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Stochastic resonance in a statistical model of a time-integrating detector
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We study an optimal nonparametric regression model for a threshold detector exposed to a noisy, subthresh-
old signal. The problem of recovering the signal is similar to that faced by neurons in nervous systems,
although our model is intended to be normative rather than realistic. In our approach, the time-integrating
activity of the neuron is modeled by kernel regression. Several aspects of the performance of the model are
studied, including the existence of an optimal amount of noise~stochastic resonance!. We construct a sequen-
tial, data-driven procedure for estimating the subthreshold signal. The performance of our model for threshold
data is compared with kernel estimation for fully observed data. Finally, we discuss differences between our
estimator and the best estimator for a constant signal.

PACS number~s!: 87.10.1e, 05.45.2a, 02.50.Ph, 05.40.Ca
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I. INTRODUCTION

Stochastic resonance~SR! is a nonlinear cooperative ef
fect in which large-scale stochastic fluctuations~e.g.,
‘‘noise’’ ! are entrained by an independent, often but not n
essarily, periodic, weak fluctuation~or ‘‘signal’’ ! with the
result that the weaker signal fluctuations are amplified~see
@1# for a review!. Classical SR in physical systems has be
generalized to include noise-enhanced signal detection
hibited by a wide variety of information processing system
including living ones. For example, it has been demonstra
that model excitable systems with one stable state an
threshold to an unstable excited state, such as model neu
exhibit this generalized form of SR@2–4#. With suitable tun-
ing of the noise, such a model neuron can be so sensitive
it can detect a weak constant signal which elicits on aver
only a single additional spike. This provides a mechani
for speedy neural response to such signals@5#. Moreover, the
generalized form of SR has also been demonstrated to
in a variety of living systems, including networks of neuro
@6#. Indeed, researchers have speculated that SR in this
is a fundamental and general principle of biological inform
tion processing~e.g.,@7#!.

The study of systems that exhibit SR has been gre
facilitated by the demonstration that a simple threshold
tector also exhibits SR~e.g., @8#!. Such a detector has n
dynamics and fires a pulse each time its input exceed
threshold. Since SR is an aspect of the detectability o
signal in thresholded data, not of the dynamics that caus
@9#, studying simple threshold detectors is sufficient
many purposes. Indeed, the simplest model of a neuro
just such a simple threshold detector@10#. In the present
paper we consider the output of a single threshold dete
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exposed to an arbitrary subthreshold signal embedded
noise. This could be the situation of a single neuron in
neural network. The noise is composed of rapidly varyin
unsynchronized inputs from perhaps 1000 other neurons,
the signal may be longer time scale variations in the inpu
one specific neuron~or a few synchronized ones! that is by
itself insufficient to drive the neuron of interest. Nonethele
the output of the latter neuron could become synchroni
with the variations in the input of the subthreshold signali
neuron~s! through the mechanism of SR, with the noi
‘‘amplifying’’ the signal.

Although a simple threshold detector can exhibit SR
still lacks one other important property of neurons that
possessed by the next-most-simple model neuron,
integrate-and-fire neuron~e.g.,@2#!. This model integrates its
inputs over a moving time windowt. In real neurons,t
varies from about 100 ms for sensory neurons, to 40–60
for inputs to the soma of pyramidal interneurons, and can
as short as 10 ms for inputs to the apical tufts of dendrite
pyramidal neurons in the prefrontal cortex@11#. Larger val-
ues oft make neurons act as integrators while smaller val
such as those at the apical tufts, make them act as co
dence detectors@12#. The value oft is set by the time
courses of various processes that affect the electrochem
state of the neuron. At any time there is a complex balanc
electrochemical forces influenced by synaptic and inter
events with specific decay rates, plus the constant diffus
of ions caused by electrical and concentration gradients
active pumps. The time-varying instantaneous firing rate
the neuron (1000/Dt, whereDt is the interval between two
successive action potentials in ms! reflects the momentary
strengths of all of these forces, which are represented
integrate-and-fire models by the exponentially decaying
fluence of previous inputs.

The statistical technique of kernel regression can be
garded as an approach to formally modeling temporal in
gration of input. In this approach, a parameter is estima
from a set of measurements using a weighting function
fined over the set. For example, the probability of a neu
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firing at a particular moment could be estimated from
weighted regression on previous firings. The weighting fu
tion is called the ‘‘kernel’’ and corresponds to a filter, or
smoothing function, in physical applications. Such regr
sions are done routinely, albeit informally, in physics whe
smoothing function, such as a Gaussian distribution, is c
volved with a noisy signal to obtain time-averaged behav
In fact there exists an extensive statistical literature
smoothing and signal processing. Mu¨ller @13# adapted statis-
tical smoothing methods from this literature to obtain a g
eral and asymptotically optimal procedure for estimating
signal from thresholded data. The asymptotic mean-squ
error criterion adopted there is independent of sample s
This criterion avoids a difficulty of correlation-type criter
commonly used, viz., correlations become uniformly high
large sample sizes~see@13# and Sec. II!. Previous studies o
numerical smoothing of model excitable system outputs w
a box-type kernel or of thresholded data with a Gauss
kernel were done by the authors of@2# and@14#, respectively.
However, both previous studies computed the correlation
tween smoothed system outputs and signals rather than
plying the mean-squared error criterion to estimates of
signal, as we do here.

In this paper we study the approach of Mu¨ller @13#, which
represents a formal theory of the computational probl
faced by neurons and other threshold detector system
tempting to extract information from a subthreshold sign
The formal theory provides boundary conditions on poss
neuronal computations, rather than describing in detail
way in which neurons actually compute estimates of s
threshold signals. In Sec. I we briefly describe the theo
emphasizing the normal error distribution with variances2.
In Sec. II we provide a data-driven multistage estimat
procedure, which we illustrate for some typical signa
Simulations show how the quality of the signal estimati
depends on the variance of the error, or noise, distributio

In Sec. III we discuss how the noise variance affects
mean-average-squared error of estimation, which is als
function of the signal and its first two derivatives. For som
examples we determine the variances2 for which the error
of estimation is minimal, i.e., the stochastic resonance po

Since the optimal noise level depends on the signal an
derivatives, the question arises whether there is a choic
s2 that is robust in the sense that the estimator for the sig
behaves well for a certain range of first and second der
tives. In Sec. IV we show that this is the case.

In Sec. V we compare our estimator with classical ker
regression, which does not use thresholded data but full
servations of signal plus noise.

Greenwoodet al. @15# constructed efficient estimators fo
constantsignal and given error variance. They calculated
stochastic resonance point, thes2 for which the asymptotic
variance of the estimator is minimal. They argued that th
result remains approximately valid for smooth nonconst
signals. However, the asymptotic mean-squared error of
estimator for nonconstant signals contains an additional
term that is not always negligible. In Sec. VI we study ho
the stochastic resonance point is affected by this bias te

II. MODEL AND ESTIMATION

We describe the typical noisy, subthreshold, signal trea
in studies of stochastic resonance by what, in statist
-
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theory, is called a nonparametric regression model

Y~ t i !5s~ t i !1e~ t i !, i 51, . . . ,n,

with equally spaced time pointst i5 i /n on @0,1#, signals(t i),
and noise variables~called error variables in statistica
theory! e(t i) that are assumed to be independent and ide
cally distributed~i.i.d.! with mean zero and continuous dis
tribution functionF ~the distribution function is the integra
of the probability density function regarded as a function
the upper limit!. Let a be a threshold that is larger than th
maximum of the regression function~signal! s over the unit
interval. A detector records the times at which theY(t i) ex-
ceeda. These exceedances can be coded as Bernoulli v
ables

X~ t i !51„Y~ t i !.a…, i 51, . . . ,n,

with distribution parameters

p~ t i !5P„Y~ t i !.a…512F„a2s~ t i !….

Hence the signal can be recovered from the just defi
probabilities as follows:

s~ t i !5a2F21
„12p~ t i !….

When the noise distributionF is known, we can reconstruc
the regression function~signal! from the threshold exceed
ances. Inserting a kernel estimatorp̂h(t) for p in the above
transformation, we can, in particular, estimate it by

ŝh~ t !5a2F21
„12 p̂h~ t !….

The estimatorŝh(t) is consistent, meaning that the probab
ity of its being within an arbitrary distance of the actu
signal approaches 1 as the sample size on which the esti
is based approaches infinity.

In the case of a neuron, the noise distribution has b
considered to be either Gaussian or Poisson~see@16# for a
discussion!. In the case of a physical signal, it is usual
possible to make a theoretically based assumption as to
noise distribution, or to approximate it empirically. In man
cases the Gaussian distribution function will be a reasona
approximation toF. Another possible technique for the ca
of unknown F is to employ estimates for several differe
types ofF and look for similarities in the form of the recov
ered signal across distribution types. An estimateŝh based on
an incorrectly specifiedF will still recover the form of the
signal up to a scale transformation.

If the variance of the noise distribution is small, the re
izationsY(t) will rarely exceed the threshold, and the sign
will be hard to estimate. If the noise variance is very larg
the exceedance probabilityp(t) will be estimated with a
large variance, and the estimator for the regression func
will again be imprecise. This suggests that there is a,
necessarily unique, noise variance for which the estimato
the signal has a minimal asymptotic mean-squared error.
call such a variance a stochastic resonance point.

For our investigations we used the Nadaraya-Watson
nel estimator
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p̂h~ t !5

(
i 51

n
1

h
KS t2t i

h DX~ t i !

(
i 51

n
1

h
KS t2t i

h D , ~2.1!

whereK denotes the kernel weighting function andh denotes
the set of sample values to which the kernel is applied, ca
its bandwidth. The Nadaraya-Watson estimator is a comm
kernel estimator used in statistics for many kinds of da
including binary data such as our exceedances. The b
width of the kernel can be considered to represent the w
dow of temporal integration when applying the method to
case of a model neuron. For the estimation ofŝh(t) at time
points tP@h,12h#,@0,1#, K is a second-order kernel func
tion, i.e., *K(u)du51, *uK(u)du50, *u2K(u)du5” 0,
with bounded derivative and support@21,1#. Formally p̂h(t)
has to be set to a constant if it takes values close to 0 o
For technical details refer to Mu¨ller @13#, who introduced
this approach and where also a discussion of the assump
can be found.

We consider two possible bandwidths, a local bandwi
that can vary for each time point, and a global bandwi
that is constant for all time points. Our criteria for the choi
of optimal local and global bandwidths are the asympto
mean-squared and mean-average-squared error, AMSE
AMASE. For the asymptoticsn→`,h5hn→0 and nh3

→` they are approximations ofE„ŝh(t)2s(t)…2 and
1/n( tPTE„ŝh(t)2s(t)…2. Here T,(0,1) denotes some sub
interval of (0,1) to which, because of boundary effects, su
mation is usually restricted. The formulas given in@13# are

CAMSE~h,t !5
1

f p@F21
„p~ t !…#2 S 1

nh
R~K !p~ t !„12p~ t !…

1
h4

4
m2~K !2p9~ t !2D , ~2.2!

QAMASE~h!5
1

nh
R~K !

1

n (
tPT

1

f @F21
„p~ t !…#2

p~ t !@12p~ t !#

1
h4

4
m2~K !2

1

n (
tPT

1

f @F21
„p~ t !…#2

p9~ t !2

~2.3!

with kernel constants R(K)5*K2(u)du and m2(K)
5*u2K(u)du. The asymptotically optimal local and globa
bandwidths derived from these approximations are

hopt~ t !5n21/5S R~K !p~ t !„12p~ t !…

m2~K !2p9~ t !2 D 1/5

, ~2.4!

hopt5n21/5S R~K !(
tPT

1

f @F21
„p~ t !…#2

p~ t !@12p~ t !#

m2~K !2(
tPT

1

f @F21
„p~ t !…#2

p9~ t !2 D 1/5

.

~2.5!
d
n
,
d-
-

e

1.

ns

h
h

c
nd

-

In this study we used the Epanechnikov kernelK(u)
53/4(12u2)1[ 21,1](u), which minimizes, in the class o
kernels considered, AM~A!SE with the optimal bandwidth
inserted. For this kernel we haveR(K)53/5 and m2(K)
51/5. Although this choice of kernel is optimal, other ke
nels would do nearly as well, for example, the Gaussian k
nel. An approach using the box or even asymmetrical kern
is also conceivable, although it remains to be worked out
particular, an asymmetrical kernel would be more approp
ate to model the time-integration behavior of actual neuro
since presumably they do not know the future. We c
speculate, however, on the basis of some pilot work, tha
long as the kernel contains sufficient time points and weig
them according to a reasonable function, considerable in
mation about the behavior of the subthreshold signal can
recovered from the exceedances alone.

The bandwidth formulas~2.4! and ~2.5! are both of the
form n21/5 times a constantc, wherec depends on the prob
ability function and its second derivative, i.e., on the u
known signal. To guarantee consistency it is sufficient thah
has the order of magnituden21/5. For good performance in
the finite sample situation the constantc should, however, be
chosen suitably. For our demonstrations we used plug
methods, i.e., we estimated the unknown functions a
plugged them into the formulas above. This approach has
the classical setting with fully observed data, been shown
perform more reliably than standard methods such as c
validation ~see, for example,@17#!.

In this paper we interpret@0,1# as a time window that
shows a representative part of a signal. The local bandw
approach was discarded since it is known to be too sensi
even in the simpler setting with full observations~e.g.,@18#!,
and also proved to be so in our preliminary investigations
the present setting. We used the global bandwidth to estim
the signal at all time points in@0,1# extending the kernel as
far as necessary outside that window. This was done by
culating thresholded signal plus noise observations for
extended time interval@20.5,1.5#. The additional data were
used whenever the kernel overlapped the boundaries 0 an

The global bandwidth formula~2.5! contains unknown
quantities that must be estimated in a preliminary way to
started. For these pilot estimates we adapted a method
Ruppertet al. @19# who investigated plug-in strategies for th
classical setting. The probability functionp and its second
derivative p9 were estimated with preliminary smoothe
with asymptotically optimal bandwidths derived analogou
to the actual estimator. The unknown quantities appearin
the new bandwidth formulas were estimated using a mod
cation of a ‘‘blocking method’’ developed by Ha¨rdle and
Marron @20#.

For the preliminary estimation ofp we used an estimato
simpler than the Nadaraya-Watson estimator, namely,

p̂l~ t !5
1

nl (
i 51

n

KS t i2t

l DX~ t i !, ~2.6!

which is the Priestley-Chao estimator for the special case
equidistant time points. The bandwidth is denoted byl and
K is again the Epanechnikov kernel. Sincep̂l(t) and the final
probability estimatorp̂h(t) have the same asymptotic beha
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FIG. 1. Ten realizations of the estimation procedure for~a! s1(t)5t2 with s50.59, average estimated bandwidthh50.16, and theoreti-
cally optimal bandwidth@Eq. ~2.5!# hopt50.16; ~b! s2(t)5sin(2pt) with s51.08, average bandwidthh50.09, andhopt50.08; ~c! s3(t)
5sin(10pt) with s51.08, average bandwidthh50.03 andhopt50.02; and~d! s1(t)5t2 as in~a! but with s54.0. The signal and estimate
signals are shown by thick continuous and thin broken lines, respectively.
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ior, the AMASE expressions ofp̂l(t) and ŝh(t)5a

2F21
„p̂h(t)… coincide up to the density weights coming

through the transformation. In particular, the terms involvi
the kernel constants are the same in both error formu
which explains the choice of the Epanechnikov kernelK.
The optimal bandwidth for the preliminary smootherp̂l(t) is

lopt5n21/5S R~K !(
tPT

p~ t !„12p~ t !…

m2~K !2(
tPT

p9~ t !2 D 1/5

.

A natural estimator for the second unknown quantity in~2.5!,
p9, is

p̂g9~ t !5
1

ng3 (
i 51

n

K̃S t i2t

g DX~ t i ! ~2.7!

with the kernelK̃ satisfying the moment conditionsm i(K̃)
5*uiK̃(u)du50 for i 50,1,3,m2(K̃)52 andm4(K̃)50, in
order to guarantee consistency. We used the kernel

K̃~u!5S 2
105

16
1

630

16
u22

525

16
u4D1[ 21,1]~u!,

which is optimal~with respect to the mean-squared error! in
the sense of Mu¨ller’s theory~ @21#, p. 52 ff!, i.e., it meets the
moment condition and has no more sign changes than
essary. The optimal bandwidth derived from the me
average-squared error ofp̂g9 is
s,

c-
-

gopt5n21/9S 720
R~K̃ !

m4~K̃ !2

(
tPT

p~ t !„12p~ t !…

(
tPT

p(4)~ t !2 D 1/9

with kernel constantsR(K̃)535 andm4(K̃)54/3.
With ~2.6! and ~2.7! the necessary formulas for the pr

liminary smoothing are provided. However, the formulas
the optimal bandwidthslopt andgopt still depend onp and
its derivativesp9 andp(4). These quantities were, in an in
tial step, determined by a simple procedure. We used a v
ant of a ‘‘blocking method’’ developed by Ha¨rdle and Mar-
ron @20# but with the number of blocks chosen by Mallow
Cp criterion@22# as suggested by Ruppertet al. @19#. For this
method the interval@0,1# is divided intoNP$1, . . . ,Nmax%
equally sized blocks. For our examples we choseNmax510,
which is suitably small to reduce the chance of overfitti
and, what is more important here, to ensure that there
enough exceedances in every block so that the estimato
ists. In contrast to Ruppertet al. who fit quartics, we fitted a
logistic curve to each block, i.e., a probability functio
p(t)5ea1bt/(11ea1bt). The combination of theN logistic
fits then represents an initial estimate ofp. The derivatives
are derived from this fit. Since we wanted to estimate pr
abilities, the logistic regression has the advantage of prod
ing estimates between 0 and 1. Moreover, the fourth der
tives needed forgopt are nonzero. Our rule for choosing a
optimal number of blocks, and hence the optimal logistic
was the same as in@19#: We took theN̂P$1, . . . ,Nmax% that
minimized Mallows’Cp criterion,
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Cp5
R~N!

R~Nmax!/~n25Nmax!
2~n210N!.

HereR(N) stands for the residual sum of squares based
logistic fits overN blocks. The initial estimate ofp needed
for lopt andgopt is the logistic fit overN̂ blocks.

Although the procedure is applicable to all signals of
bitrary shape, we demonstrate it here for three character
exampless1(t)5t2, s2(t)5sin(2pt), and s3(t)5sin(10pt)
@see Figs. 1~a!–1~c!# for optimal noise levels from a norma
error distribution~see Sec. III! andn510 000 time points. In
the examples we used thresholda51 throughout.

These examples illustrate several properties of the est
tion technique. One is that estimation is noticeably worse
parts of the signals that are far from threshold than for p
near threshold. This is because the bandwidth used was
bally optimum, and could not give equally good performan
for all parts of a signal whose distance from the thresh
varies widely. Another property of the technique is that e
mation is worse for parts of signals where the second der
tive is large. Finally, and not shown in Fig. 1, estimation
better the less high frequency content in the signal. Thi
reflected in the estimated root-mean-squared errors of
mation of the ten realizations of each signal type. The av
age values are 0.02, 0.05, and 0.10 for signalss1(t), s2(t),
and s3(t), respectively. Finally, as expected for largen, a
normalized correlation measure, the Pearson prod
moment correlation coefficient between signal and estima
signal, is uniformly high for each type of signal: it was 0.9
for every realization of each of the three signal types~see
@13# for a discussion!.

We also considered a signal s4(t)50.8
20.025 sin(10pt2)/t2. A single realization of this signal is
shown in Fig. 2. The distance of the signal from the thre
old varies widely, and the signal also contains considera
high-frequency information, albeit only in the part neare
the threshold. In a sense this is a mixture of several type
signals, although it does resemble some that might be
biological importance, for example, that of an approach
predator who ‘‘holds’’ at an attack launch point. The estim

FIG. 2. Signal estimation ofs4(t)50.820.025 sin(10pt2)/t2

with s50.76 and estimated bandwidthh50.10. Signal and esti-
mated signals are shown by continuous and broken lines, res
tively.
n
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tion technique does a good job of capturing the lo
frequency content, but fails to accurately estimate the sig
at the high-frequency end. Again, this is because we use
global optimum bandwidth 0.10, which is near that ofs2(t)
and does well for the components near 1 Hz. The bandw
needs to be narrower to accurately capture the higher
quency variation, although, of course, a higher sample
would also be needed to provide equal accuracy with
narrower bandwidth. It might be possible to use the lo
bandwidth in such cases, providing an upper limit, such
the global bandwidth, is used to avoid degeneracy wh
p9(t) becomes small. This result might point to some lim
tations of neurons attempting to extract information fro
naturally occurring subthreshold signals. If a globally op
mal bandwidth is used~optimized by evolution!, then only
certain critical aspects of those signals, such as increase
decreases in amplitude indicating approach or avoidance,
be accurately estimated. Other aspects, such as higher
quency signatures of different causative agents, will be
available with any precision, leading to false alarm reactio

III. STOCHASTIC RESONANCE

In Sec. II we described technical details of an estimat
procedure based on kernel methods without mentioning
chastic resonance. Good performance of the procedur
connected to a certain optimality of the noise leve
chosen—the stochastic resonance effect. This section
cusses the stochastic resonance effect in the context o
approach described in Sec. II.

Stochastic resonance as shown in the literature would
tail that our error criteria, i.e.,CAMSE(h,t) andQAMASE(h),
regarded as functions of the noise, each have a minimum
the following we will consider only the global approximatio
QAMASE(h) since, as mentioned before, the local approa
based onCAMSE(h,t) @Eq. ~2.2!# is known to perform badly.
It fails completely if p9(t)50 and does not work well in
practice ifp9(t) is close to zero@see formula~2.4! and Sec.
VI for more details#. Hence, a closer investigation does n
seem to be warranted. Nevertheless, provided that additi
information is available, AMSE can be used to determine
optimals in a certain minimax sense, which will be demo
strated in Sec. IV.

c-

FIG. 3. Plot ofn4/5infhQAMASE(h) vs s for ~a! s1(t)5t2, ~b!
s2(t)5sin(2pt) ~dots!, ands3(t)5sin(10pt) ~open squares!.
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Consider the global criterionQAMASE(h) @Eq. ~2.3!#. With the optimal bandwidthhopt @Eq. ~2.5!# inserted it can be
rewritten in terms of the signal functions:

inf
h.0

QAMASE~h!5
5

4
n24/5Fm2~K !2

1

n (
tPT

S 2 f 8„a2s~ t !…s8~ t !21 f „a2s~ t !…s9~ t !

f „a2s~ t !… D 2G1/5

3S R~K !
1

n (
tPT

F„a2s~ t !…@12F„a2s~ t !…#

f 2
„a2s~ t !…

D 4/5

. ~3.1!

This expression is not helpful for detecting stochastic resonance, particularly not since a restriction to error distributionF with
convenient properties such as unimodality seems to be necessary. Restricting attention to the normalN(0,s2) error distribution
and using the Epanechnikov kernelK from Sec. II, we obtain

inf
h.0

QAMASE~h!5
5

4
n24/5F 1

25n (
tPT

S a2s~ t !

s2
s8~ t !21s9~ t !D 2G 1/5S 3

5n (
tPT

s2FS s~ t !2a

s DFS a2s~ t !

s D
f2S s~ t !2a

s D D 4/5

~3.2!
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with f(x)5(2p)21/2exp(2x2/2) and F(x)5*2`
x f(y)dy

denoting the density and distribution functions of the st
dard normalN(0,1) distribution. This formula is more infor
mative: The first term of the product varies likes24/5, which
is monotonic ins. Since stochastic resonance curves are
monotonic, if stochastic resonance emerges, then it is
cause of the second term~see also Sec. VI!.

A noise levels that is optimal with respect to AMASE is
theoretical since it depends on the signal functions. An ex-
plicit general formula can obviously not be given. Instea
we compute as examples the optimals ’s for the signals con-
sidered in Sec. II by minimizing AMASE numerically. I
Sec. IV we present an approach to determining a robust
chastic resonance point without using the signal function
plicitly.

In Fig. 3~a! we plotted AMASE as given above, mult
plied by the convergence raten4/5 for s1(t)5t2. For our

FIG. 4. ~a! The local asymptotic mean-squared-error maximiz
over s8 ands9 both having the range@21,1# ~dots!, @22,2# ~open
squares!, @25,5# ~open diamonds!, and@210,10# ~open triangles!,
respectively.~b! Determination of the robust noise levels51.45
for the ranges ofs2(t)5sin(2pt) and its first and second derivative
-

ot
e-

,

o-
-

calculations we chose a thresholda51 andn510 000. Since
the sums in the formula approximate integrals, the curve
the same for alln sufficiently large. In particular, it has a
sharp minimum at the stochastic resonance points50.59.
Analogously, we obtained the optimal noise levels51.08
for both signalss2 ands3 from Sec. II@Fig. 3~b!#, which we
already used for our simulated estimation examples ther

The stochastic resonance effect should, of course, o
not only in reference to the theoretical function AMASE.
addition the noise level should strongly influence the qua
of the estimate obtained using the procedure of Sec. II.
demonstrate this, we considered again signals1 from Sec. II.
We estimated the signal for ten additional realizations
signal plus noise but this time we used the theoretically b
value s54.0 @see Fig. 3~a!#. These are plotted in Fig. 1~d!
@compare with Fig. 1~a!#. As expected, the estimates are s
nificantly worse. In particular, a large increase of the va
ance over realizations becomes evident.

IV. ROBUST ESTIMATION

As seen in Sec. III, a noise level that is optimal wi
respect to the mean-squared error of estimation depend

d

FIG. 5. Plot ofn4/5infhQAMASE(h) for fully observed~dots! and
thresholded~open triangles! data fors2(t)5sin(2pt).
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the signal and its derivatives and cannot be determined w
out prior knowledge. In this section we discuss a noise le
s r that is robust in the sense that the estimator for the
gression function behaves well for a given range of the s
nal and its first and second derivatives. It is possible t
neural systems with noise in this robust range, being be
able to detect a wide range of important subthreshold sig
via stochastic resonance, would be selected by evolution
would occur in living brains.
th
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i-
al

e,
-

h-
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-
-
t
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nd

We determined a values r with the following local mini-
max property: For fixeds(t), says(t)50, the mean-squared
error att maximized over a certain range ofs8(t) ands9(t)
is minimized in s5s r . For this purpose we considere
CAMSE(h,t) with the optimal bandwidth inserted, i.e
CAMSE

„hopt(t),t…5 infhCAMSE(h,t), now regarded as a func
tion of s8(t), s9(t), ands. Sincet ands(t) are fixed and the
optimal bandwidth is used we suppress the dependencet
and write briefly CAMSE(s8,s9,s). With this notation the
robusts is
s r5argmin
s

max
s8P[c1 ,d1]

s9P[c2 ,d2]

CAMSE~s8,s9,s!

5argmin
s

max
s8P[c1 ,d1]

s9P[c2 ,d2]

5

4
n24/5Fm2~K !2S a2s

s2
s821s9D 2G 1/5S R~K !

s2FS s2a

s DFS a2s

s D
f2S s2a

s D D 4/5

5argmin
s

max
s8P[c1 ,d1]

s9P[c2 ,d2]

5

4
n24/5F S 1

5D 2S 1

s2
s821s9D 2G 1/5S 3

5

s2FS 21

s DFS 1

s D
f2S 21

s D D 4/5

,

the

ntly

or
rnel

tor
old
the
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lo-

nal

-
to

ap-
where we used normal error,s(t)5s50, a51, and the
Epanechnikov kernelK with kernel constantsm2(K)51/5
andR(K)53/5. In Fig. 4~a! we have plotted maxs8,s9C

AMSE

multiplied by the convergence raten4/5 as a function ofs for
s8 and s9 both in the range@21,1#, @22,2#, @25,5#, and
@210,10#, respectively. For these intervals we obtained
robust noise levels 0.76, 0.79, 0.83, and 0.85, respective

If restrictions ons8 and s9 can be assumed to hold un
formly for tP@0,1# one can, analogously, derive a glob
minimaxs, provided a lower bound for the signal, sayc0, is
given. Additionally, an argumentsP@c0,1# maximizing

max
s8P[c1 ,d1]

s9P[c2 ,d2]

F S 12s

s2
s821s9D 2G 1/5

3S FS s21

s DFS 12s

s D
f2S s21

s D D 4/5

has to be determined. The resulting maxs,s8,s9C
AMSE then

will, analogously, be minimized with respect tos. As an
illustration we derived such a global minimaxs under the
constraintssP@21,1#, s8P@26.28,6.28#, s9P@239.48,
39.48#. These are the ranges ofs2(t)5sin(2pt) and its de-
rivatives. For this example@see Fig. 4~b!# we obtained a
robust noise levels51.45 that is larger than the optimal on
s51.08 @see Sec. III, Fig. 3~b!#. This phenomenon is ex
e
.

plained by the fact that a large class of signals fits into
given range, especially the constant signals[21, which
clearly needs more noise in order to guarantee sufficie
many threshold crossings.

V. COMPARISON WITH FULLY OBSERVED DATA

In the classical setting we have fully observed dataY(t)
5s(t)1e(t), corresponding to above-threshold signals. F
such signals the relevant signal estimator would be the ke
estimator from Eq.~2.1! with the observationsY(t) instead
of X(t) inserted. In general we expect that this estima
should perform better than our estimator for the thresh
detector that only uses indicators. The minimum value of
asymptotic mean-average-squared error of the estimato
the full data situation is known to be

5

4
n24/5S m2~K !2

1

n (
t iPT

s9~ t i !
2D 1/5

@R~K !s2#4/5. ~5.1!

HereK is again the Epanechnikov kernel since it has ana
gous optimality properties in this setting.

In order to compare the two estimators for the same sig
we considered the simple sinusoids2(t)5sin(2pt). In Fig. 5
we have plottedn4/5infQAMASE for fully observed and for
threshold data (a51,n510 000). For this example, the clas
sical estimator using full observations is clearly superior
our estimator using threshold data, especially whens is
small, i.e., it should produce better estimates. The same
plies to the other examples of this paper.
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Theoretically, in terms of infhQAMASE(h), the estimator based on full observations is better if

S (
tPT

s9~ t !2D 1/5

~s2!4/5,F(
tPT

S 2 f 8„a2s~ t !…s8~ t !21 f „a2s~ t !…s9~ t !

f ~a2s~ t !! D 2G1/5S 1

n (
tPT

F„a2s~ t !…@12F„a2s~ t !…#

f 2
„a2s~ t !…

D 4/5

@see~3.1! and ~5.1!#. If the noise is identicallyN(0,s2) distributed, the formula can equivalently be rewritten as followsf
andF denote the standard normal density and distribution function, respectively!:

(
tPT

s9~ t !2,(
tPT

S s8~ t !2
a2s~ t !

s2
1s9~ t !D 2F 1

n (
tPT

FS s~ t !2a

s DFS a2s~ t !

s D
f2S s~ t !2a

s D G 4

.
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The relation does not hold uniformly for all values ofs and
its derivatives, particularly not ifs9(t),0, which occurs, for
example, near points of inflection for a wide class of signa
Hence, we cannot make a general statement favoring
estimator over the other. Although this seems to be surp
ing, we can explain it by the fact that the estimators are
really comparable: Our estimator for threshold data uses
distribution function of the noiseF, whereas the classica
estimator does not profit by this additional information. Mo
importantly, in the situation of a neuron detecting a sign
our inability to assert that the classical estimator is uniform
superior does not imply that sometimes a subthreshold si
might be estimated better than a superthreshold signa
most situations we would expect the result to be similar
the one displayed in Fig. 5.

VI. CONSTANT SIGNAL

Finally, consider the situation when the signal is const
s(t)5s, which was studied elaborately by Greenwoodet al.
@15#. In this case our approach based on kernel meth
breaks down, especially when we assume i.i.d. noise. T
the exceedance probabilities are also constant,p(t)5p for
all t, and the second derivatives of both functions,s and p,
are zero. Under these conditions our global criterion co
cides with the local one:

QAMASE~h!5
1

nh
R~K !

1

n (
tPT

1

f „a2s~ t !…2
p~ t !„12p~ t !…

1
h4

4
m2~K !2

1

n (
tPT

1

f „a2s~ t !…2
p9~ t !2

5
1

nh
R~K !

1

f ~a2s!2
F~a2s!„12F~a2s!…

5CAMSE~h,t ! ~6.1!

for all t. A bandwidth formula applicable for a kernel es
mator cannot be written because the optimal bandwith w
respect to~6.1! would be infinitely large. Although our
method turns out to be inappropriate for a constant sig
our findings do accord well with the results of Greenwo
et al.: They suggested the mean average of the exceed
.
ne
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dataX̄51/n( i 51
n X(t i) as an estimator for the probabilityp,

which is the ~efficient! maximum likelihood estimator. In
particular, it corresponds to a kernel estimator with infin
bandwidth.

For their investigations of stochastic resonance Gre
wood et al. @15# considered the asymptotic variance of t
estimatorŝ5a2F21(12X̄), which is the inverse Fisher in
formation and, up to the factorR(K)/h, coincides with our
formula ~6.1! for AM ~A!SE in the constant signal situation

Greenwoodet al. argued that their approach is valid n
only for constant signals but also for smooth non-const
signals. This is only the case if the bias term involvingp9 in
~6.1! is negligible, which is not always true. If we want t
determine the stochastic resonance point, which we will
lustrate later, this point becomes especially important.

To explore the differences, first considerCAMSE(h,t). Let
the noise be normally distributed and the signal be not n
essarily constant. Then

CAMSE~h,t !5
1

nh

s2FS s~ t !2a

s DFS a2s~ t !

s D
f2S s~ t !2a

s D R~K !

1
h4

4 S a2s~ t !

s2
s8~ t !21s9~ t !D 2

m2~K !2.

The first term corresponds to the inverse Fisher informat
considered by Greenwoodet al. @15#. They showed that it
exhibits typical stochastic resonance behavior. However,
second~bias! term will usually be nonzero and, regarded a
function of s, not necessarily have a minimum. In gene
AMSE will exhibit stochastic resonance. For certain const
lations of values, however, for example, if the second te
dominates the first, this will not be the case.

More interesting for comparison to our estimation proc
dure is probably the asymptotic mean-average-squared error
@Eq. ~3.2!# of the signal estimator using the optimal ban
width. We used this to derive the stochastic resonance po
for some characteristic signals and to compare them with
optimal noise levels computed by Greenwoodet al. for a
constant signal. Fors[0 and thresholda51 they deter-
mined an optimal noise levels50.64. Following their rea-
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soning, this noise level should guarantee good performa
of estimates of smooth nonconstant signals varying aro
zero. To check this conjecture, we computed infhQAMASE for
three sinusoidss(t)5A sin(2pt) with different amplitudes,
A51, 0.5, and 0.1. As expected, the optimal noise lev
sopt decrease as the signal degenerates to the constant
tion s50 (sopt51.08, 0.83, and 0.65, respectively!. Corre-
spondingly, the optimal bandwidths increase:hopt50.08,

FIG. 6. Ten realizations of the estimation procedure fors2(t)
5sin(2pt) with s50.64. The average bandwidth used wash
50.06, the theoretically optimal bandwidth@Eq. 2.5!# is hopt

50.07. Signal and estimated signals are shown by thick continu
and thin broken lines, respectively.
v.

ff,

.

on
ce
d

ls
nc-

0.10, and 0.20. As the last case suggests, the parametri
proach of Greenwoodet al. seems to be adequate if the si
nal is almost constant. Their approach is not adequate, h
ever, if the signal departs significantly from being consta
as in the sinusoid example with amplitude 1. In particul
the noise levels50.64 is much smaller than our optima
value (s51.08) in this case. For thiss not only is AMASE
very large~see Fig. 5!, but also estimation sometimes work
badly as one can see in the simulation example in Fig. 6
particular, the estimation procedure fails completely at so
time points for some of the realizations. In this region t
combination of smalls and large distance@s(t)2a# often
results in an undefined estimator because of too few exc
ances. Thus, our data-driven procedure provides a more
erally useful technique for unknown, nonconstant signa
Whether an approximation of this procedure has be
adopted by real neurons remains to be determined. At
least, our procedure provides a normative baseline aga
which the performance of real systems can be assessed
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