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S.1. Proof of Theorem 1
To derive the desired result for the Härdle–Mammen-type test statistic Tn from equation (2)

we write

Tn = nh1/2
∫ 1

0
[{p̂(x)− p(x)}2 + {p(x)− pθ̂(x)}2

+ 2{p(x)− pθ̂(x)}{p̂(x)− p(x)}]π(x) dx.

Consider local alternatives p(x) = pθ(x) + n−1/2h−1/4∆n(x), where θ denotes the true param-
eter. This covers the null hypothesis as a special case with ∆n = 0. We write T0n for the first
term of Tn. We will show that T0n determines the distribution of the test statistic under the null
hypothesis and that T0n − bh converges in distribution, 15

T0n − bh = nh1/2
∫ 1

0
{p̂(x)− p(x)}2π(x) dx− bh → N(0, V ) (n→∞), (S.1)

i.e., Tn is under H0 approximately normally distributed, with mean bh = O(h−1/2) tending to
infinity and variance V . Before proving (S.1) we consider the second term of Tn and, writing
p(x) = pθ(x) + n−1/2h−1/4∆n(x), we can split it into three parts:

nh1/2
∫ 1

0
{pθ(x)− pθ̂(x) + n−1/2h−1/4∆n(x)}2 π(x) dx

= nh1/2
∫ 1

0
{pθ(x)− pθ̂(x)}2 π(x) dx+ nh1/2

∫ 1

0
{n−1/2h−1/4∆n(x)}2 π(x) dx

+ 2nh1/2
∫ 1

0
{pθ(x)− pθ̂(x)}n−1/2h−1/4∆n(x)π(x) dx

=

∫ 1

0
∆n(x)2π(x) dx+ op(1).

The resulting integral comes from the middle part. To see that the first part involving (pθ − pθ̂)
2

is asymptotically negligible, use assumptions (A6) and (A7), which ensure that pθ is Lipschitz
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2 U.U. MÜLLER AND I. VAN KEILEGOM

in θ, uniformly in x, and that θ̂ is root-n consistent. This gives the order Op(h1/2) = op(1) as
h→ 0. The third part in the above display vanishes with rate Op(h1/4) = op(1), which follows
by the same arguments, combined with the assumption that ∆n(·) is uniformly bounded.20

Now consider the mixed third term of Tn. We will show that this term is asymptotically negli-
gible,

nh1/2
∫ 1

0
{p(x)− pθ̂(x)}{p̂(x)− p(x)}π(x) dx = op(1). (S.2)

The proof requires some auxiliary results, which we provide when we verify (S.1), the asymptotic
normality of T0n. It is therefore postponed to the end of this proof.

Let Λ denote the cumulative conditional hazard function Λ(t | x) = − logS(t | x) and let25

Λ̂(t | x) be the nonparametric estimator provided in Xu and Peng (2014). These authors show
that

(nh)1/2{p̂(x)− p(x)} = S(Y 1
(n) | x)(nh)1/2

{
Λ̂(Y 1

(n) | x)− Λ(Y 1
(n) | x)

}
+ op(1). (S.3)

They also show that Y 1
(n) is weakly consistent for supx τ0(x), and that (nh)1/2{S(Y 1

(n)|x)−
p(x)} = op(1). This yields

(nh)1/2{p̂(x)− p(x)} = p(x)(nh)1/2
{

Λ̂(Y 1
(n) | x)− Λ(Y 1

(n) | x)
}

+ op(1).

In order to derive asymptotic normality of Tn, we will need an approximation of Λ̂− Λ, which is,
for example, provided in Du and Akritas (2002). They show in their Theorem 3.1 that, uniformly
in x,

Λ̂(t | x)− Λ(t | x) =

n∑
i=1

whi(x)ζi(t | x) + r(t, x)

with supx,t≤t0 |r(t, x)| = O{(nh)−3/4(log n)3/4} almost surely, where t0 satisfies supxH(t0 |30

x) < 1, with whi as specified in Section 2, and with ζi(t | x) defined in (6). It follows
from arguments in Xu and Peng that Λ̂(Y 1

(n) | x)− Λ(Y 1
(n) | x) is asymptotically equivalent to∑n

i=1whi(x)ζi{τ0(x) | x}. Then,

T0n = nh1/2
∫ 1

0
{p̂(x)− p(x)}2π(x) dx+ op(1)

= nh1/2
∫ 1

0
p2(x)

[ n∑
i=1

whi(x)ζi{τ0(x) | x}
]2
π(x) dx

+nh1/2
∫ 1

0
p2(x)

[
r{τ0(x), x}

n∑
i=1

whi(x)ζi{τ0(x) | x}
]2
π(x) dx

+nh1/2
∫ 1

0
p2(x)[r{τ0(x), x}]2π(x) dx+ op(1)

= nh1/2
∫ 1

0
p2(x)

[ n∑
i=1

whi(x)ζi{τ0(x) | x}
]2
π(x) dx+ op(1).

The last two terms in the above decomposition of T0n (second equality) are of order op(1), which
can be explained as follows. Consider the approximation (S.3) of p̂(x)− p(x) by Du and Akritas35

(2002), which involves the difference Λ̂− Λ; see the proof of Theorem 3.1 in Du and Akritas
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(2002) for the definition of that difference. It depends on a quantity Ĥ whose order is given in
Lemma 4.2 of the same paper. This yields p̂(x)− p(x) = Op{(nh)−1/2(log n)1/2}. Combining
this order for the main term

∑n
i=1whi(x)ζi{τ0(x) | x} and the order Op{(nh)−3/4(log n)3/4}

for the remainder term yields the order Op{nh1/2(nh)−5/4(log n)5/4} for the mixed second 40

term. This is op(1) since we assume nh3(log n)−5 →∞. The third term is op(1) because it
contains the squared remainder term and is therefore of smaller order. Inserting the definition of
whi into the above gives

T0n = nh1/2
∫ 1

0
p2(x)

[
n−1

n∑
i=1

Kh(x−Xi)

f(x)
ζi{τ0(x) | x}

]2
π(x) dx+ op(1). (S.4)

Now write

T0n = T1n + T2n + op(1),

where

T1n =
h1/2

n

∫ 1

0
p2(x)

n∑
i=1

K2
h(x−Xi)

f2(x)
ζ2i {τ0(x) | x}π(x) dx,

T2n =
h1/2

n

∫ 1

0
p2(x)

n∑
i=1

n∑
j=1
j 6=i

Kh(x−Xi)Kh(x−Xj)

f2(x)
ζi{τ0(x) | x}ζj{τ0(x) | x}π(x) dx.

Analogously as in the proof of Proposition 1 in Härdle and Mammen (1993), but now with ζj in
place of heteroscedastic errors εj , we obtain the bias term as follows:

E(T1n) = h1/2
∫ 1

0

p2(x)

f2(x)
E[K2

h(x−X)ζ2{τ0(x) | x)}]π(x) dx

= h1/2
∫ 1

0

p2(x)

f2(x)
E
[ 1

h2
K2
(x−X

h

)
E[ζ2{τ0(x) | x} | X]

]
π(x) dx

= h1/2
∫ 1

0

p2(x)

f2(x)

∫
1

h
K2(v)f(x+ vh)µxx(x+ vh) dv π(x) dx

= bh + o(1),

with, using assumptions (A1) and (A5),

bh = h−1/2R(K)

∫ 1

0

p2(x)π(x)

f(x)
µxx(x) dx = O(h−1/2).

We have nh3 →∞, thanks to our assumptions on the bandwidth, and therefore
var(T1n | X1, . . . , Xn) = Op(n

−1h−3) = op(1),

T1n = bh + op(1).

The desired normal approximation (S.1), T0n − bh ≈ N(0, V ), now follows from this statement, 45

combined with the asymptotic normality of T2n, T2n → N(0, V ) in distribution as n→∞,
which follows analogously to the arguments outlined in Härdle and Mammen (1993), using The-
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orem 2.1 by de Jong (1987): write

T2n =
h1/2

n

n∑
i=1

n∑
j=1
j 6=i

Vij ,

Vij =

∫ 1

0
p2(x)

Kh(x−Xi)Kh(x−Xj)

f2(x)
ζi{τ0(x) | x}ζj{τ0(x) | x}π(x) dx.

De Jong’s theorem requires that T2n is clean in the sense that the conditional expectations
of the Vij given Xi (i = 1, . . . , n) vanish. Using similar arguments as in Cao and González-50

Manteiga (2008; pages 183-184), we see that ζi{τ0(x) | x} and ζj{τ0(x) | x} in the expres-
sion of Vij can be replaced by ζi{τ0(Xi) | Xi} and ζj{τ0(Xj) | Xj}. Since E[ζ{τ0(x) | x} |
X = x] = 0, it follows that T2n is indeed clean up to an asymptotically negligible term (and the
asymptotic mean is zero).

In order to obtain the asymptotic variance, it suffices to calculate the second moment of Vij .55

We have

E(V 2
ij) = E

(∫ 1

0

∫ 1

0

p2(x)

f2(x)
Kh(x−Xi)Kh(x−Xj)ζi{τ0(x) | x}ζj{τ0(x) | x}π(x)

× p2(z)

f2(z)
Kh(z −Xi)Kh(z −Xj)ζi{τ0(z) | z}ζj{τ0(z) | z}π(z) dx dz

)
=

∫ 1

0

∫ 1

0

p2(x)p2(z)π(x)π(z)

f2(x)f2(z)
E[Kh(x−Xi)Kh(z −Xi)ζi{τ0(x) | x}ζi{τ0(z) | z}]

× E[Kh(x−Xj)Kh(z −Xj)ζj{τ0(x) | x}ζj{τ0(z) | z}] dx dz

=

∫ 1

0

∫ 1

0

p2(x)p2(z)π(x)π(z)

f2(x)f2(z)

×
( ∫

Kh(x− u)Kh(z − u)E[ζ{τ0(x) | x}ζ{τ0(z) | z} | X = u]f(u) du
)2
dx dz

=

∫ 1

0

∫ 1

0

p2(x)p2(z)π(x)π(z)

f(x)f(z)
µxz(x)µxz(z)

{1

h
K ∗K

(z − x
h

)}2
dx dz + o(1)

as h→ 0. Hence, using the fact that T2n is clean, we obtain

var(T2n) = var
(h1/2
n

2

n∑
i<j

Vij

)
=

4h

n2

∑
i<j

∑
k<l

cov(Vij , Vkl) =
4h

n2

∑
i<j

E(V 2
ij) + o(1)

= 2hE(V 2
ij) + o(1) = Vh + o(1),

with

Vh = 2h

∫ 1

0

∫ 1

0

p2(x)p2(z)π(x)π(z)

f(x)f(z)

{1

h
K ∗K

(z − x
h

)}2
× E[ζ{τ0(x) | x}ζ{τ0(z) | z} | X = x]E[ζ{τ0(x) | x}ζ{τ0(z) | z} | X = z] dx dz.

Since p(·) is continuous and µxz(z) is continuous in z by assumption (A5), we can approximate
Vh by V , as on page 1931 of Härdle and Mammen (1993), and obtain the desired formula,

V = 2K(4)(0)

∫ {p2(x)π(x)E[ζ2{τ0(x) | x} | X = x]

f(x)

}2
dx.
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It remains to verify equation (S.2), that the third mixed term of Tn is asymptotically negligible.
To see this use the arguments by Xu and Peng (2014) and Du and Akritas (2002), which we used
above to derive approximation (S.4), namely

p̂(x)− p(x) = p(x)n−1
n∑
i=1

Kh(x−Xi)

f(x)
ζi{τ0(x) | x}+O{(nh)−3/4(log n)3/4}.

almost surely. Inserting the first term on the right-hand side into (S.2) gives

nh1/2
∫ 1

0
{p(x)− pθ̂(x)}p(x)n−1

n∑
i=1

Kh(x−Xi)

f(x)
ζi{τ0(x) | x}π(x) dx. (S.5)

To determine the order of the part involving the remainder term remember that p(x) = pθ(x) +
n−1/2h−1/4∆n(x) with ∆n uniformly bounded. Now use the assumptions on the bandwidth and
assumptions (A6) and (A7) to obtain p(x)− pθ̂(x) = pθ(x)− pθ̂(x) + n−1/2h−1/4∆n(x) =

Op(n
−1/2h−1/4). Hence the second part of the statistic has the rate

Op
{
nh1/2(nh)−3/4(log n)3/4n−1/2h−1/4

}
= Op

{
n−1/4h−1/2(log n)3/4

}
= op(1),

so it suffices to study statistic (S.5). Using a Taylor expansion we write it as a sum of three terms,
T31 + T32 + T33, where

T31 = nh1/2(θ̂ − θ)>
∫ 1

0
p(x)n−1

n∑
i=1

Kh(x−Xi)

f(x)
ζi{τ0(x) | x}ṗθ(x)π(x) dx,

T32 = nh1/2(θ̂ − θ)>
∫ 1

0
p(x)n−1

n∑
i=1

Kh(x−Xi)

f(x)
ζi{τ0(x) | x}{ṗξ(x)− ṗθ(x)}π(x) dx,

T33 = nh1/2n−1/2h−1/4
∫ 1

0
p(x)n−1

n∑
i=1

Kh(x−Xi)

f(x)
ζi{τ0(x) | x}∆n(x)π(x) dx.

Here ṗt denotes the vector of partial derivatives with respect to the parameter evaluated at t, and 60

ξ is an intermediate value between θ and θ̂.
Consider the second term first and use the Lipschitz assumption (A6) on the gradient ṗθ and

the root-n consistency of θ̂, assumption (A7), to obtain T32 = Op(nh
1/2n−1/2n−1/2) = op(1).

The first and the third term, T31 and T33 are similar. We consider only T33, which is more difficult
to handle since it contains the additional factor h−1/4 and therefore converges at a slower rate. To
get the desired op(1) rate note that the order of the integral in T33 isO(h3) using the assumptions
on the kernelK, and the formula ofE{ζi(t | x) | Xi} given in equation (3.3) on page 474 in Van
Keilegom and Veraverbeke (1997). Our function ζ is the function g in that paper. This gives

E(T33) = nh1/2n−1/2h−1/4O(h3) = O(n1/2h13/4) = o(1).
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The second moment, E(T 2
33), is

nh1/2n−2
n∑
i=1

E
(∫ 1

0

∫ 1

0
p(x)p(y)

Kh(x−Xi)

f(x)

Kh(y −Xi)

f(y)

× E
[
ζi{τ0(x) | x}ζi{τ0(y) | y} | Xi

]
∆n(x)∆n(y)π(x)π(y) dx dy

)
+nh1/2n−2

n∑
i,j=1
j 6=i

E
(∫ 1

0

∫ 1

0
p(x)p(y)

Kh(x−Xi)

f(x)

Kh(y −Xj)

f(y)

× E
[
ζi{τ0(x) | x} | Xi

]
E
[
ζj{τ0(y) | y} | Xj

]
∆n(x)∆n(y)π(x)π(y) dx dy

)
Now use again the order of the integral in the expression of T33 to obtain

E(T 2
33) = O(h1/2) +O(nh1/2h6) = o(1) +O(nh6.5) = o(1).

Since both the mean and the variance of T33 tend to zero in probability, we can apply Chebyshev’s
inequality and obtain the desired T33 = op(1). This completes the proof of (S.2) �

S.2. Proof of equation (8)
We sketch the proof of the asymptotc equivalence of Tn and T̃n, that is, T̃n − Tn = op(1).65

Consider

|T̃n − Tn| = nh1/2
∣∣ ∫ {p̂(x)− pθ̂(x)}2 d{F̂ (x)− F (x)}

∣∣
≤ nh1/2

∣∣ ∫ {p̂(x)− pθ̂(x)}2 d{F̂ (x)− F̃ (x)}
∣∣

+nh1/2
∣∣ ∫ {p̂(x)− pθ̂(x)}2 d{F̃ (x)− F (x)}

∣∣, (S.6)

where F̃ (x) =
∫
F̂ (x− vs) dL(v), L(·) =

∫ ·
−∞ `(u) du, ` is a symmetric kernel density func-

tion with mean zero and bounded support, and s = sn is a bandwidth sequence controlling the
smoothness of F̃ (x). We first show

sup
x
|F̂ (x)− F̃ (x)| = op(n

−1/2), (S.7)

assuming ns4 → 0 as n→∞, using arguments similar, but in fact much simpler, than those used70

in the proof of Lemma A.3 in a 2017 preprint by Neumeyer and Van Keilegom on distribution
functions of residuals entitled Bootstrap of residual processes in regression: to smooth or not to
smooth ?. Write

F̃ (x)− F̂ (x) =

∫
{F̂ (x− vs)− F̂ (x)} dL(v)

=

∫
{F̂ (x− vs)− F̂ (x)− F (x− vs) + F (x)} dL(v)

+

∫
{F (x− vs)− F (x)} dL(v)

= n−1/2
∫
{En(x− vs)− En(x)} dL(v) +

∫
{F (x− vs)− F (x)} dL(v),
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where En denotes the empirical process n−1/2
∑n

i=1{1(Xi ≤ ·)− F (·)}. Since En is asymp-
totically equicontinuous, and since ` has a bounded support, it follows that the first term has the 75

order op(n−1/2), uniformly in x. To see that the second term has the order Op(s2) = op(n
−1/2),

use the fact that f ′ is bounded, that ns4 = o(1) and that the kernel ` has mean zero. This proves
(S.7).

Consider the first term of (S.6). Using integration by parts, we can write it as the sum of two
integrals.The first integral can be bounded by

2nh1/2
∫
|F̂ (x)− F̃ (x)| |p̂(x)− pθ̂(x)| |p̂′(x)− p′

θ̂
(x)| dx.

To determine the rate of p̂(x)− pθ̂(x), we only need to consider p̂(x)− p(x), because it is
of larger order than pθ̂(x)− p(x), which converges with the parametric root-n rate, thanks
to Assumptions (A6) and (A7). As explained in the paragraph after equation (S.4), we
have p̂(x)− p(x) = Op{(nh)−1/2(log n)1/2}. Further it can be shown that p̂′(x)− p′

θ̂
(x) =

Op{(nh3)−1/2(log n)1/2}, uniformly in x. This combined with (S.7) gives the order

nh1/2 op(n
−1/2)Op{(nh)−1/2(log n)1/2}Op{(nh3)−1/2(log n)1/2}

= op{(nh3)−1/2 log n} = op(1)

for the above term. For the last step we used the assumptions on the bandwidth h = hn in The-
orem 1: we assume that nh3(log n)−5 →∞, which implies (nh3)−1/2 log n = O(1). The same
arguments yield for the second integral the order

nh1/2 op(n
−1/2) [Op{(nh)−1/2(log n)1/2}]2,

which is op(1), since it is of smaller order than the first one. This yields the desired order op(1)
for the first term on the right-handside of (S.6). 80

The second term of (S.6) is

nh1/2
∣∣∣ ∫ {p̂(x)− pθ̂(x)}2 {f̃(x)− f(x)} dx

∣∣∣,
where f̃(x) = (ns)−1

∑n
i=1 `{(Xi − x)/s} is the standard kernel density estimator with f̃(x)−

f(x) = Op{(ns)−1/2(log n)1/2}, uniformly in x. It is of order

nh1/2(nh)−1 log n (ns)−1/2(log n)1/2 = n−1/2h−1/2s−1/2(log n)3/2 = o(1),

if s is chosen such that nhs(log n)−3 →∞. Hence both terms of (S.6) are of order op(1), which
completes the proof of T̃n − Tn = op(1). �
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