8.6), f(K} x K}) fulfils the
required demands since for almost all n € N holds

P(l(o,oo)p(?_f”) (X" Z7) € FIKG X Kg))
= P(l(o,oo)P(X") CFXM ZM e fIKY x KE),Fie{l,...,p}: X' = 0)
+P (1o, (X7) - (X7, 27) € F(K} x K2), X7 #0Vi € {1,....p})

= P(Iie{l,...,p}: X[ =0) + P(f(X",2") € f(K} x K}), X! #0Vi)
> P(Elie{l,...,p} :) ((X” Z”)efgaxzsa)

= P(Fief{l,...,p}: X' =0)+1- P((X",2") ¢ K} x K})

= P(ie{l,...p}: X/ =0)+1-P(X" ¢ K} v 2" ¢ K})

> P(Iie{l,...p}: X'=0)+1-P(X" ¢ K}) - P(2" ¢ K})

> P(3ie{l,....p}: X] :0)+1— (Fieq1,. .,p}:Xz-nZO)—g—%
- 1-4

Now it remains to be shown (8.4), i.e. that for every given § € (0,1) there exists a
compact set K} C (0,00)? C R? with P(X" ¢ K}) < P(3i € {1,...,p}: X? = 0)+%
for all » € N. To see this, consider a constant cs chosen sufficiently large, so that for
one—dimensional intervals Ks and .7{(} the following inclusion holds:

2 1 2 .
ng_ 1—1/ +4/ p p = K}.
cs -

Putting K} := (K})P leads to (8.4) as follows:

P(X" ¢ K})
= P(Jief{l,....p}: X" ¢ K})

— P(Hz‘e{1,---,p}:X?=0V3i€{1,---,p}:5f" € (0, _) (25’ ))
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. Tr— 0 1 2p

< P(EIzE{l,...,p}.XZ- = )-l—;P( CJ)U((;,OO))
§

< Pl3ie{l,.. XPr=0 =

< P(Jie{l,....p): )+2

The last inequality is valid since for every 7 = 1,..., p holds
_ 1 2p )
i — — < — .
P(X} € (0, UG 1)) < 5, forall neN, (8.7)

which can be seen if the two cases p! > ¢5 and pf' € (0,cs] are treated separately.
Considering u? > cg, the Chebyshev Inequality, Var(X;") < ML" and K5 C K} give

-0 1 2p 2p
P(Xr e, )u(s) < P(Xrel, —> (5+09))
= P(X¢ 115)
< (X QK(;)
n 2p
- P(|Xl —1]> 66_5)
< (X7)
< 5 1
c(s. —_— —n
B 2p
)
< -, .
<2 59
If u? € (0,¢s] holds, X* > 0 implies XP = % > ML” > % This yields P(X" €

(0, 1)) = 0 and hence

iy
. 1 2p —n _ 2p 4 . Ky
P(X] e (0, U (F00)) = P(x1 > ) < 5, P =5,

Since u? > 0 for all n € N by assumption, (8.8) and (8.9) finally establish (8.7). O

(8.9)

Lemma 8.3 Let (X"),en be a sequence of nonnegative integer valued random vari-
ables and (u")nen an arbitrary vector valued sequence (u” € R™, m € N). Assume
E(X™) =p™ € [e,00) CRT (0< €< 1) and Var(X™) < u” for all n € N. Further
let be given a function g : R§ x R™ — R, (X,u) — ¢(X,u), which is continuously
differentiable in the first component on RY. If now for any given k € Ny holds

uk-‘%g(u,u”) <ec forallne€Nandpu>e (c€RT),
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then for the asymptotics n — oo holds

1

k—1/2)'

(X" - (X" ") = 9", u)) = Oy

Proof:
Since ¢ is continuously differentiable in the first component on R*, Taylor expansion
and obvious arguments yield:

IN(XT) - g (X u) — g(p"s u”)]

1o
= ) |- | @g(u, 0 g 200 iy 2]

< 1 xYn . xYn - n - sSu 3 =tz Th__ 44T
< In(XT) - ze[opl]‘a 90y ™)z 2 (x0m — )
a1 X" ="
= 1 X  C—_
N (X) (um)*
Hn k n n ny\\ k 8 n >
. M X - b e [ =4z n__,n
sup <(Hn+Z(Xn —u”)) (" + 2(X™ = ™)) |aug(u,u Mu=pnt2(xn—pm)
X = I

< e ——0— - IN(XT") - sup

(um)k 2€[0,1] (N” + z(X7™ — pn
The last inequality is trivial for X™ = 0. If X™ > 1 it holds since for p > € (e € (0,1])
,uk|§—yg(,u, u™)| < ¢is presumed, which is in particular met for g = p"+2(X"—p") > €.
Using Chebyshev’s inequality and the assumption Var(X") < p" now yields

))k. (8.10)

P(|X"—,u | >—) S(S-Var(u> :5-%-1’@1“(X”)§5

Vi Ve V" 1
for all » € N and hence
| X" = X" = a2k 1
e = )12k op((un)k_l/z). (8.11)

_ n _ k )
Writing X" = }:—n and f(X") = sup.¢p (m) Lemma 8.2 further gives

n

7 k
In(X™) - sup
N(X) ze[01](,u + (X" - "))

= Yoo+ sip ()
TR o) M+ 2(5m - 1)
= 1(g00)(X") - F(X7)
= 0,(1).
This statement and (8.11) concerning the asymptotic order of the terms in (8.10)
finally yield the result. |
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