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Abstract: We discuss efficient estimation in regression models that are de-
fined by a finite-dimensional parametric constraint. This includes a variety
of regression models, in particular the basic nonlinear regression model and
quasi-likelihood regression. We are interested in the case where responses
are missing at random. This is a popular research topic and various methods
have been proposed in the literature. However, many of them are compli-
cated and are not shown to be efficient. The method presented here is, in
contrast, very simple – we use an estimating equation that does not impute
missing responses – and we also prove that it is efficient if an appropriate
weight matrix is selected. Finally, we show that this weight matrix can be
replaced by a consistent estimator without losing the efficiency property.
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1. Introduction

In this article we consider a general class of regression models that can be
specified as a finite-dimensional parametric constraint,

E{aϑ(X,Y )|X} = 0, aϑ = (aϑ1, . . . , aϑk)
⊤, (1.1)

with parameter ϑ belonging to the interior of some compact parameter space
Θ ⊂ R

p. This means in particular that the parameter ϑ is defined as a solution of
a system of equations. Since there can be more than one solution of (1.1), or no
solution at all, we will assume in the following that a solution ϑ exists and that
it is unique. The variables X and Y are multi-dimensional, and we allow that Y
is not always observed. In this setting it is possible to derive efficient estimators
of ϑ as solutions of an appropriately chosen set of estimating equations, which
is what we pursue in this article.

The general model (1.1) covers the regression model given by

Y = rϑ(X) + ε,

with E(ε|X) = 0, which we call a “nonlinear regression model”; see below
for more explanations. But model (1.1) also covers more complicated models,
such as the quasi-likelihood model which is specified by the two-dimensional
conditional constraint

E{aϑ(X,Y )|X} = 0, aϑ(X,Y ) =

[
Y − rϑ(X)

{Y − rϑ(X)}2 − vϑ(X)

]
, (1.2)

and the quantile regression model, which is defined by

aϑ(X,Y ) = p− 1{Y − rϑ(X) < 0}.

In these examples Y is a one-dimensional response variable and X a vector of
covariates.

Let us first take a closer look at the simple but important case of a nonlinear
regression model, which includes the linear regression model as a special case
with rϑ(X) = ϑ⊤X . We should emphasize that we are considering models that
are solely specified by a conditional constraint of the form (1.1). This means
that for the nonlinear regression model we do not assume a parametric form for
the distribution of the covariate vector X or the error variable ε = Y − rϑ(X).
We also do not assume that X and ε are independent – we only assume that the
errors are conditionally centered given the covariates, E(ε|X) = 0. Since this
and the parametric form of the regression function is all the information given,
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the nonlinear regression model can be described by the simple one-dimensional
constraint

E{Y − rϑ(X)|X} = 0, (1.3)

which is indeed a special case of (1.1). It is also worth noting that it is not
necessary here to introduce an error variable ε.

Efficient estimation of ϑ in the complete data case has been studied by vari-
ous authors. We refer first of all to Chapter 4 of Tsiatis (2006 [19]), who studied
the nonlinear model (1.3) in detail, including the derivation of the efficient score
function, and the adaptive estimation of the weight in the estimating equation.
Müller (2007 [8]) considers weighted least squares estimators in possibly misspec-
ified regression models and derives as a special case an efficient estimator for ϑ in
the regression model above. The characterization sketched in that paper is anal-
ogous to that obtained in Müller and Wefelmeyer (2002 [11]) for autoregressive
models satisfying a parametric constraint. A (different) derivation of the asymp-
totic variance bound is sketched in Chamberlain (1987 [3]), with generalizations
in Chamberlain (1992 [4]). Two review articles are Newey (1990 [12], 1993 [13]).

Estimating ϑ efficiently is quite complicated in the classical regression setting,
which assumes that covariates and errors are independent. The independence as-
sumption is a structural assumption about the model, and must be incorporated
by constructing an efficient estimator. Efficient estimation of the parameter in
the classical setting with a linear regression function has been studied by Bickel
(1982 [1]), Koul and Susarla (1983 [7]), and Schick (1987 [17], 1993 [18]). Schick
(1993 [18]) also considers general semiparametric regression models with inde-
pendent covariates and errors. He uses a preliminary estimator of ϑ and an
estimator of the efficient influence function to construct an efficient estimator
for ϑ. A further approach, which requires weaker conditions, is in Forrester et al.
(2003 [6]).

All the above articles study estimation of ϑ when no data are missing. We are
interested in the case when responses are possibly missing, in particular when
responses are missing at random (MAR). This means that we only observe Y in
those cases where some indicator δ equals one, and the indicator δ is condition-
ally independent of Y given X . This assumption is useful when information in
the form of covariate data is available to explain the missingness. In that case
we can estimate the propensity score π(X) = P (δ = 1|X) and the missingness
mechanism is called ignorable.

A considerable amount of work has been done on regression models with
responses missing at random, but little has been done on efficient estimation.
Robins et al. (1994 [15]), for example, assume a parametric model for π(X)
(or that π(X) is known), and estimate the regression parameters efficiently by
solving an inverse probability weighted estimating equation. Also in Robins et
al. (1995 [16]) a parametric model for π(X) is assumed, which is conceptually
quite different from a nonparametric model for π(X), which will be assumed in
this paper. The authors allow the response and the covariates to be varying over
time. On the other hand, they do not establish the efficiency of their estimator.
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Efficient estimation of ϑ in model (1.3) above, with MAR responses and with
independence of covariates and errors, is studied in Müller (2009 [9]). There the
influence function of an efficient estimator for ϑ is derived and the construction
of an efficient estimator is discussed. Perhaps surprisingly, this can be done in
the same way as in the complete data case: by simply omitting the covariates
associated with missing responses and by using only the data (X,Y ) that are
complete. We show in this paper that the same applies for our regression model
where the independence assumption is not imposed: ϑ can be estimated effi-
ciently by using a weighted least squares estimator which uses only the data
pairs (Xi, Yi) for which response values are at hand. More precisely, we will

show that the solution ϑ̂ of the estimating equation

n∑

i=1

δiṙθ(Xi)
⊤σ−2(Xi){Yi − rθ(Xi)} = 0 (1.4)

with respect to θ is efficient. Here ṙθ is the vector of partial derivatives with
respect to the components of θ, θ is an arbitrary value in the parameter space
Θ, and σ2(X) is the conditional error variance given the covariates, σ2(X) =
E[{Y − rθ(X)}2|X ]. The conditional variance function depends on θ, σ2(X) =
σ2
θ(X), but since we do not model it parametrically we prefer to write it without

the subscript θ. This will also be helpful to distinguish the conditional variance
in the nonlinear regression model from the conditional variance in more complex
models such as the quasi-likelihood model, where we also assume a parametric
model vθ(X) for the variance function, σ2(X) = vθ(X). Note that the estimating
equation above is called undetermined since σ2(X) is unknown. Estimation of
σ2 is addressed in Section 3.

To our knowledge, there is no published work where efficiency of the above
estimator is proved or where an efficient estimator is provided for the nonlinear
regression model (1.3) with MAR responses. We will therefore pay particular
attention to this model. This is also motivated by the fact that model (1.3)
is a fundamental model and therefore important. Although Tsiatis (2006 [19])
studied model (1.3) in great detail for the case when all data are completely
observed, and although one can argue that the consistency of his estimation
method should remain valid with MAR responses, it is not at all clear whether
the efficiency of his method can be carried over to the MAR case. This needs
careful investigation.

The efficient estimator for ϑ in model (1.3) can also be used as a point of
reference for related approaches in more complex models with MAR responses.
Wang and Sun (2007 [21]), for example, compare three estimators for the regres-
sion function in a partly linear model, which coincides with model (1.3) if we
assume that the unknown smooth part of the regression function is zero and if
rθ is linear, rθ(X) = θ⊤X . Another example is Wang et al. (2010 [22]), who con-
sider a single index model with regression function g(θ⊤X) which would be our
model (1.3) with a linear regression function if g were known to be the identity.

The conditional constraint (1.1) implies that the unconditional constraint
E{aϑ(X,Y )} is zero, which is the model considered by Zhou et al. (2008 [23])
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and by Wang and Chen (2009 [20]). In both articles the proposed estimators
are similar to our estimator in that they are solutions of an estimating equation
– but more complex. In contrast to our approach, the ‘missing’ terms of the
estimating equation are replaced by nonparametric estimators of the conditional
expectation E{aϑ(X,Y )|X} (which estimates zero if our model is in fact true).
The estimation of this conditional expectation requires the careful selection
of a smoothing parameter. These procedures are therefore more complicated
than our method. A general efficiency statement is not established, but possible
variance reductions are discussed. Our method, in contrast, is very simple since
it exploits the conditional constraint – which suggests a weighted estimating
equation. Since our model class is characterized by a conditional constraint we
cover many basic regression models, including the nonlinear regression model.
Above all we show that our method is efficient if we work with an optimal weight
matrix. Estimating these optimal weights may require the use of smoothing
techniques, but choosing the smoothness parameter is less important here since
only consistency (without a specific rate) is needed (see Section 3).

The paper is organized as follows. In the next section we define our estima-
tor of ϑ and show its asymptotic normality. Section 3 discusses a number of
special cases of the general theory and provides a small simulation study. The
efficiency of our method is established in Section 4. Finally, Section 5 contains
some concluding remarks and a discussion of open questions.

2. Estimation

The motivation for our estimating equation comes from the nonlinear regression
example. A simple estimator for this model (modified for the missing response
setting) is the least squares estimator, which is the minimizer of

∑n
i=1 δi{Yi −

rθ(Xi)}
2 with respect to θ. It is obtained by solving the weighted estimating

equation

n∑

i=1

δiṙθ(Xi)
⊤{Yi − rθ(Xi)} = 0 (2.1)

with respect to θ, where the weight vector ṙθ(·)
⊤ is the p× 1 vector of partial

derivatives of rθ(·) with respect to θ. Since the nonlinear regression model has
a simple structure – in particular there is no form for the variance assumed – it
is intuitively clear that more weight should be put on data points (Xi, Yi) when
the variance is small and less weight when the variance is large. It appears to
make sense to improve the usual least squares estimator by choosing weights
Wθ(X) = ṙθ(X)⊤σ−2(X), which now additionally involve the conditional vari-
ance σ2(X) = E[{Y − rϑ(X)}2|X ]. Both approaches incorporate the gradient
ṙθ and can therefore be regarded as weighted least squares estimators, i.e. as
solutions of

n∑

i=1

δiWθ(Xi){Yi − rθ(Xi)} = 0.
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Our estimator for the parameter vector ϑ in the conditionally constrained model
(1.1) is defined analogously as a solution ϑ̂ of

n∑

i=1

δiWθ(Xi)aθ(Xi, Yi) = 0, (2.2)

where Wθ is a p × k weight matrix. Sometimes the system of equations (2.2)
does not have a solution. This is often the case for quantile regression or any
other model leading to non-smooth criterion functions. In that case we replace
(2.2) by the minimizer of

∥∥∥
n∑

i=1

δiWθ(Xi)aθ(Xi, Yi)
∥∥∥

with respect to θ, where ‖ · ‖ is the Euclidean norm. In the nonlinear regression
model (1.3) Wθ is just a vector, and in the quasi-likelihood model (1.2) Wθ is a
p×2 matrix. The estimating equation is unbiased for any choice of Wθ(X) since
it is easy to verify that E{δWϑ(X)aϑ(X,Y )} = 0: using the MAR assumption
on the responses, which postulates that the indicators and the responses are
conditionally independent given the covariates, we obtain

E{δWϑ(X)aϑ(X,Y )} = E
[
Wϑ(X)E{δaϑ(X,Y )|X}

]

= E
[
Wϑ(X)E(δ|X)E{aϑ(X,Y )|X}

]
= 0.

Note that we explicitly use that E{aϑ(X,Y )|X} = 0, which is the only model
structure that we assume. This suggests that the above approach could yield an
efficient estimator. In particular, it becomes evident that the preconditions for
obtaining an appealing (simple and possibly efficient) estimator are ideal if a
constrained model of the form (1.1) can be assumed, and if the missingness of
the responses can be explained by covariates.

Whether a solution ϑ̂ of the above equation is efficient or not will depend on
the choice of Wθ. Our approach to find the optimal weight matrix was to derive
the efficient influence function first (see Section 4 on efficiency), which is

δI−1ℓϑ(X,Y )

with

ℓθ(X,Y ) = −Wθ(X)aθ(X,Y ), I = E{δℓϑ(X,Y )ℓϑ(X,Y )⊤},

Wθ(X) =
[ ∂

∂θ
E{aθ(X,Y )|X}

]⊤
E{aθ(X,Y )aθ(X,Y )⊤|X}−1,

(2.3)

where ∂/(∂θ)E{aθ(X,Y )|X} is of dimension k × p. Here we only assume that
the expectation is differentiable with respect to θ. In many models we can
even assume that aθ is differentiable. If this is the case we will write briefly
E{ȧθ(X,Y )|X} instead of ∂/(∂θ)E{aθ(X,Y )|X}.
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For reasons of clarity we set

L(θ) = E{δℓθ(X,Y )}, Ln(θ) = n−1
n∑

i=1

δiℓθ(Xi, Yi).

We have shown that L(ϑ) = 0 and therefore estimate ϑ by the solution ϑ̂ of the
corresponding estimating equation

Ln(θ) = 0, (2.4)

with respect to θ, or, if (2.4) does not have a solution, estimate ϑ by

ϑ̂ = argminθ∈Θ‖Ln(θ)‖. (2.5)

It should be pointed out that the resulting estimator ϑ̂ only uses completely
observed pairs (Xi, Yi) – in particular it discards information that is given in
the form of (observed) covariates Xi.

It remains to be shown that the influence function of ϑ̂ is indeed of the re-
quired form, i.e. we have to derive the asymptotic expansion of the estimator.
Since our estimator is the solution of an estimating equation, this is a stan-
dard result for M -estimators, and rests on a Taylor expansion. Here we provide
the statement under fairly weak conditions, using Theorem 3.3 in Pakes and
Pollard (1989 [14]). The conditions in this theorem include the case where the
criterion function Ln(θ) is not smooth. It is also interesting to note that, re-
gardless of the dimension of the original set of defining equations (namely of
E{aϑ(X,Y )|X} = 0), the dimension of the final estimating function Ln(θ) al-
ways equals p – the dimension of θ.

Theorem 2.1. Suppose that

(i) ϑ̂− ϑ = op(1).
(ii) ϑ is the unique solution of L(θ) = 0.
(iii) L(θ) is differentiable at θ = ϑ; the matrix I is of full rank and, for almost

every x, the matrix E{aϑ(X,Y )aϑ(X,Y )⊤|X = x} is also of full rank.
(iv) For all j = 1, . . . , p, δℓθ,j(X,Y ) is locally uniformly L2-continuous with

respect to θ in the sense that

E
[

sup
θ2:‖θ1−θ2‖<α

δ{ℓθ1,j(X,Y )− ℓθ2,j(X,Y )}2
]
≤ Kjα

2sj

for all θ1 ∈ Θ, for all α = o(1), and for some constants sj ∈ (0, 1], Kj > 0.

Then

(a) the estimator ϑ̂ has the stochastic expansion

n1/2(ϑ̂− ϑ) = I−1n−1/2
n∑

i=1

δiℓϑ(Xi, Yi) + op(1) (2.6)

and is asymptotically normally distributed with covariance matrix

E[I−1δℓϑ(X,Y ){I−1δℓϑ(X,Y )}⊤] = I−1,
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(b) the estimator ϑ̂ is efficient for estimating ϑ, provided the joint distribution
of (X,Y ) satisfies the mild regularity conditions stated in Section 4.

Part (b) is important: it shows that efficiency can be obtained without using
complicated procedures to replace the missing responses with estimators. Our
method, which completely discards the missing observations, is easy to compute
and is efficient if the weight matrix is suitably chosen.

Remark 1. Condition (i) can be easily shown using standard results (see e.g.
Theorem 3.1 or Corollary 3.2 in Pakes and Pollard, 1989 [14]), whereas condition
(ii) is needed for identifiability reasons. The differentiability condition in (iii) is
imposed on the function L(θ), which will in many cases be smooth even if the
function ℓθ is not smooth in θ. Finally, note that condition (iv) also allows for
discontinuous functions ℓθ such as sign and indicator functions. In the smooth
case, (iv) can be replaced by the following more direct condition:

(iv)’ For all j = 1, . . . , p, the function (δ, x, y) → δℓθ,j(x, y) is Hölder continuous
with respect to θ in the sense that

δ|ℓθ1,j(x, y)− ℓθ2,j(x, y)| ≤ bj(δ, x, y)‖θ1 − θ2‖
sj

for some constant sj ∈ (0, 1] and a measurable function bj with finite
second moment E[b2j(δ,X, Y )].

Remark 2. By part (b) of Theorem 2.1, an efficient estimator ϑ̂ of ϑ satisfies
(2.6), i.e. it has influence function I−1δℓϑ(X,Y ). The classical approach to con-
structing an efficient estimator is to start with an initial inefficient estimator
of ϑ and to improve it by adding an estimator of the influence function, with
appropriate estimators for I and ℓ (see, for example, Bickel et al., 1998 [2]).
This construction does not, however, take advantage of the special feature of
our model and is not recommended: our method only requires solving (2.4), or,
more generally, (2.5). In particular we do not need to estimate I.

Proof of Theorem 2.1. We have to verify that the stochastic expansion (2.6)
in part (a) holds true. The proof of (b) is in Section 4 where we show that
I−1δℓϑ(X,Y ) is the efficient influence function for estimating ϑ (see the charac-
terization at the end of Section 4). In Section 4 we work with some additional
notation for the (rather technical) derivation, to keep the presentation clear.
For example we write Qx for the conditional expectation given X = x. It is
easy to verify that ℓθ(x, y) = −{∂/(∂θ)Qx(aθ)}

⊤Qx(aθa
⊤
θ )

−1aθ(x, y) from Sec-
tion 4 and ℓθ(x, y) = −Wθ(x)aθ(x, y) from above (with Wθ given in (2.3)) are
identical.

We prove (2.6) by showing that the conditions of Theorem 3.3 in Pakes and
Pollard (1989 [14]) are satisfied. Here the criterion function is δℓθ(X,Y ). It can
quickly be verified that these conditions hold true, provided that:

(1) Our matrix I and Pakes and Pollard’s matrix −Γ are the same, where

Γ =
∂

∂θ
E{δℓθ(X,Y )}

∣∣∣
θ=ϑ

.
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Hence we must show that

E{δℓϑ(X,Y )ℓϑ(X,Y )⊤} = −
∂

∂θ
E{δℓθ(X,Y )}

∣∣∣
θ=ϑ

. (2.7)

(2) Condition (iv) above implies condition (iii) of Theorem 3.3 in Pakes and
Pollard (1989 [14]).

Let us begin with the matrix I on the left-hand side of (2.7). For reasons of
clarity we use some notation from Section 4 and set Q̇x(aϑ) = ∂/(∂θ)Qx(aθ)|θ=ϑ.
This lets us avoid writing ∂/(∂θ)Qx(aϑ) for the gradient which could be con-
fusing since the conditional constraint Qx(aϑ) is zero. We have

I = E{δWϑ(X)aϑ(X,Y )aϑ(X,Y )⊤Wϑ(X)⊤}

= E
[
δQ̇X(aϑ)

⊤E{aϑ(X,Y )aϑ(X,Y )⊤|X}−1aϑ(X,Y )aϑ(X,Y )⊤

× E{aϑ(X,Y )aϑ(X,Y )⊤|X}−1Q̇X(aϑ)
]

= E
[
Q̇X(aϑ)

⊤E{aϑ(X,Y )aϑ(X,Y )⊤|X}−1E{δaϑ(X,Y )aϑ(X,Y )⊤|X}

× E{aϑ(X,Y )aϑ(X,Y )⊤|X}−1Q̇X(aϑ)
]

= E{Wϑ(X)E(δ|X)Q̇X(aϑ)}.

Here we have used

E{δaϑ(X,Y )aϑ(X,Y )⊤|X} = E(δ|X)E{aϑ(X,Y )aϑ(X,Y )⊤|X},

which follows from the MAR assumption. Handling the matrix on the right-
hand side of (2.7) is notationally cumbersome. We therefore consider just a
single entry of the matrix. Write Wθ,i for the i-th row of Wθ. Again using the
MAR assumption, and the fact that E{aϑ(X,Y )|X} = 0, the (i, j)-th entry
computes as follows:

∂

∂θj
E
{
δWθ,i(X)aθ(X,Y )

}∣∣
θ=ϑ

=
∂

∂θj
E
[
E(δ|X)Wθ,i(X)E{aθ(X,Y )|X}

]∣∣
θ=ϑ

= E
(
E(δ|X)

[
Wθ,i(X)

∂

∂θj
E{aθ(X,Y )|X}+E{aθ(X,Y )|X}

∂

∂θj
Wθ,i(X)

])∣∣∣
θ=ϑ

= E
[
E(δ|X)Wθ,i(X)

∂

∂θj
E{aθ(X,Y )|X}

]∣∣
θ=ϑ

.

Comparing this with the above calculation for I it is now apparent that the
entries of I and −Γ are the same. Hence, (2.7) is satisfied. It remains to prove
condition (2) above. This follows from Theorem 3 in Chen et al. (2003 [5])
(discarding the nonparametric nuisance function h which is present in that the-
orem).
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3. Discussion and examples

3.1. Estimation of the weight matrix

As pointed out in the introduction, the estimating equation will in general be
undetermined (and therefore of no use for applications) since the weights depend
on unknown features of the distribution, for example on the conditional variance
σ2(X) in nonlinear regression. This is not a problem: the unknown quantities can
usually be estimated consistently by some simple nonparametric approach. This
will not change the asymptotic variance of the resulting estimator. In particular,
it will still be efficient. The estimator ofWθ(·) does not need to converge toWθ(·)
at a certain specific rate: simple (uniform) consistency is sufficient.

To show that the asymptotic variance does not change, one can use the
results from Chen et al. (2003 [5]). They give high-level conditions under which a
parameter estimator defined by the solution of a set of equations depending on a
nonparametric estimator is consistent and asymptotically normal. These results
extend Pakes and Pollard’s (1989 [14]) article to the case of semiparametric
estimators, and cover as a special case our model when the unknown weight
matrix is replaced by a nonparametric estimator. Consider Theorem 2 in Chen
et al. (2003 [5]), which states the asymptotic normality of ϑ̂. Most of the high-
level conditions under which this result is valid are straightforward to verify.
Two points, however, need closer attention:

(1) we need to calculate the asymptotic variance of ϑ̂, in order to confirm that
it is not affected by using an estimator Ŵθ for the weight matrix Wθ;

(2) we need to show that the required conditions on Ŵθ are satisfied.

Let us address (1) first. According to Theorem 2 in Chen et al. (2003 [5]) the

formula for the asymptotic variance of ϑ̂ depends on the matrices Γ1 and V1

given in conditions (2.2) and (2.6) of that paper. The matrix Γ1 is constant
and therefore not affected by using estimated weights. The matrix V1 must be
inspected more carefully: it is the asymptotic variance of an expression which
involves the Gâteaux derivative of M(θ,Wθ) := E{δWθ(X)aθ(X,Y )} in the
direction Ŵθ − Wθ (with Ŵθ(X) a consistent estimator of Wθ(X)), evaluated
at θ = ϑ. The Gâteaux derivative is defined by

Γ2(θ,Wθ)(Ŵθ −Wθ)

= lim
τ↓0

1

τ

[
M{θ,Wθ + τ(Ŵθ −Wθ)} −M(θ,Wθ)

]

= lim
τ↓0

1

τ

{
E
(
δ[Wθ(X)+ τ{Ŵθ(X)−Wθ(X)}]aθ(X,Y )

)
−E{δWθ(X)aθ(X,Y )}

}

= E[δ{Ŵθ(X)−Wθ(X)}aθ(X,Y )].

Note that the expected value is calculated in accordance with the definition of
the vector M(θ,Wθ), namely with respect to (δ,X, Y ), i.e. the stochastic nature
of Ŵθ is not taken into account. Writing the last expectation in the above display
as an iterated expectation (conditional on X) yields Γ2(ϑ,Wϑ)(Ŵϑ −Wϑ) = 0.
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In other words, the contribution to the asymptotic variance which comes from
using estimated weights is zero. The matrix V1 is the same as in the case with
known weights.

For (2), note that the main requirement on Ŵθ is condition (2.4) in Chen
et al. (2003 [5]), which requires that supθ∈Θ supx |Ŵθ(x)−Wθ(x)| = op(n

−1/4).
However, a closer look at the proof of Theorem 2 in that paper reveals that the
rate op(n

−1/4) can be weakened to op(1) if M(θ,Wθ) depends on Wθ in a linear

way (or, equivalently, if Γ2(θ,Wθ)(Ŵθ − Wθ) = M(θ, Ŵθ) − M(θ,Wθ)), which
is the case here. Hence, all we need is an estimator Ŵθ(x) that is uniformly
consistent (in θ and x).

This sketches the main steps of the proof that the estimation of the weight
matrix does not impair the efficiency property of ϑ̂.

3.2. Conditional versus unconditional constraints

Our focus here is on inference for parameters defined via conditional equations.
A related topic is inference for parameters defined via unconditional constraints
of the form E{aϑ(X,Y )} = 0, see e.g. Zhou et al. (2008 [23]) andWang and Chen
(2009 [20]) for references on this type of models. Let us explain the relationship
between the two classes of models. The conditional model E{aϑ(X,Y )|X} = 0
a.s. is equivalent to E{W (X)aϑ(X,Y )} = 0 for all possible functions W (·).
Indeed, the former equation clearly implies the latter one. On the other hand, the
latter set of equations yields that E[E{aϑ(X,Y )|X}2] = 0 by choosing W (X) =
E{aϑ(X,Y )|X}. This implies that E{aϑ(X,Y )|X} = 0 a.s.. This means that
the conditional constraint is equivalent to an infinite collection of unconditional
constraints, one of which (namely the one corresponding to W = Wθ given
in (2.3)) is efficient. So the approach with the conditional constraint makes it
possible to select the weight matrix that leads to an efficient estimator. On the
other hand, an unconditional constraint corresponds to one single equation, or
equivalently one single weight matrix.

3.3. Illustration: Linear and nonlinear regression

The estimating equation for the nonlinear regression model (which includes
linear regression as a special case) is given in the introduction (1.4). Let us
check that it is indeed a special case of the general estimating equation (2.4),
i.e. of

∑n
i=1 δiℓθ(Xi, Yi) = −

∑n
i=1 δiWθ(Xi)aθ(Xi, Yi) = 0. Here the vector

aϑ is one-dimensional, aθ(X,Y ) = Y − rθ(X), which yields that the matrix
E{aθ(X,Y )aθ(X,Y )⊤|X} is one-dimensional as well, E{aθ(X,Y )2|X}= σ2(X),
where σ2(X) is the conditional variance of Y given X . Assuming that rθ is
differentiable in θ we also have that E{ȧθ(X,Y )|X} = −ṙθ(X). This yields

ℓθ(x, y) = ṙθ(x)
⊤σ−2(x){y − rθ(x)}
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as postulated. A simple consistent nonparametric estimator of σ2(x) is

σ̂2(x) =

n∑

i=1

δikb(x−Xi)∑n
i=1 δikb(x−Xi)

{Yi − rϑ̂0
(Xi)}

2 (3.1)

(which can be regarded as a ratio of Nadaraya-Watson estimators), where kb(x)
is a d-dimensional kernel with bandwidth b, kb(x) = k(x1/b, . . . , xd/b)/b

d. Here

d is the dimension of X and ϑ̂0 is some consistent estimator for ϑ, e.g. the ordi-
nary least squares estimator (OLS) which uses weights Wθ(x) = ṙθ(x)

⊤. In the
general case a consistent estimator of the optimal weight matrix Wθ may simi-
larly involve a preliminary consistent estimator ϑ̂0 of ϑ. Such an estimator can
be obtained as a solution of equation (2.2), i.e. of

∑n
i=1 δiWθ(Xi)aθ(Xi, Yi) = 0,

now with an arbitrary (feasible) p× k weight matrix Wθ (which does not need

to depend on θ) such that the system of equations has a unique solution ϑ̂0 (see
the discussion in Section 2).

As an illustration of the method we performed a small simulation study
using R and compared three different approaches: the efficient estimator, the
OLS which solves (2.1), and a weighted least squares estimator that uses the
propensity score, Wθ(X) = W (X) = π(X)−1 = E(δ|X)−1. The latter choice of
weights is suitable for the larger model defined by the unconditional constraint
E{aϑ(X,Y )} = 0, since the corresponding estimating equation is unbiased in
that model,

E{δπ(X)−1aϑ(X,Y )} = E
[
π(X)−1E(δ|X)E{aϑ(X,Y )|X}

]

= E{aϑ(X,Y )} = 0.

For the simulations we chose an increasing propensity score π(x) = 1/(1+e−x).
The covariate X is generated from a uniform distribution on (−1, 1), and the
error variable is of the form ε = σ(X)Z, where Z is standard normal and in-
dependent of X . We studied a linear regression function, rϑ(X) = ϑX , and
a nonlinear regression function, rϑ(X) = cos(ϑX). In both cases ϑ = 2. The
conditional variance σ2(x) is linear or parabolic, and estimated by σ̂2(x) from

equation (3.1), with ϑ̂0 the OLS estimator. We studied five bandwidths b be-
tween 0.1 and 0.5, and an automatically selected bandwidth b = bcv using the
cross-validation method for fitting a smooth curve into the completely observed
‘data’ pairs (X, Ỹ ), where Ỹ = {Y −rϑ̂0

(X)}2. Table 1 lists the simulated mean
squared errors based on 5,000 repetitions for the case of a linear regression func-
tion. The results for the cosine function are given in Table 2. The propensity
score π(X) increases from 0.27 to 0.73 on (−1, 1) so that around 50% of the re-
sponses are missing. Hence, if n = 50, we are essentially only working with about
25 data points and the R routine “nls” (nonlinear least squares), which we used
for the cosine function, does not always converge (the simulations ‘crashed’). For
this reason Table 2 only includes the results for n = 100 and n = 200. In the
linear case (Table 1) the estimator can be calculated with an explicit formula
and the simulations ran without any problems, allowing us to include results for
n = 50 as well.
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Table 1

Simulated MSEs of estimators of ϑ with rϑ(X) = ϑX (ϑ = 2)

σ
2(X) n OLS PS σ

2(x) 0.1 0.2 0.3 0.4 0.5 bcv

(a) 50 0.058 0.103 0.034 0.044 0.043 0.042 0.041 0.042 0.044
100 0.028 0.052 0.016 0.019 0.018 0.018 0.019 0.019 0.020
200 0.014 0.026 0.008 0.008 0.008 0.008 0.009 0.009 0.009

(b) 50 0.080 0.149 0.037 0.049 0.046 0.046 0.047 0.049 0.050
100 0.039 0.075 0.018 0.021 0.020 0.021 0.022 0.023 0.023
200 0.019 0.038 0.009 0.009 0.010 0.010 0.010 0.011 0.010

The first two results columns give the mean squared errors (MSE) for the OLS
and the propensity score weighted estimator (PS). For simplicity, PS uses the
true π(X). The third column shows the results for the efficient estimator that
uses the true conditional variance σ2(x) with (a) σ2(x) = 0.6−0.5x in the upper
panel, and (b) σ2(x) = (x − 0.4)2 + 0.1 in the lower panel. The six columns on
the right-hand side refer to the efficient estimator based on the kernel estimator
(3.1) for σ

2(x), for five different fixed bandwidths b, and for b = bcv obtained by
cross-validation.

Table 2

Simulated MSEs of estimators of ϑ with rϑ(X) = cos(ϑX) (ϑ = 2)

σ
2(X) n OLS PS σ

2(x) 0.1 0.2 0.3 0.4 0.5 bcv

(a) 100 0.021 0.035 0.011 0.016 0.013 0.013 0.14 0.014 0.015
200 0.010 0.017 0.005 0.006 0.006 0.006 0.006 0.007 0.007

(b) 100 0.031 0.055 0.013 0.020 0.016 0.016 0.017 0.018 0.018
200 0.015 0.027 0.007 0.008 0.007 0.008 0.008 0.009 0.008

The entries are simulated mean squared errors of various estimators of ϑ as in
Table 1, now with a nonlinear regression function, rϑ(X) = cos(ϑX).

We observe that the efficient estimator that uses the variance estimator σ̂2(x)
always performs better than both the OLS and the propensity score weighted
estimator (PS), for all choices of b, and also for the automatic bandwidth bcv
selected by cross-validation. Note that our estimator σ̂2(x) uses a normal kernel
k, without adjusting for boundary bias, which is probably one reason why the
estimator that uses the true variance function is better when n is small, e.g.
n = 50 in Table 1.

A reasonable next step, with view towards small sample performance, would
be to develop a better estimator of the conditional variance. If the variance func-
tion is constant, ordinary least squares and the efficient estimator are asymp-
totically equivalent and we recommend the OLS estimator since it is easier to
use. The same applies if the variance function does not show much variation
and if the sample size is small so that the estimated variance function is nearly
constant.

3.4. Further examples

Quasi-likelihood model Now consider the quasi-likelihood model where we
assume parametric models for both the regression function and the conditional
variance function. Here it is also straightforward to calculate ℓθ(x, y): assuming
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that both rθ and vθ are differentiable in θ we obtain

ℓθ(x, y) =
[
ṙθ(x)

⊤v̇θ(x)
⊤
] [ vθ(x) µ3(x)

µ3(x) µ4(x) − v2θ(x)

]−1[
y − rθ(x)

{y − rθ(x)}
2 − vθ(x)

]

where µk(x) = E(Y k|X = x), k ∈ N, is the k-conditional moment of the
distribution of Y given X = x. A simple consistent estimator for µk(x) is the
estimator

µ̂k(x) =

n∑

i=1

δikb(x−Xi)∑n
i=1 δikb(x−Xi)

Y k
i ,

similar to that in the previous example.

Multi-response model In the two examples above the response variable was
assumed to be univariate. Our method also applies if the responses are multivari-
ate, i.e. if we assume a multi-response model. Again it would be straightforward
to specify the estimating equation.

Quantile regression The situation is different if aθ(x, y) involves indicators
and cannot be differentiated with respect to θ. An important class of applications
are quantile regression models. Suppose that the conditional p-th quantile of Y
given X is specified by a parametric model rϑ(X). This can be expressed as a
conditional constraint, namely as

E{aϑ(X,Y )|X} = 0, with aθ(X,Y ) = p− 1{Y − rθ(X) < 0}, θ ∈ Θ.

A simple calculation shows that E{aθ(X,Y )2|X} = p2 + (1 − 2p)FY |X{rθ(X)}
for any θ ∈ Θ, where FY |X{rθ(X)} = P{Y − rθ(X) < 0|X}. Thus the weights
of the estimating equation reduce to

Wθ(X) =
[
p2 + (1− 2p)FY |X{rθ(X)}

]−1 ∂

∂θ
E{aθ(X,Y )|X}

= −
∂
∂θFY |X{rθ(X)}[

p2 + (1− 2p)FY |X{rθ(X)}
]
.

The conditional probability FY |X{rθ(X)} must be estimated with a smooth
estimator to ensure that the partial derivatives can be calculated. One option
is to use a kernel smoother of the form

F̂Y |X=x(y) =

n∑

i=1

δikb(x−Xi)∑n
i=1 δikb(x−Xi)

K
(y − Yi

h

)
,

where, as before, k is a kernel function and b and h are appropriate smoothing
parameters, and where K is a smooth distribution function, e.g. the cumulative
integral of a suitable kernel density function.
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4. Efficiency

In order to derive the canonical gradient of ϑ (which characterizes the efficient
influence function) one can build on results from Müller (2007 [8]) on estimating
ϑ when all data are observed. We will also rely on results by Müller et al. (2006
[10]) on efficient estimation of expectations Eh(X,Y ) in regression models (not
covering our model) with responses missing at random, that is, with observations

(X, δY, δ) as here. The characterization of an efficient estimator ϑ̂ of ϑ is given
at the end of this section.

We begin with the characterization of the influence function of an arbitrary
differentiable functional κ of the joint distribution of (X,Y ) which is derived in
that article. The joint distribution P (dx, dy, dz) of the observations (X, δY, δ)
can be written as

P (dx, dy, dz) = M(dx)Bπ(x)(dz){zQ(x, dy) + (1− z)D0(dy)}.

Here M(dx) is the marginal distribution of X , Q(x, dy) is the conditional dis-
tribution of Y given X = x, and π(x) = P (δ = 1|X = x). Further, for any
0 ≤ p ≤ 1, Bp = pD1 + (1 − p)D0 is the Bernoulli distribution with parameter
p, where Dt denotes the Dirac measure at t. As shown in Müller et al. (2006
[10]), a gradient γ for κ is characterized by

lim
n→∞

n1/2{κ(Mnu, Qnv)− κ(M,Q)} = E[γ(X, δY, δ){u(X) + δv(X,Y )}]

for all u ∈ U and v ∈ V , where

U = L2,0(M) =
{
u ∈ L2(M) : M(u) =

∫
u dM = 0

}
,

and

V =
{
v ∈ L2(M ·Q) : Qx(v) =

∫
v(x, y)Q(x, dy) = 0 for all x

}
.

Here Mnu and Qnv are Hellinger differentiable perturbations of M and Q,

Mnu(dx) = M(dx){1 + n−1/2u(x)} + o(n−1/2),

Qnv(x, dy) = Q(x, dy){1 + n−1/2v(x, y)} + o(n−1/2).

The perturbed distributions Mnu and Qnv must both be probability distribu-
tions, i.e. integrate to one, which explains the form of U and V . Write T for the
tangent space relevant for estimating κ (i.e. for functionals of M and Q),

T =
{
u(X) : u ∈ U

}
⊕
{
δv(X,Y ) : v ∈ V

}
,

where the orthogonality follows from the missing at random assumption. It
contains the canonical gradient, which is defined as a gradient that is also an
element of the tangent space, i.e. it is of the form γ∗(X, δY, δ) = u∗(X) +
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δv∗(X,Y ) with the terms of the sum being projections onto the tangent space.
As a gradient of κ, γ∗ must satisfy the above characterization which now becomes

lim
n→∞

n1/2{κ(Mnu, Qnv)− κ(M,Q)}

= E{u∗(X)u(X)}+ E{δv∗(X,Y )v(X,Y )}. (4.1)

For a full specification of the tangent space see Müller et al. (2006 [10]). That
larger tangent space has to be considered when the goal is to estimate functionals
of the full joint distribution, i.e. of functionals that also involve the conditional
distribution π(x) of the indicator variable δ given x.

After these general considerations we now also take the structure of our model
(1.1) into account, which is defined by a parametric constraint,

0 = E{aϑ(X,Y )|X = x} = Qx(aϑ) =

∫
aϑ(x, y)Q(x, dy).

The perturbed distribution must satisfy a perturbed constraint, Qxnv(aϑnt
) = 0

for some ϑnt close to ϑ, say ϑnt = ϑ + n−1/2t with t in R
p. Using Qx(aϑ) = 0

and Qx(v) = 0 we obtain

0 = Qxnv(aϑnt
)

= Qx{(1 + n−1/2v)aϑnt
}+ o(n−1/2)

= Qx(aϑnt
) + n−1/2Qx(vaϑnt

) + o(n−1/2)

= Qx(aϑ) + n−1/2t
∂

∂θ
Qx(aθ)

∣∣
θ=ϑ

+ n−1/2Qx(vaϑ) + o(n−1/2)

= n−1/2Qx{vaϑ + tQ̇x(aϑ)}+ o(n−1/2),

with Q̇x(aϑ) =
∂
∂θQx(aθ)

∣∣
θ=ϑ

. This leads to a constraint Qx(vaϑ) = −Q̇x(aϑ)t
on v in V , which can be written in the form Qx(vaϑ) = −Qx(ȧϑ)t if aθ is
differentiable in θ. For fixed t ∈ R

p we write Ht for the solution space of this
equation,

Ht = {v ∈ V : Qx(vaϑ) = −Q̇x(aϑ)t},

and H∗ for the union of all affine spaces Ht, t ∈ R
p. In order to determine

v∗ we find it convenient to go further and decompose H∗ into the space H0

of solutions of the homogeneous equation, H0 = {v ∈ V : Qx(vaϑ) = 0}, and
into the solution space of the inhomogeneous equation given above. This space
can be written as a linear span, analogously to Müller (2007 [8]). The idea is
to solve the equation for the standard basis vectors t = ej , j = 1, . . . , p. Call
the solutions ℓj . Then the solution space of the inhomogeneous equation is the
linear span [ℓ] of the solutions ℓ1, . . . , ℓp, where ℓ = (ℓ1, . . . , ℓp)

⊤ has the form

ℓ(x, y) = −Q̇x(a
⊤
ϑ )Qx(aϑa

⊤
ϑ )

−1aϑ(x, y).

Simple calculations show that ℓ indeed satisfies Qx(aϑℓ
⊤) = −Q̇x(aϑ) and that

ℓ is orthogonal to H0, i.e. H∗ = H0 ⊕ [ℓ]. The tangent space of the constrained
model is now specified,

T =
{
u(X) : u ∈ U

}
⊕
{
δv(X,Y ) : v ∈ H0 ⊕ [ℓ]}.
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From now on we focus on estimating ϑ and write it as a functional of P by
setting κ(P ) = ϑ if Qx(aϑ) = 0. The left-hand side of characterization (4.1) of
the canonical gradient now involves t ∈ R

p and simplifies to n1/2(ϑnt − ϑ) = t.
The canonical gradient γ∗(X, δY, δ) = u∗(X)+δv∗(X,Y ) is therefore determined
by

E{u∗(X)u(X)}+E{δv∗(X,Y )v(X,Y )} = t for all t ∈ R
p, u ∈ U, v ∈ H0⊕[ℓ].

Setting v = 0 and t = 0 we see that u∗ must be zero. Further we know that
v∗ ∈ H0 ⊕ [ℓ] where [ℓ] comes from ϑ being unknown. We can therefore assume
that v∗ is of the form Jℓ, where J is a p× p matrix to be determined and where
ℓ functions as the score function. This yields

E{δJℓ(X,Y )v(X,Y )} = t for all t ∈ R
p, v ∈ H0 ⊕ [ℓ],

where

E{δJℓ(X,Y )v(X,Y )} = −JE{δQ̇X(a⊤ϑ )QX(aϑa
⊤
ϑ )

−1aϑ(X,Y )v(X,Y )}

= −JE[Q̇X(a⊤ϑ )QX(aϑa
⊤
ϑ )

−1E{δaϑ(X,Y )v(X,Y )|X}]

with

E{δaϑ(X,Y )v(X,Y )|X = x} = E{δaϑ(x, Y )v(x, Y )|X = x}

= E{δ|X = x}E{aϑ(x, Y )v(x, Y )|X = x} = Qx(δ)Qx(aϑv) = −Qx(δ)Q̇x(aϑ)t.

Here we have used the MAR assumption and the conditional constraint Qx(vaϑ)
= −Q̇x(aϑ)t on v in V . Inserting this in the above gives

E{δJℓ(X,Y )v(X,Y )} = JE[δQ̇X(a⊤ϑ )QX(aϑa
⊤
ϑ )

−1Q̇X(aϑ)t].

This equals t if J = I−1 with

I = E{δQ̇X(a⊤ϑ )QX(aϑa
⊤
ϑ )

−1Q̇X(aϑ)} = E{δℓ(X,Y )ℓ(X,Y )⊤}.

Our canonical gradient for estimating ϑ is determined: it is γ∗(X, δY, δ) =
δv∗(X,Y ) = δI−1ℓ(X,Y ).

Characterization of the efficient estimator By the characterization of efficient
estimators, an estimator ϑ̂ is efficient for ϑ if it is asymptotically linear with in-
fluence function equal to the canonical gradient. The efficient influence function
for estimating ϑ is I−1δℓ(X,Y ) in our model (1.1). An estimator ϑ̂ is therefore
efficient for ϑ if it satisfies

n1/2(ϑ̂− ϑ) = I−1
n∑

i=1

δiℓϑ(Xi, Yi) + op(n
−1/2)

with ℓϑ(x, y) = −Q̇x(a
⊤
ϑ )Qx(aϑa

⊤
ϑ )

−1aϑ(x, y) and I = E{δℓϑ(X,Y )ℓϑ(X,Y )
⊤
}.
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5. Concluding remarks and future research

We have derived asymptotically efficient estimators for the parameter vector ϑ
for the large class of regression models that can be specified by a conditional
constraint of the form E{aϑ(X,Y )|X} = 0. We focus on the situation when
responses are missing at random, but this also covers the case when no data
are missing, namely when π(X) = P (δ = 1|X) = 1 and all indicators are
equal to one. The proposed method is not only efficient, it is also simple: we
estimate ϑ by solving a weighted estimating equation which only incorporates
completely observed cases (X,Y ), and discard those cases that contain missing
values. Although this requires estimating the weights, we only need consistency
(without a rate). It is certainly remarkable that an efficient estimator may be
based only on the observations for which both the regressors and responses
are available. However, the final efficient estimator does not necessarily have to
be of this type: a consistent estimator of the weight matrix can be obtained
by discarding the data for which the response is missing, but other consistent
estimators of this weight matrix are allowed as well. For instance, one could
use imputation of the missing responses if one is in favor of the imputation
principle, although we do not recommend doing so because the estimators can
become quite involved, as explained in the introduction.

There are several open questions for future research. For example, our class
of models does not include regression models where the regression function itself
contains a nonparametric part, such as partially linear models which are defined
by the conditional constraint E{Y −ϑ⊤X1+η(X2)|X1, X2} = 0. This constraint
additionally involves the infinite-dimensional nuisance parameter η.

It would also be interesting to see whether the methodology developed in this
paper can be extended to other missingness schemes. Clearly, the results apply
to the MCAR (missing completely at random) mechanism, i.e. when π(·) ≡ π is
constant. On the other hand, when the missingness is not at random (NMAR),
the present methodology cannot be applied: the equality E{δaϑ(X,Y )|X} =
E(δ|X)E{aϑ(X,Y )|X}, which relies on the MAR assumption, is crucial for the
development of an efficient (optimally weighted) estimator since it guarantees
unbiasedness of the estimating equation (2.2). Of interest is also the situation
when both covariates and responses are missing, or when only covariates are
missing with the missingness explained by the response variable.

So far we have only studied estimation of the parameter vector, but it would
also be interesting to derive estimators for expectations Eh(X,Y ), with the
mean response EY as an important special case. Although the mean response
has been well studied, it is not yet clear how to estimate expectations in our
model efficiently. To our knowledge, this has not even been considered in the
nonlinear regression model which is specified by E{aϑ(X,Y )|X} = E{Y −
rϑ(X)|X} = 0. In this model we expect that, similar to the model with inde-
pendent covariates and errors (Müller, 2009 [9]), the estimator n−1

∑n
i=1 rϑ̂(Xi),

now with our efficient estimator from equation (2.5) plugged in, will be efficient
for EY . This is in agreement with the linear regression model, rϑ(X) = ϑ⊤X .

Here n−1
∑n

i=1 rϑ̂(Xi) = n−1
∑n

i=1 ϑ̂
⊤Xi = ϑ̂⊤X̄, which is a smooth function
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of two efficient estimators and therefore efficient. Since efficient estimators are
asymptotically normally distributed with the asymptotic variance specified by
the length of the canonical gradient, the construction of (approximative) normal
confidence intervals for moments of the response variable, and for more general
expectations, would be straightforward.

In applications it is often necessary to work with more complex models. We
would expect interesting and useful results in the field of generalized linear
models, for certain change point models, for models with censored/truncated
data (in addition to missing data), and for models used in case-control studies
in the field of biostatistics. For each of these models one would need to specify
the function aθ(X,Y ), from which the formula of the weight matrix and its
estimator can be obtained.
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