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Stochastic resonance in a statistical model of a time-integrating detector
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We study an optimal nonparametric regression model for a threshold detector exposed to a noisy, subthresh-
old signal. The problem of recovering the signal is similar to that faced by neurons in nervous systems,
although our model is intended to be normative rather than realistic. In our approach, the time-integrating
activity of the neuron is modeled by kernel regression. Several aspects of the performance of the model are
studied, including the existence of an optimal amount of n@#echastic resonancéVe construct a sequen-
tial, data-driven procedure for estimating the subthreshold signal. The performance of our model for threshold
data is compared with kernel estimation for fully observed data. Finally, we discuss differences between our
estimator and the best estimator for a constant signal.

PACS numbes): 87.10+e, 05.45-a, 02.50.Ph, 05.40.Ca

[. INTRODUCTION exposed to an arbitrary subthreshold signal embedded in
noise. This could be the situation of a single neuron in a
Stochastic resonand&R) is a nonlinear cooperative ef- neural network. The noise is composed of rapidly varying,
fect in which large-scale stochastic fluctuatiorie.g., unsynchronized inputs from perhaps 1000 other neurons, and
“noise”) are entrained by an independent, often but not necthe signal may be longer time scale variations in the input of
essarily, periodic, weak fluctuatiofor “signal”’) with the  one specific neurofor a few synchronized ongghat is by
result that the weaker signal fluctuations are amplifiseke  itself insufficient to drive the neuron of interest. Nonetheless,
[1] for a review. Classical SR in physical systems has beerthe output of the latter neuron could become synchronized
generalized to include noise-enhanced signal detection exvith the variations in the input of the subthreshold signaling
hibited by a wide variety of information processing systemsneurorts) through the mechanism of SR, with the noise
including living ones. For example, it has been demonstratedamplifying” the signal.
that model excitable systems with one stable state and a Although a simple threshold detector can exhibit SR, it
threshold to an unstable excited state, such as model neurorssill lacks one other important property of neurons that is
exhibit this generalized form of SR—4]. With suitable tun- possessed by the next-most-simple model neuron, the
ing of the noise, such a model neuron can be so sensitive thittegrate-and-fire neurao@.g.,[2]). This model integrates its
it can detect a weak constant signal which elicits on averagmputs over a moving time window. In real neurons;s
only a single additional spike. This provides a mechanisnvaries from about 100 ms for sensory neurons, to 40—60 ms
for speedy neural response to such sighalsMoreover, the for inputs to the soma of pyramidal interneurons, and can be
generalized form of SR has also been demonstrated to exias short as 10 ms for inputs to the apical tufts of dendrites of
in a variety of living systems, including networks of neuronspyramidal neurons in the prefrontal cortgil]. Larger val-
[6]. Indeed, researchers have speculated that SR in this foroes ofr make neurons act as integrators while smaller values
is a fundamental and general principle of biological informa-such as those at the apical tufts, make them act as coinci-
tion processinde.g.,[7]). dence detector$l2]. The value ofr is set by the time
The study of systems that exhibit SR has been greatlgourses of various processes that affect the electrochemical
facilitated by the demonstration that a simple threshold destate of the neuron. At any time there is a complex balance of
tector also exhibits SRe.g.,[8]). Such a detector has no electrochemical forces influenced by synaptic and internal
dynamics and fires a pulse each time its input exceeds @vents with specific decay rates, plus the constant diffusion
threshold. Since SR is an aspect of the detectability of @f ions caused by electrical and concentration gradients and
signal in thresholded data, not of the dynamics that cause déctive pumps. The time-varying instantaneous firing rate of
[9], studying simple threshold detectors is sufficient forthe neuron (100@&t, whereAt is the interval between two
many purposes. Indeed, the simplest model of a neuron isuccessive action potentials in meflects the momentary
just such a simple threshold detec{d0]. In the present strengths of all of these forces, which are represented in
paper we consider the output of a single threshold detectdntegrate-and-fire models by the exponentially decaying in-
fluence of previous inputs.
The statistical technique of kernel regression can be re-
*Electronic address: uschi@math.uni-bremen.de; URL: http:/garded as an approach to formally modeling temporal inte-
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firing at a particular moment could be estimated from atheory, is called a nonparametric regression model
weighted regression on previous firings. The weighting func-

tion is called the “kernel” and corresponds to a filter, or a Y(t)=s(t)+e(t), i=1,...n,

smoothing function, in physical applications. Such regres-

sions are done routinely, albeit informally, in physics when awith equally spaced time points=i/n on[0,1], signals(t;),
smoothing function, such as a Gaussian distribution, is conand noise variablegcalled error variables in statistical
volved with a noisy signal to obtain time-averaged behaviortheory) «(t;) that are assumed to be independent and identi-
In fact there exists an extensive statistical literature orca|ly distributed(i.i.d.) with mean zero and continuous dis-
smoothing and signal processing. Mu [13] adapted statis- ripution functionF (the distribution function is the integral
tical smoothing methods from this literature to obtain a gen+f the probability density function regarded as a function of
eral and asymptotically optimal procedure for estimating gpe upper limil. Let a be a threshold that is larger than the
signal from thresholded data. The asymptotic mean'squarelaaximum of the regression functigsigna) s over the unit
error criterion adopted there is independent of sample SiZ€, 1arval. A detector records the times at which W) ex-

This criterion avoids a difficulty of correlation-type criteria . .
commonly used, viz., correlations become uniformly high atceeda. These exceedances can be coded as Bernoulli vari-

large sample sizesee[13] and Sec. . Previous studies of ables
numerical smoothing of model excitable system outputs with

a box-type kernel or of thresholded data with a Gaussian
kernel were done by the authors[@] and[14], respectively. e
However, both prev)i/ous studies [c%ﬂmput[ed]the c%rrelatign paVith distribution parameters
tween smoothed system outputs and signals rather than ap-
plying the mean-squared error criterion to estimates of the
signal, as we do here. . . .

In this paper we study the approach of léa[13], which Hence_t_h_e signal can be recovered from the just defined
represents a formal theory of the computational problenProbabilities as follows:
faced by neurons and other threshold detector systems at- 1
tempting to extract information from a subthreshold signal. s(t)=a—F "(1—p(t)).

The formal theory provides boundary conditions on possible _ o

neuronal computations, rather than describing in detail th hen the noise d'Str'bUt.'OF} is known, we can reconstruct
way in which neurons actually compute estimates of subth€ regression functiofsigna) from the threshold exceed-
threshold signals. In Sec. | we briefly describe the theoryances. Inserting a kernel estimamy(t) for p in the above
emphasizing the normal error distribution with variance  transformation, we can, in particular, estimate it by

In Sec. Il we provide a data-driven multistage estimation R R

procedure, which we illustrate for some typical signals. sp(ty=a—F 11— pu(1)).

Simulations show how the quality of the signal estimation

depends on the variance of the error, or noise, distribution.The estimatosy(t) is consistent, meaning that the probabil-

In Sec. Ill we discuss how the noise variance affects thety of its being within an arbitrary distance of the actual
mean-average-squared error of estimation, which is also gignal approaches 1 as the sample size on which the estimate
function of the signal and its first two derivatives. For somejs pased approaches infinity.
examples we determine the variane® for which the error In the case of a neuron, the noise distribution has been
of estimation is minimal, i.e., the stochastic resonance poinfgonsidered to be either Gaussian or Poisg®e[16] for a

Since the optimal noise level depends on the signal and itgiscussion In the case of a physical signal, it is usually
derivatives, the question arises whether there is a choice @fossible to make a theoretically based assumption as to the
o that is robust in the sense that the estimator for the signaloise distribution, or to approximate it empirically. In many
behaves well for a certain range of first and second derivacases the Gaussian distribution function will be a reasonable
tives. In Sec. IV we show that this is the case. approximation toF. Another possible technique for the case

In Sec. V we compare our estimator with classical kernebf unknownF is to employ estimates for several different
regression, which does not use thresholded data but full oliypes ofF and look for similarities in the form of the recov-
servations of signal plus noise. - . ered signal across distribution types. An estin&gtbased on

Greenwoockt al. [15] constructed efficient estimators for . incorrectly specified will still recover the form of the
constantsignal and given error variance. They calculated thesignal up to a scale transformation.
stochastic resonance point, thé for which the asymptotic  ~“i¢ i variance of the noise distribution is small, the real-
variance of the estimator is minimal. They argued that theif; 4ionsv (1) will rarely exceed the threshold, and the signal
result remains approximately valid for smooth nonconstantyi he hard to estimate. If the noise variance is very large
signals. However, the asymptotic mean-squared error of OUhe exceedance probabilitg(t) will be estimated with a '
estimator for nonconstant signals contains an additional biag e \ariance, and the estimator for the regression function
term that is not always negh_glbl_e. In Sec. VI we StL_'dy how i again be imprecise. This suggests that there is a, not
the stochastic resonance point is affected by this bias termpecesarily unique, noise variance for which the estimator of
the signal has a minimal asymptotic mean-squared error. We
call such a variance a stochastic resonance point.

We describe the typical noisy, subthreshold, signal treated For our investigations we used the Nadaraya-Watson ker-
in studies of stochastic resonance by what, in statisticahel estimator

X(t)=1(Y(t)>a), i=1,...n,

p(t)=P(Y(t))>a)=1—-F(a—s(tj)).

IIl. MODEL AND ESTIMATION
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"1 (t—t In this study we used the Epanechnikov kerr€(u)
E HK(T)X(t‘) =3/4(1—u2)1[,1'1](u), which minimizes, in the class of
f)h(t):':l (2.1) kernels considered, AM)SE with the optimal bandwidth
D1 [t ' inserted. For this kernel we havg(K)=3/5 and u,(K)
Z’l HK(T> =1/5. Although this choice of kernel is optimal, other ker-

nels would do nearly as well, for example, the Gaussian ker-
whereK denotes the kernel weighting function amdenotes  nel. An approach using the box or even asymmetrical kernels
the set of sample values to which the kernel is applied, calleé§ also conceivable, although it remains to be worked out. In
its bandwidth. The Nadaraya-Watson estimator is a commoRarticular, an asymmetrical kernel would be more appropri-
kernel estimator used in statistics for many kinds of data,ate to model the time-integration behavior of actual neurons,
including binary data such as our exceedances. The bangince presumably they do not know the future. We can
width of the kernel can be considered to represent the winspeculate, however, on the basis of some pilot work, that as

dow of temporal integration when applying the method to theong as the kernel contains sufficient time points and weights
case of a model neuron. For the estimatiorsg(t) at time them according to a reasonable function, considerable infor-

pointst e [h,1~h]C[0,1], K is a second-order kernel func- mation about the behavior of the subthreshold signal can be

tion, ie., [K(u)du=1, fuK(u)du=0, [uK(u)du#0 recovered from the exceedances alone.

. S - The bandwidth formulag2.4) and (2.5 are both of the
with bounded derivative and supprt 1,1]. Formally p,(t) form n~® times a constant, wherec depends on the prob-
has to be set to a constant if it takes values close to 0 or

hnical " ‘ N ho | ]ability function and its second derivative, i.e., on the un-
For technical details refer to Mer [13], who introduced | oyn signal. To guarantee consistency it is sufficient that

this approach and where also a discussion of the assumptio;*aS the order of magnitude 5. For good performance in

can be found. the finite sample situation the constarghould, however, be

We consider two poss_ible bandwidths, a local bandw.idth:hosen suitably. For our demonstrations we used plug-in
that can vary for each time point, and a global bandwidihy,eio4s je., we estimated the unknown functions and
that is constant for all time points. Our criteria for the ChOiceplugged them into the formulas above. This approach has, in
of optimal local and global bandwidths are the asymptoncthge classical setting with fully observed data, been shown to
mean-squared and mean-average-squared error, AMEE aB8rform more reliably than standard methods such as cross
AMASE. For the asymptoticsm—o,h=h,—0 and nh validation (see, for example[17]).

— they are approximations ofE(sy(t) —s(t))* and In this paper we interpreft0,1] as a time window that
13, 1E(s(t) —s(t))?. Here TC(0,1) denotes some sub- shows a representative part of a signal. The local bandwidth
interval of (0,1) to which, because of boundary effects, sumapproach was discarded since it is known to be too sensitive,
mation is usually restricted. The formulas given i8] are even in the simpler setting with full observatiofesg.,[18]),

and also proved to be so in our preliminary investigations in

AMSE B the present setting. We used the global bandwidth to estimate
v (h,t)—m %R(K)p(t)(l—p(t)) the signal at all time points if0,1] extending the kernel as
P P far as necessary outside that window. This was done by cal-
h* ) ) culating thresholded signal plus noise observations for the
+ 7 m2(K)7p (D) ) (22 extended time intervdl—0.5,1.5. The additional data were

used whenever the kernel overlapped the boundaries 0 and 1.
The global bandwidth formuld2.5) contains unknown

@AMASE(h):iR(K)E p(t)[1—p(1)] quantities that must be estimated in a preliminary way to get
nh N T f[F~X(p(t))]? started. For these pilot estimates we adapted a method from
4 Ruppertet al.[19] who investigated plug-in strategies for the
" h_ (K)zl E 1 (1) classical setting. The probability functigmand its second
4 M2 n{r f[F*l(p(t))]zp derivative p” were estimated with preliminary smoothers

with asymptotically optimal bandwidths derived analogously
(2.3 to the actual estimator. The unknown quantities appearing in
with kernel constants R(K)=[K2(u)du and u,(K) the new bandwidth formulas were estimated using a modifi-

— [u?K(u)du. The asymptotically optimal local and global c&tion of a “blocking method” developed by tdle and

bandwidths derived from these approximations are Marron [20] _ o .
For the preliminary estimation qf we used an estimator

— R(K)p(t)(1—p(1)) 1/5 0 simpler than the Nadaraya-Watson estimator, namely,
:n y .
o 12(K)?p" (1) 10 (-t
~ I
1/5 p}\(t):ﬁ Izl K T) X(tl)! (26)

R(K) X,

1
T TR P(H[1—p(t)]

—1/5

_ which is the Priestley-Chao estimator for the special case of
1 equidistant time points. The bandwidth is denoted\bgnd

" 2 -~
(®) K is again the Epanechnikov kernel. Sirggt) and the final
(2.5 probability estimatof)h(t) have the same asymptotic behav-

Ropt=n

2
e
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FIG. 1. Ten realizations of the estimation procedure(&®rs,(t) =t with ¢=0.59, average estimated bandwidit 0.16, and theoreti-
cally optimal bandwidti{Eq. (2.5)] h,yp=0.16; (b) s,(t) =sin(2at) with ¢=1.08, average bandwidth=0.09, andh,,;=0.08; (c) s;(t)
=sin(10rt) with o=1.08, average bandwidti= 0.03 andh,,,=0.02; and(d) s,(t)=t? as in(a) but with o=4.0. The signal and estimated
signals are shown by thick continuous and thin broken lines, respectively.

ior, the AMASE expressions ofp,(t) and s,(t)=a

—F~(py(t)) coincide up to the density weights coming in
through the transformation. In particular, the terms involving
the kernel constants are the same in both error formulas,

which explains the choice of the Epanechnikov kerKel
The optimal bandwidth for the preliminary smoothgi(t) is

1/5

R(K)tEZT p(t)(1—p(1))

)\Opt:nfl/s
m(K)ZtET p"(1)?

A natural estimator for the second unknown quantity2rb),
p//, iS

(2.7

with the kernelK satisfying the moment conditions;(K)
=fu'K(u)du=0 fori=0,1,3, uo(K)=2 andu,(K)=0, in
order to guarantee consistency. We used the kernel

105 630 , 525 ,
" 16 T eV e Y (W,

K(u)=

which is optimal(with respect to the mean-squared errior
the sense of Miler's theory( [21], p. 52 ff), i.e., it meets the

1/9

> p(H(A—p(t)
teT

R(K)

7S ey
teT

—-1/9 720

x| R

(
Jopt=N
al

with kernel constant®(K) =35 andu,(K)=4/3.

With (2.6) and (2.7) the necessary formulas for the pre-
liminary smoothing are provided. However, the formulas for
the optimal bandwidtha ,,; and g, still depend onp and
its derivativesp” andp!). These quantities were, in an ini-
tial step, determined by a simple procedure. We used a vari-
ant of a “blocking method” developed by Hdle and Mar-
ron [20] but with the number of blocks chosen by Mallows’
C, criterion[22] as suggested by Ruppeittal.[19]. For this
method the interval 0,1] is divided intoNe{1, ... Npyag
equally sized blocks. For our examples we chigg,,= 10,
which is suitably small to reduce the chance of overfitting
and, what is more important here, to ensure that there are
enough exceedances in every block so that the estimator ex-
ists. In contrast to Ruppeet al. who fit quartics, we fitted a
logistic curve to each block, i.e., a probability function
p(t)=e*"AY(1+e**#Y). The combination of thé& logistic
fits then represents an initial estimatefThe derivatives
are derived from this fit. Since we wanted to estimate prob-
abilities, the logistic regression has the advantage of produc-
ing estimates between 0 and 1. Moreover, the fourth deriva-
tives needed fog,,; are nonzero. Our rule for choosing an

moment condition and has no more sign changes than neoptimal number of blocks, and hence the optimal logistic fit,
essary. The optimal bandwidth derived from the meanwas the same as [19]: We took theN e {1, ... Nya. that

average-squared error f)g is

minimized Mallows’Cp criterion,
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FIG. 3. Plot ofn*Sinf,@AMASE(h) vs ¢ for (a) s,(t)=t2, (b)

FIG. 2. Si imati =0.8-0. [ 3)/t2 . ,
G Signal estimation 06,(t)=0.8—0.025 sin(16rt)/t 5,(1) = sin(2nt) (dots, andss(t) =sin(10mt) (open squares

with 0=0.76 and estimated bandwidth=0.10. Signal and esti-

mated signals are shown by continuous and broken lines, respec- ) ) )
tively. tion technique does a good job of capturing the low-

frequency content, but fails to accurately estimate the signal
R(N) at the high-frequency end. Again, this is because we used a
= —(n—10N). global optimum bandwidth 0.10, which is near thatsgft)
R(Nmax)/(N—5Nma0 and does well for the components near 1 Hz. The bandwidth
needs to be narrower to accurately capture the higher fre-
Here R(N) stands for the residual sum of squares based oguency variation, although, of course, a higher sample rate
logistic fits overN blocks. The initial estimate gb needed would also be needed to provide equal accuracy with the
for Nopt @andgop is the logistic fit overN blocks. narrower bandwidth. It might be possible to use the local
Although the procedure is applicable to all signals of ar-Pandwidth in such cases, providing an upper limit, such as
bitrary shape, we demonstrate it here for three characteristi®€ global bandwidth, is used to avoid degeneracy when
exampless, (t) =t?, s,(t)=sin(2at), and sz(t)=sin(10mt) p”(t) becomes small. This result might point to some limi-
[see Figs. (a)—1(c)] for optimal noise levels from a normal tations of neurons attempting to extract information from
error distribution(see Sec. Illandn= 10 000 time points. In  naturally occurring subthreshold signals. If a globally opti-
the examples we used threshaleF 1 throughout. mal bandwidth is usedoptimized by evolutiojy then only
These examples illustrate several properties of the estim&ertain critical aspects of those signals, such as increases or
tion technique. One is that estimation is noticeably worse foglecreases in amplitude indicating approach or avoidance, can
parts of the signals that are far from threshold than for part§e accurately estimated. Other aspects, such as higher fre-
near threshold. This is because the bandwidth used was glélency signatures of different causative agents, will be un-
bally optimum, and could not give equally good performanceavailable with any precision, leading to false alarm reactions.
for all parts of a signal whose distance from the threshold
varigs vyidely. Another property of the technique is that egti- Ill. STOCHASTIC RESONANCE
mation is worse for parts of signals where the second deriva-
tive is large. Finally, and not shown in Fig. 1, estimation is In Sec. Il we described technical details of an estimation
better the less high frequency content in the signal. This iprocedure based on kernel methods without mentioning sto-
reflected in the estimated root-mean-squared errors of estthastic resonance. Good performance of the procedure is
mation of the ten realizations of each signal type. The avereonnected to a certain optimality of the noise levels
age values are 0.02, 0.05, and 0.10 for sigsa{$), s,(t),  chosen—the stochastic resonance effect. This section dis-
and s;(t), respectively. Finally, as expected for largea  cusses the stochastic resonance effect in the context of the
normalized correlation measure, the Pearson produc@pproach described in Sec. Il.
moment correlation coefficient between signal and estimated Stochastic resonance as shown in the literature would en-
signal, is uniformly high for each type of signal: it was 0.99 tail that our error criteria, i.e ¥"ME(h,t) and @ MASE(h),
for every realization of each of the three signal tyjjese  regarded as functions of the noise, each have a minimum. In
[13] for a discussion the following we will consider only the global approximation
We also considered a  signal s,(t)=0.8 ©”MASE(h) since, as mentioned before, the local approach
—0.025 sin(16rt?)/t2. A single realization of this signal is based onVMSE(h,t) [Eq.(2.2)] is known to perform badly.
shown in Fig. 2. The distance of the signal from the threshit fails completely if p”(t)=0 and does not work well in
old varies widely, and the signal also contains considerableractice ifp”(t) is close to zergsee formula2.4) and Sec.
high-frequency information, albeit only in the part nearestVI for more detail§. Hence, a closer investigation does not
the threshold. In a sense this is a mixture of several types afeem to be warranted. Nevertheless, provided that additional
signals, although it does resemble some that might be ahformation is available, AMSE can be used to determine an
biological importance, for example, that of an approachingoptimal o in a certain minimax sense, which will be demon-
predator who “holds” at an attack launch point. The estima-strated in Sec. IV.

Cp
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Consider the global criterio®”"*5E(h) [Eq. (2.3)]. With the optimal bandwidtth,,, [Eq. (2.5)] inserted it can be
rewritten in terms of the signal function

inf @AMASE(h) — En74/5
h>0 4

1 —f/(a—s(t))s’(t)2+f(a—s(t))s"(t)| 2>

X | R(K)

%2 F(a—s(t))[l—F(a—s(t))])‘“f

fer f2(a—s(t)) =D

This expression is not helpful for detecting stochastic resonance, particularly not since a restriction to error distRtwitions

convenient properties such as unimodality seems to be necessary. Restricting attention to thi f@orfipkrror distribution
and using the Epanechnikov kerr€lfrom Sec. Il, we obtain

s(t)—a| _[a—s(t)|\ ¥
inf@AAsE(py =2 -am L s (37 G 1" 3 2"2@ ] Ee .
rl'rlo ( )_Zn EteT 0'2 S ( ) S ( ) 5_nteT ¢2<S(t)—a ( . )
g

with ¢(x)=(27) Y%exp(—x%2) and ®(x)=[*_¢(y)dy calculations we chose a threshalet 1 andn= 10 000. Since
denoting the density and distribution functions of the stanthe sums in the formula approximate integrals, the curve is
dard normaN(0,1) distribution. This formula is more infor- the same for alh sufficiently large. In particular, it has a
mative: The first term of the product varies like #, which ~ sharp minimum at the stochastic resonance poist0.59.
is monotonic ino-. Since stochastic resonance curves are noftnalogously, we obtained the optimal noise levet1.08
monotonic, if stochastic resonance emerges, then it is bd0r Poth signalss, ands; from Sec. lI[Fig. 3(b)], which we
cause of the second terfaee also Sec. VI already used for our simulated estimation examples there.

A noise levelo that is optimal with respect to AMASE is The stochastic resonance effect should, of course, occur
theoretical since it depends on the signal functoAn ex- not only in reference to the theoretical function AMASE. In
plicit general formula can obviously not be given. Instead,add't'on the noise Ie\_/el shOL_lId strongly influence the quality
we compute as examples the optimés for the signals con- of the estimate obtained using the procedure of Sec. Il. To
sidered in Sec. Il by minimizing AMASE numerically. In démonstrate this, we considered again sigadfom Sec. II.
Sec. IV we present an approach to determining a robust stgve estimated the signal for ten additional realizations of
chastic resonance point without using the signal function exSignal plus noise but this time we used the theoretically bad
plicitly. value 0=4.0 [see Fig. 83)]. These are plotted in Fig.(d)

In Fig. 3(a) we plotted AMASE as given above, multi- [gqmpare with Fig. @]. As expected, the estimates are sig-
plied by the convergence raws for s,(t)=t2. For our nificantly worse. In particular, a large increase of the vari-

ance over realizations becomes evident.

B o IV. ROBUST ESTIMATION
@) L) . . R .
: As seen in Sec. lll, a noise level that is optimal with
8 wl respect to the mean-squared error of estimation depends on
. 25 —
2 =9 2 2 H 20} .
5,: 5% 5: 4
E 2 A E w 15} .
.‘% [72] a
.u * ‘Et ;
2 H < 4
\_/ £ §
0 0 51
00 04 08 12 16 20 24 0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 45
[¢) g
. . ] . . . . . ‘ .
FIG. 4. (a) The local asymptotic mean-squared-error maximized 00 05 10 15 20 25 30 35 40 45
overs’ ands” both having the range—1,1] (dots, [ —2,2] (open o
squarey [ —5,5] (open diamonds and[ — 10,10 (open triangles

respectively.(b) Determination of the robust noise levelk1.45 FIG. 5. Plot ofn*5inf,@"MASE(h) for fully observed(dots and
for the ranges 0§,(t) =sin(2at) and its first and second derivative. thresholdedopen trianglesdata fors,(t) = sin(2mt).
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the signal and its derivatives and cannot be determined with- We determined a value, with the following local mini-
out prior knowledge. In this section we discuss a noise levemax property: For fixed(t), says(t)=0, the mean-squared
o, that is robust in the sense that the estimator for the re€fror att maximized over a certain range sf(t) ands’(t)

gression function behaves well for a given range of the sigiS Minimized in o=c,. For this purpose we considered

nal and its first and second derivatives. It is possible tha
neural systems with noise in this robust range, being betteﬁ

AMSE(h t) with the optimal bandwidth inserted, i.e.,
AMSE(h, (1) 1) = inf, WAMSE(h,t), now regarded as a func-
on of s'(t), s"(t), ando. Sincet ands(t) are fixed and the

able to detect a wide range of important subthreshold signalgptimal bandwidth is used we suppress the dependente on
via stochastic resonance, would be selected by evolution angnhd write briefly WAMSE(s’ s” o). With this notation the

would occur in living brains.

o,=argmin max WVAMSE(gs’ ¢ o)

robusto is

o s’ e[cq,dq]
S//E[Cz,dz]
L. [s—a) [a—s|\ *®
5 B 271/5 P — —
— argmi -y 2/ @7S o0, \ o g
gmin max - n Ho(K) —s'°+s R(K) p—
o s’ eleg.dy] o 2 —
s’ e[cy,d5] g
Zq) -1 © 1 4/5
_ I E AL R ol b - R Ry el
=argmin max -—n =] | —=s'“+¢" - ,
PR 5/ \ g2 5 -1
s’ e[cq,dq] ¢2 _
s"e[cy,d5] o

where we used normal erros(t)=s=0, a=1, and the
Epanechnikov kerneK with kernel constantgu,(K)=1/5
andR(K)=3/5. In Fig. 4a) we have plotted maxy W MSE
multiplied by the convergence raté’® as a function ofr for
s’ ands” both in the rangd —1,1], [—2,2], [ —5,5], and

[—10,10, respectively. For these intervals we obtained the

plained by the fact that a large class of signals fits into the
given range, especially the constant sigeal —1, which
clearly needs more noise in order to guarantee sufficiently
many threshold crossings.

V. COMPARISON WITH FULLY OBSERVED DATA

robust noise levels 0.76, 0.79, 0.83, and 0.85, respectively.

If restrictions ons’ ands” can be assumed to hold uni-

In the classical setting we have fully observed dé(&)

minimax o, provided a lower bound for the signal, s&y; is
given. Additionally, an argumerge [ cy,1] maximizing
s'e[cq,dq]

2‘| 1/5
s"e[cy,dy]

s—1) [1-s|\ %
D —|D|—
g ag
s—1
2
“%]
has to be determined. The resulting max WV “SE then
will, analogously, be minimized with respect to. As an
illustration we derived such a global minimax under the
constraintsse[—1,1], s'e[—6.28,6.2§, s"e[—39.48,

39.48. These are the ranges sf(t) =sin(2xt) and its de-
rivatives. For this exampl¢see Fig. 4b)] we obtained a

max

1-s
S,2+S”
0_2

such signals the relevant signal estimator would be the kernel
estimator from Eq(2.1) with the observation¥(t) instead

of X(t) inserted. In general we expect that this estimator

should perform better than our estimator for the threshold

detector that only uses indicators. The minimum value of the
asymptotic mean-average-squared error of the estimator in
the full data situation is known to be

1/5

Zn“‘“” m(K)Z% S s(1)?] [RK)@HE (5.1)

tiET

HereK is again the Epanechnikov kernel since it has analo-
gous optimality properties in this setting.

In order to compare the two estimators for the same signal
we considered the simple sinusag(t) =sin(2xt). In Fig. 5
we have plottech*Sinf@AMASE for fully observed and for
threshold datag=1,n=10000). For this example, the clas-
sical estimator using full observations is clearly superior to
our estimator using threshold data, especially wherns

robust noise levelr=1.45 that is larger than the optimal one, small, i.e., it should produce better estimates. The same ap-
o=1.08[see Sec. lll, Fig. @)]. This phenomenon is ex- plies to the other examples of this paper.
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Theoretically, in terms of iRBAMASE(h), the estimator based on full observations is better if

2}1/5( 1 5 F(a—s(t))[1—F(a—s(1))] ) .

nier f2(a—s(t))

1/5
( 2 S”(t)z) (0_2)4/5<|:2

teT teT

( —f'(a—s(t))s’(t)%+ f(a—s(t))s"(t)
f(a—s(t))

[see(3.1) and(5.1)]. If the noise is identicallyN(0,0?) distributed, the formula can equivalently be rewritten as follows (
and® denote the standard normal density and distribution function, respegtively

Cp(s(t)—a o a—s(t)) 4
2
S s (s W igg) | I 7 d
teT teT 0’2 n{eT ¢2(S(t)_a
g

The relation does not hold uniformly for all values®&nd  j5tax=1/n=" X(t;) as an estimator for the probabilify
. - . o . .
its derivatives, particularly not 8"(t) <0, which occurs, for which is the (efficieny maximum likelihood estimator. In

example, near points of inflection for a wide class of signals,__ . . s
Hence, we cannot make a general statement favoring o eart(ljcu_lgrr,] it corresponds to a kernel estimator with infinite
estimator over the other. Although this seems to be surpris-a?:o\’r\”tr:eir investigations of stochastic resonance Green-
INg, We can explal.n it by the fact that the estimators are no\t/vood et al. [15] considered the asymptotic variance of the
really comparable: Our estimator for threshold data uses the ™ - . = - i i .
distribution function of the noisé, whereas the classical €stimators=a—F*(1—X), which is the inverse Fisher in-
estimator does not profit by this additional information. Moreformation and, up to the factd®(K)/h, coincides with our
importantly, in the situation of a neuron detecting a signalformula(6.1) for AM(A)SE in the constant signal situation.
our inability to assert that the classical estimator is uniformly ~Greenwoodet al. argued that their approach is valid not
superior does not imply that sometimes a subthreshold sign@n!y for constant signals but also for smooth non-constant
might be estimated better than a superthreshold signal. Ifignals. This is only the case if the bias term involvisigin

most situations we would expect the result to be similar td6-1 is negligible, which is not always true. If we want to
the one displayed in Fig. 5. determine the stochastic resonance point, which we will il-

lustrate later, this point becomes especially important.
To explore the differences, first considefMSE(h,t). Let
the noise be normally distributed and the signal be not nec-

Finally, consider the situation when the signal is constangSsarily constant. Then
s(t)=s, which was studied elaborately by Greenwasidl.

VI. CONSTANT SIGNAL

[15]. In this case our approach based on kernel methods 2<I>(S(t)_a a—s(t))

breaks down, especially when we assume i.i.d. noise. Then 17 o

the exceedance probabilities are also constaft),=p for WAMSE(h,t)= nh s()-a R(K)

all t, and the second derivatives of both functioasind p, ¢2(

are zero. Under these conditions our global criterion coin- o

cides with the local one: h [ a—s(t) o 2 ,
7| S WSO | (K2

1 1 1
@AMASE(h):ﬁR(K)H > f—zp(t)(l—p(t))
teT f(a—s(t)) The first term corresponds to the inverse Fisher information

considered by Greenwooet al. [15]. They showed that it

4
+ h_ (K)ZE > —1 "(t)2 exhibits typical stochastic resonance behavior. However, the
4 M2 n 5P . !
teT f(a—s(t)) secondbiag term will usually be nonzero and, regarded as a
function of o, not necessarily have a minimum. In general
_ iR(K) 1 F(a—s)(1-F(a—s)) AMSE will exhibit stochastic resonance. For certain constel-
nh f(a—s)? lations of values, however, for example, if the second term

dominates the first, this will not be the case.
=WAMSE(h,t) (6.1 More interesting for comparison to our estimation proce-
dure is probably the asymptotic meaweragesquared error
for all t. A bandwidth formula applicable for a kernel esti- [Eq. (3.2)] of the signal estimator using the optimal band-
mator cannot be written because the optimal bandwith wittwidth. We used this to derive the stochastic resonance points
respect to(6.1) would be infinitely large. Although our for some characteristic signals and to compare them with the
method turns out to be inappropriate for a constant signalpptimal noise levels computed by Greenwoedal. for a
our findings do accord well with the results of Greenwoodconstant signal. Fos=0 and thresholda=1 they deter-
et al. They suggested the mean average of the exceedanecgined an optimal noise levetr=0.64. Following their rea-
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0.10, and 0.20. As the last case suggests, the parametric ap-
proach of Greenwoodt al. seems to be adequate if the sig-
nal is almost constant. Their approach is not adequate, how-
ever, if the signal departs significantly from being constant
as in the sinusoid example with amplitude 1. In particular,
the noise levelo=0.64 is much smaller than our optimal
value (c0=1.08) in this case. For thig not only is AMASE
very large(see Fig. 5, but also estimation sometimes works
badly as one can see in the simulation example in Fig. 6. In
particular, the estimation procedure fails completely at some
time points for some of the realizations. In this region the
combination of smalle and large distancgs(t) —a] often
. . . . . . results in an undefined estimator because of too few exceed-
01 02 03 04 05 06 07 08 09 ances. Thus, our data-driven procedure provides a more gen-
time (t=i/n) erally useful technique for unknown, nonconstant signals.
FIG. 6. Ten realizations of the estimation procedure dg(t) Whether an approximation Of. this procedure. has been
—sin(2mt) with o=0.64. The average bandwidth used was adopted by real neurons remains to bel determlned. At f[he
=0.06, the theoretically optimal bandwidtfEq. 2.5] is hop, least, our procedure provides a normative baseline against

=0.07. Signal and estimated signals are shown by thick continuou¥/hich the performance of real systems can be assessed.
and thin broken lines, respectively.

s(t)
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