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Abstract

Suppose we observe an ergodic Markov chain on an arbitrary state space. The usual

nonparametric estimator of a linear functional of the stationary distribution is the em-

pirical estimator. If the stationary distribution obeys finitely many known linear con-

straints, we can improve the empirical estimator by empirical likelihood weights. Since

the observations are dependent, an optimal choice of weights is determined by weighting

averages over disjoint blocks of observations with slowly increasing length. We show

that the improved empirical estimator is efficient. We also introduce two additively cor-

rected empirical estimators that are asymptotically equivalent to the weighted empirical

estimator, hence also efficient.
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1 Introduction

Let X0, . . . , Xn be observations of an ergodic stationary Markov chain on an arbitrary state

space S with σ-algebra S. The distribution of the chain is specified by the transition distri-

bution Q(x, dx) and the stationary distribution π(dx). They determine the joint stationary

distribution P (dx, dy) = π(dx)Q(x, dy) of two successive observations (X0, X1).

If the state space S is the real line and if Q has a density q(x, y), then π has a density

p(x) and both q and p are determined by the joint density p(x)q(x, y) of two consecutive

observations. That density is then determined by expectations

Pf = E[f(X0, X1)] =

∫
π(dx)Q(x, dy)f(x, y)

for a sufficiently large class of (bounded) functions f on S2.

If the state space is finite, S = {1, 2, . . . ,m}, the transition distribution is an m ×
m matrix Q and π is an m-dimensional vector π. In this case the joint distribution is

immediately identified by indicators f(x, y) = 1{(s,t)}(x, y) with fixed s, t ∈ S. Further

probabilities of interest are distribution functions and the distribution of the maximum or

minimum, i.e. with f equal to 1(x ≤ s, y ≤ t), 1{y ≤ t}, 1{min(x, y) ≤ t} or 1{max(x, y) ≤
t} for given s, t ∈ S. Other functions are nevertheless of interest, e.g. means, moments and

covariances.

We are interested in estimating Pf . The simplest estimator is the empirical estimator

Pf =
1

n

n∑
j=1

f(Xj−1, Xj).

It is efficient in the nonparametric model. We do, however, assume more structure, namely

that the stationary distribution P fulfills a linear constraint Ph = 0 for some vector-valued

function h on S2 × [0,∞), e.g. that certain moments or quantiles are known. Another

example is h(X0, X1) = X1 − m(X0) with m a known function. Then E[h(X0, X1)] =

E[E(X1|X0) −m(X0)] = 0 is satisfied if m(X0) = E(X1|X0), i.e. the regression of X1 on

X0 is a known function.

We will show (in Section 3) that we can use this constraint in different ways to improve

the empirical estimator Pf . Our main focus will be on the blockwise empirical likelihood

method, which was introduced by Kitamura (1997) for weakly dependent (discrete-time)

processes. It has been applied in particular to various time series models; see e.g. Wu and

Cao (2011), Nordman et al. (2013), Kim et al. (2013), Zhang and Shao (2016), Jiang and

Wang (2018). We will utilize the version by Schick (2024) for Markov chains.
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Here Kitamura’s approach leads to the blockwise weighted empirical estimator defined in

(3.2). A second, simpler, estimator is the blockwise additively corrected empirical estimator

defined in (3.4). We also look at a version without blocks, the additively corrected empir-

ical estimator (3.1), which was first introduced for Markov chains in Müller, Schick and

Wefelmeyer (2001). All three estimators are asymptotically equivalent and asymptotically

efficient in the sense of a nonparametric version of the convolution theorem of Hájek and

Le Cam.

This paper is organized as follows. In Section 2 we characterize efficient estimators.

We do so by deriving a version of the convolution theorem for our setting. It leads to a

characterization of efficient estimators by means of their influence functions, which must

equal the canonical gradient for Pf = E[(f(X0, Y0)]. The characterization is provided in

Theorem 2. In Section 3 we present the results for the three estimators, beginning with

the additively corrected estimator in Theorem 3, whose construction is suggested by the

efficiency considerations from Section 2. In Theorem 4 we treat the blockwise weighted

estimator. The proof of this theorem rests on three lemmas. In one of these lemmas

we derive a stochastic expansion, which suggests the third blockwise additively corrected

estimator that can be handled using existing results. The efficiency statement for this last

estimator is formulated in Theorem 5. A small simulation study for a simple setting with a

one-dimensional constraint concludes Section 3. The proofs of the lemmas and of Theorem 4

are in Section 4.

2 A characterization of efficient estimators

We assume that the Markov chain is stationary with stationary distribution π. We want to

estimate expectations Pf of unbounded functions f . The constraint Ph = 0 also typically

involves an unbounded h, for example when we assume that the embedded Markov chain

has mean zero. This is why we assume L2(π)-ergodicity rather than uniform ergodicity.

The results also hold under the more flexible V -ergodicity, for which we refer to Meyn and

Tweedie (1993) and Schick and Wefelmeyer (2002). Let ‖g‖ = π(g2)1/2 denote the norm

of a function g ∈ L2(π), and let ‖K‖ = sup{‖Kg‖ : ‖g‖ = 1} denote the corresponding

operator norm of a kernel K on S×S. With the stationary distribution π(dy) we associate

the kernel Π(x, dy) = π(dy) that does not depend on x. Exponential L2(π)-ergodicity of

the Markov chain is implied by the condition ‖Q−Π‖ < 1.

In order to characterize efficient estimators, we show that the distribution of the ob-

servations X0, X1, . . . , Xn is locally asymptotically normal in the following nonparametric
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sense. Let

U = {u ∈ L2(P ) : Qu = 0}.

For each u ∈ U we can construct a perturbation Qnu of Q that is Hellinger differentiable

with derivative u,

P
((dQnu

dQ

)1/2
− 1− 1

2
n−1/2u

)2
= o(n−1).

Write P (n) and P
(n)
nu for the joint law of the observations under Q and Qnu, respectively.

Let N denote a standard normal random variable. The following theorem shows nonpara-

metric local asymptotic normality. Different proofs are in Penev (1991), Bickel (1993), and

Greenwood and Wefelmeyer (1995).

Theorem 1. Assume that ‖Q−Π‖ < 1. Let u ∈ U . Then

log
dP

(n)
nu

dP (n)
(X0, . . . , Xn) = n−1/2

n∑
j=1

u(Xj−1, Xj)−
1

2
Pu2 + op(n

−1/2)

and

n−1/2
n∑
j=1

u(Xj−1, Xj)⇒ (Pu2)1/2N.

In what follows we use the notation

Qxg =

∫
Q(x, dy)g(x, y), Qtxg =

∫
Qt(x, dy)g(x, y),

with Qt+1(x,B) =
∫
Q(x, dy)Qt(y,B) for B ∈ S and t ≥ 1 a non-negative integer. This

gives, in particular,

Q2(x,B) =

∫
Q(x, dy)Q1(y,B) =

∫
Q(x, dy)Q(y,B).

From Kartashov (1985a, 1985b, 1996) we obtain the following perturbation expansion

for g ∈ L2(P ):

(2.1) n1/2(Pnug − Pg)→ P (uAg) for u ∈ U

with Ag determined by

(2.2) Ag(x, y) = g(x, y)−Qxg +

∞∑
t=1

(Qtyg −Qt+1
x g).

For g ∈ L2(P ), the martingale approximation of Gordin (1969) and Gordin and Lif̌sic

(1978) is

(2.3) n−1/2
n∑
j=1

(g(Xj−1, Xj)− Pg) = n−1/2
n∑
j=1

Ag(Xj−1, Xj) + op(1),
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By a central limit theorem for martingales, the right side is asymptotically normal with

variance P [(Ag)2].

Now suppose that the stationary distribution P fulfills the constraint Ph = 0 for some

d-dimensional vector of functions h ∈ Ld2(P ). The constraint also holds for the perturbed

stationary distribution Pnu, and we obtain from (2.1), applied to the components of h, that

P (uAh) = 0. The perturbations u are therefore constrained to

Uh = {u ∈ U : P (uAh) = 0}.

The stochastic expansion in Theorem 1 involves a norm (Pu2)1/2 on U . By the perturbation

expansion (2.1), applied to f , we see that the functional Pf is differentiable at P with

gradient Af ∈ U in the sense that

n1/2(Pnuf − Pf)→ P (uAf) for u ∈ U.

The canonical gradient under the constraint Ph = 0 is the projection of Af onto Uh. By

definition of Uh, the space U has the orthogonal decomposition U = Uh ⊕ [Ah], where [Ah]

is the linear span of the components of Ah. Hence the canonical gradient of Pf can be

written uh = Af − u⊥h , where u⊥h is the projection of uh onto [Ah] = U⊥h . Assuming that

P (AhAh>) is positive definite, this projection is of the form u⊥h = c>hAh with

ch = P (AhAh>)−1P (AhAf).

We obtain the canonical gradient

uh = Af − P (Af Ah>)P (AhAh>)−1Ah.

An estimator ϑ̂ is called asymptotically linear for Pf at P with influence function v if

v ∈ U and

n1/2(ϑ̂− Pf) = n−1/2
n∑
j=1

v(Xj−1, Xj) + op(1).

Given the constraint Ph = 0, an estimator ϑ̂ is called regular for Pf at P with limit L

if L is a random variable such that

n1/2(ϑ̂− Pnuf)⇒ L for u ∈ Uh.

The convolution theorem of Hájek (1970) then says that L = P (u2h)1/2N + M with M

independent of N . This justifies calling ϑ̂ efficient if L = P (u2h)1/2N . The convolution

theorem also implies the following characterization of efficient estimators. We refer to

Bickel, Klaassen, Ritov and Wellner (1998).
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Theorem 2. Assume that ‖Q − Π‖ < 1. Let f ∈ L2(P ) and h ∈ L2(P ) with Ph = 0

and P (AhAh>) positive definite. Under the constraint Ph = 0, an estimator ϑ̂ for Pf is

efficient at P if and only if ϑ̂ is asymptotically linear for Pf at P with influence function

equal to the canonical gradient uh,

(2.4) n1/2(ϑ̂− Pf) = n−1/2
n∑
j=1

uh(Xj−1, Xj) + op(1).

The asymptotic variance of such an estimator ϑ̂ is

P (u2h) = P ((Af)2)− P (Af Ah>)P (AhAh>)−1P (AhAf).

This should be compared with the asymptotic variance of the empirical estimator Pf =

(1/n)
∑n

j=1 f(Xj−1, Xj), which is P ((Af)2). In the next section we construct three efficient

estimators for Pf under the constraint Ph = 0.

3 Three efficient estimators

By the characterization of efficient estimators for Pf under the constraint Ph = 0, given

in Theorem 2, equation (2.4), an efficient estimator must be asymptotically equivalent to

Pf +
1

n

n∑
j=1

uh(Xj−1, Xj)

= Pf +
1

n

n∑
j=1

(
Af(Xj−1, Xj)− P (Af Ah>)P (AhAh>)−1Ah(Xj−1, Xj)

)
=

1

n

n∑
j=1

(
f(Xj−1, Xj)− P (Af Ah>)P (AhAh>)−1h(Xj−1, Xj)

)
+ op(n

−1/2)

= Pf − γ>Σ−1
1

n

n∑
j=1

h(Xj−1, Xj) + op(n
−1/2).

The unknown expectations γ = P (Af Ah and Σ = P (AhAh>) can be estimated with

empirical estimators. This is the approach of Müller, Schick and Wefelmeyer (2001), to

which we refer for the proof. They introduce the additively corrected empirical estimator of

Pf

(3.1) Paf = Pf − γ̂>a Σ̂−1a
1

n

n∑
j=1

h(Xj−1, Xj).
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Here γ̂a is an empirical estimator for P (AhAf) and Σ̂a is an empirical estimator for

P (AhAh>),

γ̂a =
1

n

n∑
j=1

h(Xj−1, Xj)f(Xj−1, Xj)

+
m∑
k=1

1

n− k

n−k∑
j=1

(
h(Xj−1, Xj)f(Xj+k−1, Xj+k) + h(Xj+k−1, Xj+k)f(Xj−1, Xj)

)
,

Σ̂a =
1

n

n∑
j=1

h(Xj−1, Xj)h
>(Xj−1, Xj) + 2

m∑
k=1

1

n− k

n−k∑
j=1

h(Xj−1, Xj)h(Xj+k−1, Xj+k),

with m tending to infinity more slowly than the sample size n.

Theorem 3. (First estimator) Assume that ‖Q−Π‖ < 1. Let f ∈ L2(P ) and h ∈ Ld2(P )

with Ph = 0 and P (AhAh>) positive definite. Under the constraint Ph = 0, the additively

corrected estimator Paf from (3.1) is asymptotically linear in the sense of (2.4) for Pf at

P with influence function uh, and therefore regular and efficient for Pf .

A different improvement of the empirical estimator Pf consists in weighting it appro-

priately. The empirical likelihood of Owen (1988, 2001) was developed for independent

observations. For (weakly) dependent observations we can use the blockwise empirical like-

lihood introduced by Kitamura (1997). Decompose (the initial section of) the time points

1, . . . , n into ν = bn/mc disjoint blocks of length m, where m tends slowly to infinity with

the sample size n. For the sake of simplicity we assume in the following that ν is exactly

n/m, and therefore n = νm. For i = 1, . . . ,m and k ∈ L2(P ) we introduce the i-th block

average

Bik =
1

m

m∑
l=1

k(X(i−1)m+l−1, X(i−1)m+l)

and set

Fi = Bif and Hi =


Bih1

...

Bihd

 .

Then the empirical estimator for Pf based on n = νm observations can be written Pf =

ν−1
∑ν

i=1 Fi. The blockwise weighted empirical estimator for Pf is

(3.2) Pwf =
1

ν

ν∑
i=1

Fi
1 + ζ>ν Hi
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with random vector ζν chosen such that 1 + ζ>ν Hi > 0, i = 1, . . . , ν, and

ν∑
i=1

Hi

1 + ζ>ν Hi
= 0.

Such a random vector exists on an event with probability tending to one. On its complement

we set ζν equal to zero. On that event Pwf coincides with the empirical estimator Pf .

We will need the following assumption throughout.

Assumption 1. Assume that ‖Q−Π‖ < 1. Let the length of the blocks m and the number

of blocks ν = n/m tend to infinity such that m2 = O(ν) as n→∞.

Theorem 4. (Second estimator) Assume that Assumption 1 is satisfied. Let f ∈ L2(P )

and h ∈ Ld2(P ) with Ph = 0 and P (AhAh>) positive definite. Then the blockwise weighted

empirical estimator Pwf from (3.2) is asymptotically linear in the sense of (2.4) for Pf at

P with influence function uh. In particular, Pwf is regular and efficient.

The proof of Theorem 4 is provided in Section 4. It is based on the following three

lemmas, which are also proved in Section 4.

Lemma 1. Assume that Assumption 1 is satisfied and that h ∈ Ld2(P ) with Ph = 0. Then

m1/2 max
1≤i≤ν

‖Hi‖ = op(ν
1/2).

Lemma 2. Assume that Assumption 1 is satisfied and that k1, k2 ∈ L2(P ) with Pk1 =

Pk2 = 0. Then
m

ν

ν∑
i=1

Bik1Bik2
P−→ P (Ak1Ak2).

Lemma 3. Assume that Assumption 1 is satisfied. Let f ∈ L2(P ) and h ∈ Ld2(P ) with

Ph = 0. Under the constraint Ph = 0, the estimator Pwf admits the stochastic expansion

(3.3) Pwf = Pf − 1

ν

ν∑
i=1

FiH
>
i

(1

ν

ν∑
i=1

HiH
>
i

)−1 1

ν

ν∑
i=1

Hi + op(n
−1/2).

We finally consider our third estimator, the blockwise additively corrected empirical es-

timator, which is suggested by the above expansion (3.3),

(3.4) Pbf = Pf − 1

ν

ν∑
i=1

FiH
>
i

(1

ν

ν∑
i=1

HiH
>
i

)−1 1

ν

ν∑
i=1

Hi.

That the estimator Pbf is also regular and efficient, is an immediate consequence of (3.3)

and Theorem 4. We provide this result in the following theorem.
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Theorem 5. (Third estimator) Suppose the assumptions of Theorem 4 are satisfied.

Then the blockwise additively corrected empirical estimator Pbf of Pf given in (3.4) is

regular and efficient under the constraint Ph = 0.

The two additively corrected estimators Pa and Pb from Theorem 3 and Theorem 5 have

a similar form and are essentially the same. To see this consider the first estimator

Paf = Pf − γ̂>a Σ̂−1a
1

ν

ν∑
i=1

h(Xi−1, Xi),

which involves two (consistent) empirical estimators γ̂a and Σ̂a to estimate γ = P (AfAh)

and Σ = P (AhAh>), respectively. The third estimator has the same structure, but uses

instead γ̂b = m/ν
∑ν

i=1 FiHi and Σ̂b = m/ν
∑ν

i=1HiH
>
i in place of γ̂a and Σ̂a. In the proof

of Theorem 4 we show with the help of Lemma 2 that these estimators are also consistent

for γ and Σ, so the two approaches are indeed asymptotically equivalent. The estimators

m/ν
∑ν

i=1 FiHi and m/ν
∑ν

i=1Hih
>
i remain consistent if we replace Hi by Hi − H̄ with

H̄ = 1/ν
∑ν

i=1Hi = 1
n

∑n
j=1 h(Xj−1, Xj). We denote this version of Pbf by Pcf , i.e.,

(3.5) Pcf = Pf − 1

ν

ν∑
i=1

Fi(Hi − H̄)>
(1

ν

ν∑
i=1

(Hi − H̄)(Hi − H̄)>
)−1 1

ν

ν∑
i=1

Hi.

In our limited simulations (see Table 1 below) Pcf performed better than Pbf .

In order to examine the finite sample behavior of our proposed approach we conducted

a small simulation study in a simple autoregressive model of order 1, Xi = ρXi−1 + εi,

with ρ = 0.5, εi ∼ N(0, 1), i = 1, . . . , n = 200, initial value X0 ∼ N(0, 1/(1 − ρ2)) and

one-dimensional constraint

E[h(Xi−1, Xi)] = E[Xi − ρXi−1] = E[εi] = 0.

This constraint is automatically incorporated since the innovations are generated from a

standard normal distribution.

We compared the empirical estimator Pf with the blockwise weighted empirical estima-

tor Pwf that uses empirical likelihood weights and with the blockwise additively corrected

estimators Pbf and Pcf . We did not include estimator Paf in the study since Pbf and Pcf
are of the same type and are easier to compute.

In our scenario with one-dimensional constraint E[h(Xi−1, Xi)] = E[εi] = 0, the block

average Hi in block i becomes the block average of the innovations in block i, Hi = ε̄i, and

the estimator Pbf and Pcf simplify to

Pbf = Pf −
ν−1

∑ν
i=1 Fiε̄i

ν−1
∑ν

i=1 ε̄
2
i

1

ν

ν∑
i=1

ε̄i, Pcf = Pf −
ν−1

∑ν
i=1 Fi(ε̄i − ε̄)

ν−1
∑ν

i=1(ε̄i − ε̄)2
1

ν

ν∑
i=1

ε̄i,
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with ε̄ = n−1
∑n

j=1 εj the grand average of the innovations. In order to compare the above

estimators of expectations Pf we consider five functions f . The simulated means and the

simulated mean squared errors of the estimators are given in Table 1.

f(x, y) Pf Pwf Pbf Pcf

1(y < 0) mean 0.500 0.500 0.475 0.500

n*MSE 0.572 0.113 0.315 0.112

1(min(x, y) > 0) mean 0.334 0.333 0.315 0.331

n*MSE 0.637 0.191 0.285 0.191

y/
√

1 + x2 mean 0.000 0.000 0.000 0.000

n*MSE 1.681 1.681 0.069 0.080

max(x, y) mean 0.462 0.460 0.438 0.461

n*MSE 4.123 4.011 0.438 0.299

xy mean 0.667 0.665 0.604 0.633

n*MSE 4.580 4.569 5.163 4.815

Table 1: The table entries are the simulated means and the simulated mean squared errors (multi-

plied with the sample size n = 200) for the empirical estimator Pf , the blockwise weighted estimator

using empirical likelihood weights Pwf and the blockwise additively corrected estimators Pbf and

Pcf . The number of blocks is ν = 20 and the block size is m = 10. The simulation results are based

on 100, 000 repetitions.

The simulation results in Table 1 show that the proposed approaches perform about as

well or are better than the empirical estimator Pf . The figures for the first two functions are

especially good: the blockwise weighted estimator and the additively corrected estimator

all have clearly smaller MSE’s than the empirical estimator. The results for the third

and fourth function are clearly in favor of the additively corrected estimators, whereas the

blockwise weighted and the empircial estimator perform similarly. The fifth function is an

example where all estimators perform in a similar way, i.e. weighting or adding a correction

term to Pf does not lead to an improvement. Overall, estimator Pcf seems to work best in

the considered scenario.

4 Proofs.

Proof of Theorem 4. By the martingale approximation (2.3) we have

Pf =
1

n

n∑
j=1

f(Xj−1, Xj) = Pf +
1

n

n∑
j=1

Af(Xj−1, Xj) + op(n
−1/2)
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and

(4.1)
1

ν

ν∑
i=1

Hi =
1

n

n∑
j=1

h(Xj−1, Xj) =
1

n

n∑
j=1

Ah(Xj−1, Xj) + op(n
−1/2) = Op(n

−1/2).

In view of these two expansions and Lemma 3, the desired result follows if we verify the

following,

(4.2)
m

ν

ν∑
i=1

FiHi = P (AfAh) + op(1),

(4.3)
m

ν

ν∑
i=1

HiH
>
i = P (AhAh>) + op(1).

It follows from Lemma 2, applied with k1 = f − Pf and k2 = ha, a = 1, . . . , d, that

m/ν
∑ν

i=1Bi(f−Pf)Biha, which is the a-th coordinate of m/ν
∑ν

i=1(Fi−Pf)Hi, converges

in probability to P (A(f −Pf)Aha), which equals the a-th coordinate of P (AfAh) because

APf = 0. This and (4.1) show

m

ν

ν∑
i=1

FiHi =
m

ν

ν∑
i=1

(Fi − Pf)Hi + Pf
(m
ν

ν∑
i=1

Hi

)
= P (AfAh) + op(1).

Applying Lemma 2 with k1 = ha and k2 = hb for a, b = 1, . . . , d establishes (4.3).

Proof of Lemmas 1 and 2. Let k ∈ L2(P ) with Pk = 0 and set l = Ak with Ak defined

in (2.2). For i = 1, . . . , n, set

Ki = m−1/2
m∑
j=1

k(X(i−1)m+j−1, X(i−1)m+j),

Li = m−1/2
m∑
j=1

l(X(i−1)m+j−1, X(i−1)m+j).

In Schick (2024, Theorem 5) a Wilks’ type theorem for a blockwise empirical likelihood

for Markov chains under a conditional Lindeberg condition is presented. In the proof the

following results are derived under Assumption 1.

E(Li|X0, . . . , X(i−1)m) = 0, j = 1, . . . , ν,

(4.4)
1

ν

ν∑
i=1

E(L2
i |X0, . . . , X(i−1)m) = P (l2) + op(1),
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(4.5)
1

ν

ν∑
i=1

E(L2
i1[|Li| > ην1/2]|X0, . . . , X(i−1)m) = op(1), η > 0,

(4.6)
1

ν

ν∑
i=1

(Ki − Li)2 = op(1).

It follows from (4.4) and (4.5) that ν−1
∑ν

i=1 L
2
i = P (l2) + op(1), and this and (4.6) imply

(4.7)
1

ν

ν∑
i=1

K2
i = P (l2) + op(1).

It follows from (4.5) that max1≤i≤ν |Li| = op(ν
1/2) and from (4.6) that max1≤i≤ν |Ki−Li|2 ≤∑ν

i=1(Ki − Li)2 = op(ν). Thus we have

(4.8) max
1≤i≤ν

|Ki| = op(ν
1/2).

The conclusion of Lemma 1 follows from the inequality

m1/2 max
1≤i≤ν

‖Hi‖ ≤
d∑
a=1

max
1≤i≤ν

|m−1/2
n∑
j=1

ha(X(i−1)m+j−1, X(i−1)m+j)|

and (4.8) applied with k = h1, . . . , k = hd. To obtain the conclusion of Lemma 2, write Ki,a

for Ki if k = ka, a = 1, 2, set la = Aka, and form the matrices

Mn =
1

ν

ν∑
i=1

[
K2
i,1 Ki,1Ki,2

Ki,2Ki,1 Ki,2

]
and M =

[
P (l21) P (l1l2)

P (l2l1) P (l22)

]
.

Fix a unit vector u = (u1, u2)
> in R2. Applying (4.7) with k = u1k1 + u2k2, we derive

u>Mnu =
1

ν

ν∑
i=1

K2
i = P (Ak)2) = u>Mu.

Since this holds for all unit vectors, we conclude that Mn = M + op(1) and this gives

1

ν

ν∑
i=1

Ki,1Ki,2 =
m

ν

ν∑
i=1

Bik1Bik2 = P (l1l2) + op(1)

which is the conclusion of Lemma 2.

Proof of Lemma 3. For the proof of the expansion provided in this lemma we will use

several technical arguments provided in Peng and Schick (2013) Chapters 5 and 6 and

12



adapt them to our scenario. Recall that Hi = m−1
∑m

k=1 h(X(i−1)m+k−1, X(i−1)m+k) with

h = (h1, . . . , hd)
>. Write

H∗ν = max
1≤i≤ν

‖Hi‖, H̄ν =
1

ν

ν∑
i=1

Hi, H(k)
ν = sup

|u|=1

(1

ν

ν∑
i=1

(u>Hi)
k
)
, k = 1, 2, . . .

Sν =
1

ν

ν∑
i=1

HiH
>
i and Tν =

1

ν

ν∑
i=1

FiHi.

Further let λν and Λν denote the smallest and largest eigenvalue of Sν ,

λν = inf
|u|=1

u>Sνu, Λν = sup
|u|=1

u>Sνu.

Peng and Schick (2013) consider random vectors with fixed and increasing dimension as

the sample size n tends to infinity. In contrast to that paper, we consider d-dimensional

vectors of block averages, with d fixed, where the number of blocks ν and also the length of

the blocks m increases as n → ∞. Instead of assumptions (A1)–(A3) in Peng and Schick

(2013) Section 6 we will therefore need the following three conditions that are adapted to

the different asymptotics considered here.

(C1) m1/2H∗ν = op(ν
1/2),

(C2) H̄ν = Op(n
−1/2),

(C3) mSν = P (AhAh>) + op(1).

The first condition is Lemma 1. Conditions (C2) and (C3) are derived in the proof of

Theorem 4 and follow from Lemma 2.

Condition (C3) guarantees that there are numbers a and b, 0 < a < b with P (a ≤
mλν ≤ mΛν ≤ b) → 1. Therefore the probability of the event {λν > 5H∗ν‖H̄ν‖} tends to

one. On this event the assumptions of Lemma 5.2 in Peng and Schick (2013) are satisfied,

which guarantees that a unique d-dimensional random vector ζν exists with 1 + ζ>ν Hi > 0,

i = 1, . . . , ν, and

(4.9)
1

ν

ν∑
i=1

Hi

1 + ζ>ν Hi
= 0.

We refer to Peng and Schick (2013) for details.

The error term in (3.3) is

Rn = Pwf − Pf +
1

ν

ν∑
i=1

FiH
>
i

(1

ν

ν∑
i=1

HiH
>
i

)−1 1

ν

ν∑
i=1

Hi

=
1

ν

ν∑
i=1

( Fi
1 + ζ>ν Hi

− Fi + FiH
>
i S
−1
ν H̄ν

)
.

13



We need to show that it has order op(n
−1/2). As a first step, we bound its absolute value

by a sum of two terms,

(4.10) |Rn| ≤
∣∣∣1
ν

ν∑
i=1

( Fi
1 + ζ>ν Hi

− Fi + FiH
>
i ζν

)∣∣∣+
∣∣∣1
ν

ν∑
i=1

FiH
>
i (S−1ν H̄ν − ζν)

∣∣∣.
In order to obtain the desired rate op(n

−1/2) for both terms, we will use some auxiliary

results from Peng and Schick (2013) Chapter 5. We begin with a brief review of these

results, adapted to our setting.

Let u be a unit vector such that ζν = ‖ζν‖u. From (4.9) we obtain

0 =
1

ν

ν∑
i=1

u>Hi(1 + ζ>ν Hi − ζ>ν Hi)

1 + ζ>ν Hi
= u>H̄ν − ‖ζν‖

1

ν

ν∑
i=1

(u>Hi)
2

1 + ζ>ν Hi
.

This and the inequality

λν ≤ u>Sνu =
1

ν

ν∑
i=1

(u>Hi)
2 ≤ 1

ν

ν∑
i=1

(u>Hi)
2(1 + ‖ζν‖H∗ν )

1 + ζ>ν Hi

yield λν‖ζν‖ ≤ (1 + ‖ζν‖H∗ν )u>H̄ν ≤ (1 + ‖ζν‖H∗ν )‖H̄ν‖ and thus

(4.11) ‖ζν‖ ≤
‖H̄ν‖

λν − ‖H̄ν‖H∗ν
.

From this we derive

‖ζν‖H∗ν ≤ ‖H̄ν‖H∗ν
λν − ‖H̄ν‖H∗ν

<
1

4
,(4.12)

max
1≤i≤ν

1

1 + ζ>ν Hi
≤ 1

1 + ‖ζν‖H∗ν
<

4

3
,(4.13)

1

ν

ν∑
i=1

(ζ>ν Hi)
2 = ζ>ν Sνζν ≤ Λν‖ζν‖2 ≤

Λν‖H̄ν‖2

(λν − ‖H̄ν‖H∗ν )2
.

We can write 1/(1 + d)− 1 + d = d2/(1 + d). This identity with d = ζ>ν Hi and (4.13) yield

for vectors r1, . . . , rν of the same dimension

(4.14)
∥∥∥1

ν

ν∑
i=1

( ri
1 + ζ>ν Hi

− ri + riH
>
i ζν

)∥∥∥ ≤ ∥∥∥1

ν

ν∑
i=1

ri
(ζ>ν Hi)

2

1 + ζ>ν Hi

∥∥∥
Taking ri = S−1ν Hi we obtain in view of (4.9)

‖ζν − S−1ν H̄ν‖ ≤
∥∥∥1

ν

ν∑
i=1

S−1ν Hi
(ζ>ν Hi)

2

1 + ζ>ν Hi

∥∥∥ = sup
‖u‖=1

1

ν

ν∑
i=1

u>S−1ν Hi
(ζ>ν Hi)

2

1 + ζ>ν Hi
.

14



where we used the formula ‖x‖ = sup‖u‖=1 u
>x in the last step. We now use the Cauchy-

Schwarz inequality, (4.12) and the identity (u>S−1ν Hi)
2 = u>S−1ν HiH

>
i S
−1
ν u to obtain the

bound

‖ζν − S−1ν H̄ν‖2 ≤ sup
‖u‖=1

u>S−1ν u
1

ν

ν∑
i=1

(ζ>ν Hi)
4

(1 + ζ>ν Hi)2
≤ 16

9λν
‖ζν‖4H(4)

ν .

The eigenvalues mλν and mΛν of mSν are finite and bounded away from zero on an event

tending to 1 in probability. Inequality (4.11) combined with rates m1/2H∗ν = op(ν
1/2) and

H̄ν = Op(n
−1/2) specified in (C1) and (C2) yield

(4.15) ‖ζν‖ ≤
m‖H̄ν‖

mλν −m‖H̄ν‖H∗ν
= Op(mn

−1/2).

Since the term H
(4)
ν is bounded by Λν(H∗ν )2 = op(ν/m

2) = op(n/m
3), we have

(4.16) ‖ζν − S−1ν H̄ν‖2 = Op(m)Op

(m4

n2

)
op

( n

m3

)
= op

(m2

n

)
.

We are now in a position to derive the desired order op(n
−1/2) for the error term in (3.3)

and return to the two terms on the right-hand side of (4.10). Let us consider the second

term first. It follows from (4.2) that ‖Tν‖ = Op(1/m). This and (4.16) give

∣∣∣1
ν

ν∑
i=1

FiH
>
i (S−1ν H̄ν − ζν)

∣∣∣ ≤ ‖Tν‖‖S−1ν H̄ν − ζν‖ = op(n
−1/2).

The first term on the right-hand side of (4.10) is bounded by the sum∣∣∣1
ν

ν∑
i=1

( Fi − Pf
1 + ζ>ν Hi

− (Fi − Pf) + (Fi − Pf)H>i ζν

)∣∣∣+ |Pf |‖H̄ν‖‖ζν‖

The second summand is of order Op(m/n) = op(n
−1/2) in view of (C2) and (4.15). We

use inequality (4.14), this time with F̃i = Fi − Pf in place of ri, and the Cauchy-Schwarz

inequality to bound the square of the first summand by

1

ν

ν∑
i=1

F̃ 2
i

1

ν

ν∑
i=1

(ζ>ν Hi)
4

(1 + ζ>ν Hi)2
≤ 1

ν

ν∑
i=1

F̃ 2
i

16

9
‖ζν‖4H(4)

ν = Op

( 1

m

)
Op

(m4

n2

)
op

( n

m3

)
= op

( 1

n

)
.

The order follows from (4.15), H
(4)
ν = op(n/m

3) and

E
(1

ν

ν∑
i=1

F̃ 2
i

)
= E(F̃ 2

1 ) = O
( 1

m

)
.
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