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SUMMARY 10

We consider models for time-to-event data that allow that an event, e.g., a relapse of a disease,
never occurs for a certain percentage p of the population, called the cure rate. We suppose that
these data are subject to random right censoring and we model the data using a mixture cure
model, in which the survival function of the uncured subjects is left unspecified. The aim is to
test whether the cure rate p, as a function of the covariates, satisfies a certain parametric model. To 15

do so, we propose a test statistic that is inspired by a goodness-of-fit test for a regression function
by Härdle and Mammen. We show that the statistic is asymptotically normally distributed under
the null hypothesis that the model is correctly specified and under local alternatives. A bootstrap
procedure is proposed to implement the test. The good performance of the approach is confirmed
with simulations. For illustration we apply the test to data on the times between first and second 20

birth.

Some key words: Beran estimator; bootstrap; censoring; cure fraction; Kaplan–Meier estimator; logistic model; kernel
estimator.

1. INTRODUCTION

The classical approach to time-to-event data assumes that an event will occur eventually. This 25

is appropriate in many situations but not all: the events that a person marries or becomes a parent
never occur for a certain percentage of the population. The same is true of the event that an
unemployed person finds a job, since some people always stay unemployed. The proportion of
subjects for which the event does not happen is often called cure rate and is of particular interest
in health sciences, especially if there are covariates that are likely to affect it. In this case it would 30

be useful to have a parametric model for the cure rate as a function of the covariates that is easy
to interpret. We want to find out whether such a model fits the data well.

Let T denote the time until an event of interest occurs. The random variable T is typically
called the survival time or failure time. Write S(t | x) = pr(T > t | X = x) (t ≥ 0) for the
conditional survival function given that the covariate X equals x. We set T =∞ if a subject is 35

cured. Then S0(t | x) = pr(T > t | T <∞, X = x) is the conditional survival function given
the covariate x and given that the subject is not cured.
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The presence of censoring is typical for survival data, e.g., when patients leave a study before
an event occurs. This makes estimation of the cure rate difficult because it is not clear whether
they were cured or not when they left. In this paper we consider cure models for survival time40

data with right censoring. Two types of cure models are typically considered in the literature, the
mixture cure model,

S(t | x) = pr(T > t | X = x) = p(x) + {1− p(x)}S0(t | x), t ≥ 0, (1)

where p(·) denotes the cure rate, and the promotion time cure model,

S(t | x) = exp{−θ(x)F0(t)}, t ≥ 0,

where F0 is a baseline distribution function, and usually θ(x) = exp(β0 + β1x). Parametric esti-
mation in the latter model is, for example, discussed in Yakovlev et al. (1994); for semiparametric45

methods see, e.g., Tsodikov (1998, 2003).
A number of articles study the estimation of the mixture cure model (1). Most assume a lo-

gistic model for the cure rate p(x), while various model assumptions have been made on the
survival function S0(t | x). Parametric estimators are, for example, given in Boag (1949) and
Farewell (1982). A semiparametric approach based on a proportional hazards model is provided50

by Kuk and Chen (1992), Sy and Taylor (2000), and Lu (2008), just to name a few, whereas
nonparametric estimation of S0(t | x) is studied in a 2018 preprint on cure models in survival
analysis by Patilea and Van Keilegom. The literature on cure models that do not assume a logistic
model for p(x) is much more sparse. Maller and Zhou (1992) propose a nonparametric estimator
of the cure rate in a model that does not involve covariates; Laska and Meisner (1992) discuss55

nonparametric inference with discrete covariates, and Xu and Peng (2014) propose a conditional
Kaplan–Meier estimator which involves one continuous covariate, and which we will use here to
construct goodness-of-fit tests of the form of the cure rate.

Most papers in the literature assume either that a cure rate does not exist, or that it does exist
and follows a logistic model. However, neither assumption may be correct. First, the existence60

of a cure rate has been disputed in the literature on cure models. Second, there is no reason to
believe that the cure rate is always monotone in x, let alone that it is logistic. Hence we consider
tests for the parametric form of the cure rate function. Tests for the logistic model and for the
existence of a cure rate will be special cases. Tests for the existence of a cure rate have been
proposed by Maller and Zhou (1994) and by Li et al. (2007), but neither incorporates covariates.65

To the best of our knowledge, the literature does not contain any test when covariates are present.
Hence, our test is the first to allow the cure rate to depend on a covariate. The study of our test is
also a first hurdle to be taken before the case of multi-dimensional covariates can be considered.
The latter case requires a semi- or nonparametric estimator of p(x) whenX is multi-dimensional,
however, which is yet to be developed in the literature.70

Our test statistic is an adaptation of the statistic proposed by Härdle and Mammen (1993), who
test for the parametric form of a regression function. We describe it in the next section, which
also contains our asymptotic result, Theorem 1, which states the limiting normality of the test
statistic. For the implementation of the test we recommend a bootstrap procedure.

2. MODEL AND THEORETICAL RESULTS75

Let T be a survival time and C a censoring time. The observations are independent copies
(Yi, δi, Xi) (i = 1, . . . , n) of

Y = min(T,C), δ = 1(T ≤ C), X,
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where X is a covariate. We consider the mixture cure model (1), i.e.

S(t | x) = p(x) + {1− p(x)}S0(t | x), t ≥ 0.

The usual model for the cure rate p is the logistic model, i.e. p(x) = pθ(x) = 1/{1 + exp(θ0 +
θ1x)}, with parameter vector θ = (θ0, θ1). We want to test whether the logistic model, or any
other parametric model, is appropriate. The hypotheses are H0 : p = pθ for some θ ∈ Θ, and
H1 : p 6= pθ for all θ ∈ Θ, where Θ is a finite-dimensional parameter space and the function pθ
is known up to a parameter vector θ ∈ Θ. The test statistic we propose is a weighted L2 distance 80

between a nonparametric estimator of p(x) and a parametric estimator obtained under H0. This
is in the same spirit as the test statistic proposed by Härdle and Mammen (1993) in the context
of tests for the parametric form of a regression function. More precisely, we define

Tn = nh1/2
∫
{p̂(x)− pθ̂(x)}2π(x) dx, (2)

where p̂ is a nonparametric estimator with bandwidth h, θ̂ estimates θ, and π(·) is a given density
function. For practical purposes we recommend an empirical version T̃n of the special case of Tn 85

where π(·) equals the covariate density f(·) (Cao and González-Manteiga, 2008),

T̃n = nh1/2
1

n

n∑
i=1

{p̂(Xi)− pθ̂(Xi)}2. (3)

This statistic naturally puts more weight on covariates that are more likely.
Both Tn and T̃n require a nonparametric estimator p̂ and a parametric estimator pθ̂ of the cure

rate. The estimator pθ̂ is obtained by plugging in an estimator θ̂ of θ. Estimation of θ is ad-
dressed in Remark 1 below. Our nonparametric estimator p̂ is the estimator introduced in Xu and 90

Peng (2014), which equals the conditional Kaplan–Meier estimator Ŝ, evaluated at the largest
uncensored survival time. The estimator Ŝ was introduced in 1981 by Beran in a Technical Re-
port of the University of California at Berkeley entitled Nonparametric regression with randomly
censored survival data. More precisely, we use

p̂(x) = Ŝ(Y 1
(n) | x), Y 1

(n) = max
i:δi=1

Yi (4)

and

Ŝ(t | x) = 1(t ≤ Y(n))
n∏
j=1

{1−
∑n

i=1 1(Yi ≤ Yj)whi(x)

1−
∑n

i=1 1(Yi < Yj)whi(x)

}1(Yj≤t;δj=1)
,

where wh1(x), . . . , whn(x) are non-negative weights which add up to one, and Y(i) is the i-th
order statistic. For simplicity we use the Nadaraya–Watson weights,

whi(x) =
Kh(x−Xi)∑n
j=1Kh(x−Xj)

, Kh(·) =
1

h
K
( ·
h

)
,

where h is a bandwidth and K a kernel function. Note that p̂(x) = Ŝ(∞ | x), since Ŝ(· | x) is 95

constant for values to the right of Y 1
(n).

To ensure that p̂(x) is consistent for p(x), we assume that

τ0(x) = inf{t : S0(t | x) = 0} < inf{t : G(t | x) = 0} for every x, (5)

where G is the survival function of the censoring time C. The assumption is slightly weaker
than the corresponding condition by Xu and Peng, who consider the supremum with respect to
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x on the left-hand side. It implies that subjects censored after the time point τ0(x) are known100

to be cured, although the cure state of censored subjects before τ0(x) is unknown. The quantity
τ0(x) does not need to be estimated in practice. In fact, the assumption in (5) is used implicitly in
the way we estimate the cure rate p(x), which is done using the Beran estimator Ŝ(Y 1

(n)|x); see
equation (4). Xu and Peng (2014) show that this is a consistent estimator of p(x) = S{τ0(x)|x}.
They also prove that (nh)1/2{S(Y 1

(n) | x)− p(x)} = op(1), so asymptotically the replacement105

of p(x) by S(Y 1
(n)|x) has no effect on the variance. Whether assumption (5) is reasonable will

depend on the application. However, this assumption, or a version of it, is generally accepted in
the literature, and is needed to identify the model parameters. We refer to e.g., Taylor (1995) for
a general discussion on the identifiability of mixture cure models.

Before we state our main result, the limiting normality of Tn, we provide some notation and a
list of technical assumptions. In the following we will write

H(t | x) = pr(Y ≤ t | X = x), H1(t | x) = pr(Y ≤ t, δ = 1 | X = x)

and110

ζi(t | x) =
1(Yi ≤ t, δi = 1)

1−H(Yi | x)
−
∫ t

0

1(Yi ≥ s)
{1−H(s | x)}2

dH1(s | x), i = 1, . . . , n. (6)

Let ζ(t | x) denote the version of ζi(t | x) that involves the base observations (Y, δ) instead of
(Yi, δi). Further set

µxz(t) = E[ζ{τ0(x) | x}ζ{τ0(z) | z} | X = t]

and note that µxx(t) = E[ζ2{τ0(x) | x} | X = t].
To prove the limit theorem we will need the following assumptions.

(A1) The random variableX is quasi-uniform, i.e.,X has a density f with support [0, 1] and f is
bounded and bounded away from zero on [0, 1]. The distribution function F has bounded
second and third derivatives f ′ and f ′′.

(A2) The kernel function K is a symmetric probability density of order four with compact
support and two bounded derivatives.

(A3) (i) There is a continuous nondecreasing and bounded function L1 with L1(0) = 0 and

|H(t1 | x)−H(t2 | x)| ≤ |L1(t1)− L1(t2)|, x ∈ R, t1, t2 ≥ 0.

(ii) The first three derivatives of H(t | x) and H1(t | x) with respect to x exist and are
bounded uniformly for all x ∈ R and t ≥ 0.

(iii) There are continuous nondecreasing and bounded functions L2 and L3 with L2(0) =
L3(0) = 0 and∣∣∣∂H(t1 | x)

∂x
− ∂H(t2 | x)

∂x

∣∣∣ ≤ |L2(t1)− L2(t2)|, x ∈ R, t1, t2 ≥ 0,∣∣∣∂H1(t1 | x)

∂x
− ∂H1(t2 | x)

∂x

∣∣∣ ≤ |L3(t1)− L3(t2)|, x ∈ R, t1, t2 ≥ 0.

115

(A4) The functions H(t | x), S0(t | x) and G(t | x) are continuously differentiable in t, for any
value of x, and have bounded second derivatives with respect to x, for any given value t.

(A5) The function µxz(z) is continuous in z for any value of x.
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(A6) The cure rate p(·) is continuously differentiable; the vector of partial derivatives with re-
spect to θ, ṗθ(·), is Lipschitz in θ uniformly in x, i.e., for all θ, θ′ ∈ Θ, |ṗθ(x)− ṗθ′(x)| ≤
L(x)|θ − θ′| with supx L(x) <∞.

(A7) The estimator θ̂ is root-n consistent, i.e. θ̂ − θ = Op(n
−1/2).

Assumptions (A3)(i) and (A3)(iii) are satisfied by a wide class of distributions. For instance, 120

if H(· | x) is an exponential distribution with mean a−1x , then (A3)(i) is satisfied for L1(t) =
1− exp(−mt) with m = infx ax, provided m > 0 and supx ax <∞.

Remark 1. In order to handle the finite-sample bias we choose, similarly to Härdle and Mam-
men (1993) and Cao and González-Manteiga (2008), the estimator θ̂, which is used to construct
the cure rate model pθ, as follows. First we create a new data set {X1, p̂(X1)}, . . . , {Xn, p̂(Xn)}, 125

where p̂ is again Xu and Peng’s estimator given in (4). Then, based on these new data, the esti-
mator θ̂ is obtained by maximising a version of a Bernoulli log-likelihood,

θ̂ = argmaxθ

n∑
i=1

[
p̂(Xi) log pθ(Xi) + {1− p̂(Xi)} log{1− pθ(Xi)}

]
. (7)

The root-n consistency of θ̂ follows from Theorems 1 and 2 in Chen et al. (2003).
Theorem 1 only requires that there is some root-n consistent estimator for the parameter θ in

the cure rate model pθ (assumption A7). For the construction of an alternative root-n-consistent 130

estimator that is not based on the new data {Xi, p̂(Xi)}, we refer to the 2018 preprint by Patilea
and Van Keilegom, who propose a profile likelihood estimator of θ, and show the root-n consis-
tency and asymptotic normality of their estimator. In particular they provide a complete list of
assumptions and a detailed proof.

We now state our main result, the limiting normality of the test statistic Tn = nh1/2
∫
{p̂(x)− 135

pθ̂(x)}2π(x) dx; see equation (2). The proof is given in the Appendix. Recommendations on
bandwidth selection are provided in Remark 3.

THEOREM 1. Suppose assumptions (A1)-(A7) and (5) hold true and that the band-
width h = hn satisfies nh3(log n)−5 →∞ and nh5/(log n) = O(1) as n→∞. Then, un-
der the null hypothesis, the statistic Tn from equation (2) is asymptotically normally
distributed, Tn − bh → N(0, V ) in distribution as n→∞. The asymptotic bias is bh =

h−1/2R(K)
∫ 1
0 p

2(x)π(x)µxx(x)/f(x) dx = O(h−1/2), with R(g) =
∫
g2(t) dt. The asymp-

totic variance is

V = 2K(4)(0)

∫ {p2(x)π(x)µxx(x)

f(x)

}2
dx,

where K(4) denotes the fourth convolution product of K.
Under local alternatives of the form p(x) = pθ(x) + n−1/2h−1/4∆n(x), with ∆n(x) bounded

uniformly in x and n, Tn is asymptotically normally distributed,

Tn − bh −
∫ 1

0
∆n(x)2π(x) dx→ N(0, V )

in distribution as n→∞. This reduces to the first statement under the null hypothesis, i.e., when
p(x) = pθ(x) and ∆n ≡ 0. 140

The asymptotic limit is degenerate under the hypothesis that there is no cure fraction (p ≡
0). The test can only detect deviations of p(x) from the null hypothesis larger than n−1/2: the
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assumptions on the bandwidths, nh3(log n)−5 →∞ and nh5/(log n) = O(1), are, for example,
satisfied if h = n−1/5. For this choice the deviation from H0 has order n−1/2h−1/4 = n−9/20,
i.e., larger than n−1/2.145

Remark 2. The second test statistic T̃n from equation (3) can be regarded an empirical version
of Tn for the special case π(·) = f(·), i.e., with π(x)dx = dF (x) replaced by the dF̂ (x), with F̂
denoting the empirical distribution function. Using a smoothed version of F̂ for an intermediate
step, one can show that Tn and T̃n are asymptotically equivalent,

T̃n − Tn = nh1/2
∫
{p̂(x)− pθ̂(x)}2 d{F̂ (x)− F (x)} = op(1). (8)

The proof of (8) is outlined in the Supplementary Material.150

Applying Theorem 1 to the case π(·) = f(·), it follows that T̃n is also asymptotically normally
distributed under H0, T̃n − b̃h → N(0, Ṽ ) in distribution as n→∞, with asymptotic bias b̃h =

h−1/2R(K)
∫ 1
0 p

2(x)µxx(x) dx = O(h−1/2) and asymptotic variance

Ṽ = 2K(4)(0)

∫
{p2(x)µxx(x)}2dx.

3. BOOTSTRAP PROCEDURE

Extensive simulations for a scenario similar to that in Table 1 revealed that the normal approx-
imation given in Theorem 1 does not work well in practice: we obtained histograms of the test
statistic for 2000 samples of size n = 50 up to size n = 8000, which were roughly bell-shaped
for sample sizes n = 2000 and larger, but skewed throughout. This suggests that the normal155

approximation is only justified for very large samples. We therefore prefer to approximate the
critical values of our test using a bootstrap procedure given below. This is in line with Härdle
and Mammen (1993), who also noticed that a test based on the asymptotic result using normal
quantiles cannot be recommended due to the slow convergence rate and since the approximation
is only of first order. The bootstrap method has the additional advantage that mean and variance160

do not need to be estimated. Estimating mean and variance of the normal limit is quite difficult
since both quantities involve the unknown function µxx(x). Since the bootstrap approximation
gives an accurate estimation of the level of the test even for samples of size as small as n = 50,
as can be seen from Table 1 in Section 4, we would prefer the bootstrap method in practice. The
consistency of the bootstrap is stated after the description of the procedure in Theorem 2.165

In what follows pr∗ denotes the probability with respect to the bootstrap data and conditionally
on the original data.

Step 1. Use the data and a pilot bandwidth h = h0 to calculate, for i = 1, . . . , n, the nonpara-
metric estimator p̂h0(Xi).

Step 2. Fit the parametric model pθ for p into the new data that were obtained in the previous170

step, i.e., use the p̂h0(Xi)’s to calculate the parametric estimators ph0,θ̂(Xi), i = 1, . . . , n.

Step 3. Write Ŝh0(· | x) for Ŝ(· | x) with bandwidth h = h0. For b = 1, . . . , B we proceed as
follows. First we generate binary bootstrap data Z∗i,b (i = 1, . . . , n) such that pr∗(Z∗i,b = 0) =
ph0,θ̂(Xi). For i = 1, . . . , n set T ∗i,b =∞ or a large number if Z∗i,b = 0; if Z∗i,b = 1 generate

T ∗i,b ∼
Ŝh0(· | Xi)− p̂h0(Xi)

1− p̂h0(Xi)
.
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For i = 1, . . . , n generate C∗i,b ∼ Ĝh0(· | Xi), where

Ĝh0(t | x) = 1(t ≤ Y(n))
n∏
j=1

{1−
∑n

i=1 1(Yi ≤ Yj)wh0i(x)

1−
∑n

i=1 1(Yi < Yj)wh0i(x)

}1(Yj≤t;δj=0)
.

The bootstrap data are (Y ∗i,b, δ
∗
i,b, Xi) (i = 1, . . . , n) with

Y ∗i,b = min(T ∗i,b, C
∗
i,b), δ∗i,b = 1(T ∗i,b ≤ C∗i,b).

Use the bootstrap data and a bandwidth h to calculate the nonparametric bootstrap estimator
p̂∗hh0,b(Xi) for p(Xi) (i = 1, . . . , n). Analogously to step (2), use these estimates to obtain the
parametric estimates phh0,θ̂∗,b(Xi) (i = 1, . . . , n), where θ̂∗ is the bootstrap version of the max-
imum likelihood estimator from Remark 1, equation 7, with p̂∗hh0,b in place of p̂. Alternatively, 175

a bootstrap version of Patilea and Van Keilegom’s profile likelihood estimator mentioned in the
same remark can be used.

Step 4. Order T ∗n,1, . . . , T ∗n,B , where

T ∗n,b = nh1/2
1

n

n∑
i=1

{p̂∗hh0,b(Xi)− phh0,θ̂∗,b(Xi)}2, b = 1 . . . , B, (9)

and select the {(1− α)B}-th order statistic as the critical value of the test.

For the following theorem, which shows the consistency of the above bootstrap procedure, we 180

need to introduce additional assumptions.

(A8) The estimator θ̂∗ from Step 3 is root-n consistent, i.e., θ̂∗ − θ̂ = Op∗(n
−1/2) almost surely.

(A9) The derivatives ∂2/∂x2H(t | x), ∂2/∂t2H(t | x), ∂2/(∂x∂t)H(t | x), ∂2/∂x2H1(t | x),
∂2/∂t2H1(t | x) and ∂2/(∂x∂t)H1(t | x) exist and are continuous in (x, t).

To see that assumption (A8) is reasonable, we refer to Theorem B in Chen et al (2003), who
show the root-n consistency and limiting distribution of the bootstrap version θ̂∗ of a general 185

semiparametric estimator θ̂. In particular, we can take θ̂ equal to any of the two estimators of
θ considered in Remark 1, provided we adapt the bootstrap procedure in Chen et al (2003) to
the model based bootstrap procedure described above. A formal proof of assumption (A8) is
straightforward but lengthy. We omit it for reasons of brevity.

THEOREM 2. Consider the bootstrap statistic T ∗n introduced in equation (9). Suppose as-
sumptions (A1)-(A9) and (5) hold true and that the bandwidths h = hn and h0 = h0n satisfy
h = Cn−1/5 for some C > 0, h0 → 0, nh50/ log n→∞ and (nh50/ log n)(h/h0) = O(1) as
n→∞. Then,

sup
t

∣∣∣pr∗(T ∗n ≤ t)− Φ
( t− bh

V

)∣∣∣ = o(1)

almost surely, where Φ is the distribution function of a standard normal random variable. In
particular we have under H0,

sup
t

∣∣∣pr∗(T ∗n ≤ t)− pr(Tn ≤ t)
∣∣∣ = o(1)

almost surely. 190
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The proof of this result is given in the Appendix.

Remark 3. The bandwidths h and h0 can be chosen as h = chn
−0.2 and h0 = chn

−0.11, i.e.,
h0 = h× n0.09, with, for example, ch = 1, 1.5 or 2. The choice for h is motivated by the con-
ditions stated in Theorem 1, whereas the choice of h0 comes from Li and Datta (2001, Remark
2.1, p. 714). For practical applications we recommend selecting the bandwidth h of the nonpara-195

metric estimator p̂(x) via cross-validation, which is data-driven and straightforward to apply.
The cross-validation criterion can be found in, e.g., Geerdens et al. (2018, (2.6)). Their crite-
rion has been proposed for the Beran estimator Ŝ(· | x), and hence it can also be applied to
p̂(x) = Ŝ(Y 1

(n) | x). For the pilot bandwidth one can simply take h0 = h× n.09, in accordance
with Li and Datta (2001).200

4. SIMULATIONS

4·1. Scenario
We now check the performance of our test procedure. We test whether the logistic model is

appropriate for p, and we also consider if a cure fraction p exists. For the simulations we used R
and the following model. Let X be a uniform random variable on the interval [−1, 1] and, for a
given value x ofX , generate a survival time T from model (1) with conditional survival function

S0(t | x) =

{
1− 0.98 F (t|x)

F (τ |x) − 0.02I(t = τ), 0 ≤ t ≤ τ,
0, t > τ,

where F (t | x) = 1− exp{−(t/bx)ax} (t ≥ 0) is a Weibull distribution function with shape
parameter ax = (1 + x)cT , cT ≥ 0, and scale parameter bx = exp{−(1 + x)/(2ax)}. Further
τ = F−1(0.9), with F (t) = 1− exp{−(t/b)a}, a = E(aX) and b = E(bX), which means that205

τ = b(log 10)1/a. We truncate at τ to make sure that condition (5) is satisfied. In addition, we
generate C independently of X from an exponential distribution with mean 1.5, i.e., G(t | x) =
G(t) = exp(−2t/3) for t ≥ 0.

4·2. Standard logistic vs. extended logistic
For our first illustration we assume a standard logistic model under the null hypothesis, i.e.,

H0 : p(x) = pθ(x) =
1

1 + exp(θ0 + θ1x)
, x ∈ R,

and study the performance of our test if in fact an extended logistic model is true, i.e., if210

p(x) =
1

1 + exp(θ0 + θ1x− θ2x2)
6= pθ(x),

for appropriate values of θ0, θ1 and θ2 6= 0. Note that θ2 = 0 yields the standard logistic
model. The proportion of censoring pcens = pr(C < T ) and the average cure proportion pcure =
E{p(X)} are given in Table 1 for several values of cT , θ0, θ1 and θ2. Table 1 also shows the
rejection proportions of the test statistic T̃n defined in (3) for each of these settings. We work
with n = 50, 100 and 200, and with bandwidths h and h0 as stated in Remark 3 above. We used215

the R package np, which provides the cross-validation bandwidth for estimating a conditional
distribution. For the kernel function K we use the Epanechnikov kernel on [−1, 1].
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cT θ0 θ1 θ2 pcens pcure n = 50 n = 100 n = 200
ch CV ch CV ch CV

1 1.5 2 1 1.5 2 1 1.5 2
0 1 1 0 46 28 6 5 6 6 5 4 5 5 5 4 5 4

1 51 35 8 8 8 8 10 10 11 10 16 22 21 18
2 56 42 19 20 20 19 36 39 40 41 64 66 69 67
4 66 54 59 65 65 64 90 92 93 92 100 100 100 100

5 5 0 54 38 5 6 4 5 6 6 6 5 5 5 5 5
1 60 46 8 8 8 7 15 17 17 17 26 28 29 29
2 65 53 22 25 27 26 48 51 53 53 73 76 79 78
4 74 64 52 63 63 61 89 92 94 92 100 100 100 100

1 1 1 0 45 28 5 5 6 4 5 4 5 4 4 5 5 4
1 51 35 7 7 8 8 10 10 11 10 19 19 20 19
2 56 42 19 21 19 21 37 39 41 39 64 71 72 67
4 66 54 61 65 66 65 91 93 94 93 100 100 100 100

5 5 0 52 38 5 5 4 4 4 4 5 5 5 5 6 5
1 59 46 5 7 7 7 14 18 18 16 27 32 33 30
2 65 53 22 24 24 24 50 53 55 52 74 79 82 78
4 73 64 53 62 61 61 90 92 95 94 99 100 100 100

Table 1. Proportion (%) of censoring pcens = pr(C < T ), proportion of cure pcure = E{p(X)}
and rejection proportion of T̃n for several values of n, ch, cT , θ0, θ1 and θ2. The null hypothesis
corresponds to θ2 = 0; the significance level is α = 0.05.

Table 1 is based on 500 simulation runs, where for each sample the bootstrap critical value
was obtained from 500 bootstrap samples. The nominal level is α = 0.05. The table rows cor-
responding to θ2 = 0 show that under the null hypothesis that the logistic model is true the 220

level is well respected, even for sample size n = 50. If a binomial distribution with success
probability 0.05 is appropriate, the standard deviation of the simulated rejection probabilities is
{(0.05)(0.95)/500}1/2 = 0.01. Table 1 also shows that the rejection proportion increases with
the sample size and with the value of θ2, as is to be expected. The constant ch, which deter-
mines the value of the bandwidths h and h0, does not seem to have an important impact on 225

the rejection proportion. The data-driven cross-validation method yields very similar results, so
both approaches to bandwidth selection appear to be acceptable. These findings are true for both
values of cT and for both choices of the vector (θ0, θ1) considered in Table 1. The simulated
rejection probabilities have a standard deviation bounded above by 0.02.

A degenerate special case is given if p ≡ 0, which can be regarded as a standard logistic model 230

with θ1 = 0 and a very large θ0. We therefore expect that in this case the test will have difficul-
ties rejecting the null hypothesis of a logistic cure rate, p(x) = 1/{1 + exp(θ0 + θ1x)}. This
is indeed confirmed by a small simulation study: see Table 2, with cT = 1 and cross-validation
bandwidth as before, which shows power close to the nominal level α = 0.05.

n 50 100 200
p ≡ 0 11 5 5

probit model 5 5 6

Table 2. Power (%) of the test for a logistic model, when in reality there is no cure fraction (row
1) and when the true cure rate is a probit model (row 2).
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4·3. Logistic vs. probit235

We also carried out a small simulation study to explore what happens if we test again for a
logistic model, but the probit model is more appropriate for the cure rate. We therefore generated
data from a probit model 1− p(x) = Φ(θ0 + θ1x) with θ0 = θ1 = 0.5. The model for T,C and
X is as in Table 1 with cT = 1 and a bandwidth chosen by cross-validation. The results are
in Table 2. The power figures are close to the nominal level α = 0.05. This is, however, not240

surprising: the probit and the logistic model are very close to each other, except in the tails, so
that large samples are necessary “for even modest sensitivity” (Chambers and Cox, 1967).

4·4. Logistic vs. mixture model
The previous scenario presents, of course, a special case. Further simulations, with models for

the alternative that are clearly different from the logistic curve, yielded much better results. We
generated, for example, data from a mixture of a logistic model and a polynomial of order three:

1− p(x) = (1− α)
exp(θ0 + θ1x)

1 + exp(θ0 + θ1x)
+ α

{
0.9(θ0 + θ1x) + (θ0 + θ1x)2 − (θ0 + θ1x)3

}
,

for −1 ≤ x ≤ 1, 0 ≤ α ≤ 1 and θ0 = θ1 = 0.75. Hence 0 ≤ θ0 + θ1x ≤ 1.5 for all −1 ≤ x ≤
1. On the interval [0, 1.5] the function u→ 0.9u+ u2 − u3 takes values between 0 and 1 and245

is not monotone. We use the cross-validation bandwidth as before, and the same scenario as for
Table 1, with cT = 1. Table 3 shows that the power of this test increases with sample size and
with the value of α, as can be expected.

α n = 50 n = 100 n = 200
0 5 6 6

0.25 5 10 14
0.50 12 28 51
0.75 27 57 84

1 46 78 99

Table 3. Power (%) of the test for a logistic model, when the true cure rate is a mixture of a
logistic model and a polynomial model.

4·5. Testing for a cure rate
Finally we used simulations to test whether p ≡ 0, i.e., whether a cure rate exists, which is250

an important question in applications. Although the asymptotic result shows that the limit is
degenerate, so the rate of convergence is faster than the rate nh1/2 in Theorem 1, the bootstrap
is capable of detecting deviations from the null hypothesis.

We considered again the scenario from Table 1, in particular the same survival function
S0. Only the probability p(·) differs: we consider the null hypothesis, p ≡ 0, and alternatives255

p ≡ 0.05, 0.15, 0.25 in Table 4, as well as p(x) = 1/[1 + exp{θ(1 + 0.2x)}] in Table 5, with θ
chosen such that p(0) = 0.05, 0.15, 0.25. Apart from the case n = 50, the test again respects the
level α = 5%. It also appears to be very powerful for all alternatives and sample sizes.
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cT p pcens n = 50 n = 100 n = 200
ch CV ch CV ch CV

1 1.5 2 1 1.5 2 1 1.5 2
0 0 0.25 11 9 7 8 6 5 4 5 5 5 4 4

0.05 0.28 40 46 52 50 57 65 73 69 84 90 92 91
0.15 0.36 76 83 86 83 97 99 99 99 100 100 100 100
0.25 0.44 94 96 97 95 100 100 100 100 100 100 100 100

1 0 0.22 11 10 10 10 7 5 4 5 5 4 3 4
0.05 0.26 47 49 53 51 63 69 73 67 88 94 95 92
0.15 0.34 79 81 85 80 98 98 99 98 100 100 100 100
0.25 0.42 95 97 97 97 100 100 100 100 100 100 100 100

Table 4. Proportion of censoring pcens and rejection proportion (%) of T̃n for several values of n,
ch and cT . The null hypothesis corresponds to p ≡ 0, the alternatives are p ≡ 0.05, 0.15, 0.25;
the significance level is α = 0.05.

cT p(0) pcens n = 50 n = 100 n = 200
ch CV ch CV ch CV

1 1.5 2 1 1.5 2 1 1.5 2
0 0.05 0.28 39 47 52 51 58 66 72 68 88 91 95 93

0.15 0.36 80 84 88 85 97 98 99 99 100 100 100 100
0.25 0.44 94 95 96 95 100 100 100 100 100 100 100 100

1 0.05 0.26 47 53 58 52 66 74 78 72 88 93 96 92
0.15 0.34 80 83 86 83 97 98 99 98 100 100 100 100
0.25 0.42 93 95 96 95 100 100 100 100 100 100 100 100

Table 5. Proportion of censoring pcens and rejection proportion of T̃n as in Table 4, now with
alternatives p(x) = 1/[1 + exp{θ(1 + 0.2x)}], with θ chosen such that p(0) = 0.05, 0.15, 0.25,
which is also equal to E{p(X)}.

5. APPLICATION

As an illustration of our method we analysed data from by the Medical Birth Registry of Norway 260

(see http://folk.uio.no/borgan/abg-2008/data/data.html). The data contain information on births
in Norway since 1967, related to a total of 53,558 women. We are interested in the time between
the births of the first two children, and how this is affected if the first child died within one
year. The covariate of interest is age, X , which is the age of the mother at the birth of the first
child. The censoring indicator equals 1 if the mother had a second birth, and 0 if the observation 265

is censored. We want to test whether the logistic model is suitable for the cure rate p, i.e., the
fraction of women who gave birth only once.

We consider two subpopulations: the first subpopulation, case 1, is concerned with the n =
262 observations for which the first child has died within one year; for case 2 we consider a
random subset of size n = 300 of the entire data set. Our main reason for working with a sample 270

and not with the complete data set is feasibility. The subset is obtained using the random number
generator in R. We expect that the cure rate, i.e., the probability of no second birth, is different
in the two groups. This is confirmed by our analysis; see Figures 1 and 2 for case 1 and Figures
3 and 4 for case 2. For case 1, i.e., the first child did not survive the first 12 months, the logistic
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Fig. 1. Left: Raw (univariate) data (case 1); circles are
uncensored, triangles are censored data. Right: Kaplan–
Meier estimator of all data; the plateau (containing 7 ob-
servations) suggests that a cure fraction is present (suffi-

ciently long follow-up).
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Fig. 2. Left: Nonparametric estimator of p(x) for case
1 with h = 3 (solid curve); logistic estimator of p(x)
(dashed curve). Right: Significance trace (plot of p-value
as a function of h), clearly showing that the null hypothe-
sis of logistic cure rate is not rejected for a wide range of

possible bandwidths; the dashed line is the 5% level.

model seems to be appropriate: the null hypothesis is not rejected for all values of the bandwidth275

h. For case 2, however, the logistic model is not appropriate: the p-value is close to zero for all
values of h. A larger subset of the entire data set of size n > 300 would lead to even smaller
p-values than the ones shown in Figure 4, and would hence lead to an even stronger rejection
of the null hypothesis. For our analysis we chose h0 = h× n0.09, which was motivated by the
simulations. The number of bootstrap samples is 500, the time between the first and second births280

is expressed in years. Further comments are provided in the figure captions.
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Fig. 3. Raw data (case 2) and Kaplan–Meier estimator as
in Figure 1; again there is a plateau indicating that a cure

fraction is present.
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Fig. 4. Left: Nonparametric estimator of p(x) for case
2 with h = 3 (solid curve); logistic estimator of p(x)
(dashed curve). Right: Significance trace as in Figure 2,
this time showing that the null hypothesis of logistic cure
rate is rejected for all bandwidths in a wide range; the

dashed line is again the 5% level.

6. CONCLUDING REMARKS

A reasonable next step would be to target models with more than one covariate, since most
data sets contain information in the form of many relevant covariates. In order to avoid the
curse of dimensionality, it would make sense to work with dimension-reducing techniques. For 285

example, one could replace Xu and Peng’s estimator p̂(X) by a single index model estimator
p̂(S) based on an estimator of the index S = β>X , now with X multi-dimensional containing
various types of covariates, and a parameter vector β of matching dimension. The estimation of
such a model, or any other semiparametric model for the cure rate p(x) that allows for multi-
dimensional covariates, has not been studied so far in the literature. So the next step will be to 290

tackle estimation of p(x) in such models. The implementation of the test is then straightforward
using our approach with the new cure rate estimator p̂(X) in place of Xu and Peng’s estimator.
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APPENDIX

Proof of Theorem 1
We only give an outline. A detailed proof can be found in the Supplementary Material.
Consider the test statistic Tn from equation (2), which can be written in the form

Tn = nh1/2
∫ 1

0
[{p̂(x)− p(x)}2 + {p(x)− pθ̂(x)}2

+ 2{p(x)− pθ̂(x)}{p̂(x)− p(x)}]π(x) dx.

We write T0n for the first term of Tn,

T0n = nh1/2
∫ 1

0
{p̂(x)− p(x)}2π(x) dx,

and show that T0n determines the distribution of the test statistic under the null hypothesis, i.e.
the second and third term of Tn above are asymptotically negligible.305

To prove asymptotic normality, we expand (nh)1/2{p̂(x)− p(x)} using results by Xu and
Peng (2014) and Du and Akritas (2002), which allow us to write T0n = T1n + T2n + op(1),
where

T1n =
h1/2

n

∫ 1

0
p2(x)

n∑
i=1

K2
h(x−Xi)

f2(x)
ζ2i {τ0(x) | x}π(x) dx,

T2n =
h1/2

n

∫ 1

0
p2(x)

n∑
i=1

n∑
j=1
j 6=i

Kh(x−Xi)Kh(x−Xj)

f2(x)
ζi{τ0(x) | x}ζj{τ0(x) | x}π(x) dx.

The first term, T1n, yields the bias, T1n = bh + op(1), whereas T2n has a limiting normal distri-
bution, T2n → N(0, V ) in distribution. The latter is derived analogously to the proof in Härdle310

and Mammen (1993), using a result by de Jong (1987). This yields the desired normal approxi-
mation T0n − bh ≈ N(0, V ), with mean bh = O(h−1/2) tending to infinity as n increases.

Under local alternatives of the form p(x) = pθ(x) + n−1/2h−1/4∆n(x), the second term of
Tn produces an additional shift,

nh1/2
∫ 1

0
{p(x)− pθ̂(x)}2 =

∫ 1

0
∆n(x)2π(x) dx+ op(1),

which is not present if ∆n = 0, i.e., under the null hypothesis. �
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Proof of Theorem 2
We use a decomposition and notation as in the proof of Theorem 1: 315

T ∗n = nh1/2
∫ 1

0
{p̂∗hh0(x)− phh0,θ̂∗(x)}2π(x) dx

= nh1/2
∫ 1

0

[{
p̂∗hh0(x)− ph0,θ̂(x)

}2
+
{
ph0,θ̂(x)− phh0,θ̂∗(x)

}2
+2
{
p̂∗hh0(x)− ph0,θ̂(x)

}{
ph0,θ̂(x)− phh0,θ̂∗(x)

}]
π(x) dx. (10)

We start with the first term of (10), and in particular we want to show first why we center
p̂∗hh0(x) by means of ph0,θ̂(x). We know that p̂∗hh0(x) = Ŝ∗hh0(Y ∗1(n) | x) and that Ŝ∗hh0(Y ∗1(n) |
x)− Ŝ∗hh0(Y 1

(n) | x) = op∗(1) almost surely, where Ŝ∗hh0(· | x) is the Beran estimator based on
the bootstrap data (Y ∗1 , δ

∗
1), . . . , (Y ∗n , δ

∗
n), and where Y ∗1(n) = maxi:δ∗i =1 Y

∗
i . We also know that

for given x, the variable T ∗ is drawn from the survival function

pr∗(T ∗ > t | x) =
Ŝh0(t | x)− p̂h0(x)

1− p̂h0(x)
{1− ph0,θ̂(x)}+ ph0,θ̂(x).

Hence, pr∗(T ∗ > Y 1
(n) | x) = ph0,θ̂(x), since p̂h0(x) = Ŝh0(Y 1

(n) | x). This shows that ph0,θ̂(x)

is the correct centering term for p̂∗hh0(x).
As our bootstrap procedure is similar to that studied by Van Keilegom and Veraverbeke (1997)

in the context of nonparametric regression with right-censored data without cure fraction, it can
be shown, similarly as in Theorem 4.1 in their paper, that 320

p̂∗hh0(x)− ph0,θ̂(x) (11)

= p(x)
[ n∑
i=1

whi(x)ζ∗i {τ0(x) | x} −
n∑
i=1

wh0i(x)ζi{τ0(x) | x}
]

+Op∗{(nh)−3/4(log n)3/4},

almost surely and uniformly in x, where ζ∗i (· | x) is as ζi(· | x) except that (Yi, δi) is replaced by
(Y ∗i , δ

∗
i ). Defining η∗i (· | x) = ζ∗i (· | x)−

∑n
j=1wh0j(x)ζj{τ0(x) | x}, the latter can be written

as

p(x)
n∑
i=1

whi(x)η∗i {τ0(x) | x}+Op∗{(nh)−3/4(log n)3/4}. (12)

Now, we follow the arguments in the proof of Theorem 1, and write

T ∗n = nh1/2
∫ 1

0

{
p̂∗hh0(x)− ph0,θ̂(x)

}2
π(x) dx+ op∗(1) = T ∗1n + T ∗2n + op∗(1)

almost surely, where

T ∗1n =
h1/2

n

∫ 1

0
p2(x)

n∑
i=1

K2
h(x−Xi)

f2(x)
η∗2i {τ0(x) | x}π(x) dx,

T ∗2n =
h1/2

n

∫ 1

0
p2(x)

n∑
i=1

n∑
j=1
j 6=i

Kh(x−Xi)Kh(x−Xj)

f2(x)
η∗i {τ0(x) | x}η∗j {τ0(x) | x}π(x) dx.
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For T ∗1n we find that

E∗(T ∗1n) = h−1/2R(K)

∫ 1

0

p2(x)π(x)

f(x)
µ∗xx(x) dx,

where325

µ∗xx(x) = E∗{η∗(τ0(x) | x)2 | X = x} = var∗{ζ∗(τ0(x) | x)2 | X = x}
= var[ζ{τ0(x) | x}2 | X = x] + o(1)

almost surely, using arguments similar to those in the proof of Lemma 8(b) in Van Kei-
legom and Veraverbeke (1997), and the latter equals µxx(x) + o(1) almost surely Hence,
T ∗1n = E∗(T ∗1n) + op∗(1) = bh + op∗(1) almost surely Using similar arguments we obtain that
pr∗(T ∗2n ≤ t)− Φ(t/V )→ 0 almost surely, which shows the result.

It remains to show that the second and third term of (10) are negligible. For the second term330

note that by assumption (A8) this term is Op∗(nh1/2n−1) = op∗(1). The third term can be de-
composed in a similar way as in the proof of Theorem 1, which together with assumption (A8)
and equations (11) and (12) shows that this term also vanishes asymptotically. �
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