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We consider independent observations on a random pair (X,Y ), where the response Y is allowed to be
missing at random but the covariate vector X is always observed. We demonstrate that characteristics of the
conditional distribution of Y given X can be estimated efficiently using complete case analysis, that is, one
can simply omit incomplete cases and work with an appropriate efficient estimator which remains efficient.
This means in particular that we do not have to use imputation or work with inverse probability weights.
Those approaches will never be better (asymptotically) than the above complete case method.

This efficiency transfer is a general result and holds true for all regression models for which the dis-
tribution of Y given X and the marginal distribution of X do not share common parameters. We apply
it to the general homoscedastic semiparametric regression model. This includes models where the condi-
tional expectation is modeled by a complex semiparametric regression function, as well as all basic models
such as linear regression and nonparametric regression. We discuss estimation of various functionals of the
conditional distribution, for example, of regression parameters and of the error distribution.

Keywords: complete case analysis; efficient estimation; efficient influence function; linear and nonlinear
regression; nonparametric regression; partially linear regression; random coefficient model; tangent space;
transfer principle

1. Introduction

Missing values present a challenge in many applications. In practice, popular methods of hand-
ling missing data are single value imputation, multiple imputation, maximum likelihood estima-
tion and complete case analysis (or “listwise deletion”), which simply discards incomplete cases.
The last method carries the risks of bias and of losing valuable information, and is usually not
recommended. There are, however, many applications where complete case analysis is indeed
appropriate. A well-known example where complete case analysis is the accepted approach is
maximum likelihood estimation of a parameter when the distribution of a sample Z1, . . . ,Zn is
modeled by a parametric density fθ , and when observations are missing at random (MAR) in
the sense of [28]. This means that the missingness mechanism depends only on the subvector
Zobs of the data that contains the complete observations. The likelihood then factorizes in such a
way that only the “observed-data” likelihood (based on Zobs) depends on θ ; see, for example, the
recent book by Kim and Shao ([9]; Chapter 2). For an overview of common methods of handling
missing data, see the book by [14].
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In this article, we consider independent copies (X1, δ1Y1, δ1), . . . , (Xn, δnYn, δn) of a base
observation (X, δY, δ), where δ is an indicator which equals 1 if the response Y is observed, and
0 otherwise. If δY is 0, then either Y is an observed numerical zero (and δ = 1), or Y is missing
(and δ = 0), that is, the indicator helps us to distinguish a missing response from an observation
with value 0. We assume that the covariate vector X is always observed and that Y is (strongly
ignorable) missing at random in the sense of [27], who also consider a regression setting. This
means that the probability that Y is observed depends only on the covariate vector X, that is,

P(δ = 1|X,Y) = P(δ = 1|X) = π(X).

It implies that Y and δ are conditionally independent given X. An important special case which
is also covered in this paper is the model with responses missing completely at random, in which
π is a constant. The MAR assumption is reasonable in many applications. It has the advantage
that the missingness depends only on the observed data – in our case on the covariates – and can
therefore be estimated from the data.

We will show the general result that arbitrary (differentiable) functionals of the conditional
distribution of Y given X (without assuming a specific regression structure) can be estimated
efficiently by a complete case version of an efficient estimator, that is, by a statistic that uses
only the observations that are completely observed. This means that we can ignore the incom-
plete cases and work with a familiar efficient estimator of choice without losing consistency and
optimality. We call this property efficiency transfer.

Our article generalizes Koul, Müller and Schick’s finding that a complete case version of an
efficient estimator of the finite-dimensional parameter in a “full” partially linear model (where no
data are missing) remains efficient in the corresponding “MAR model”, that is, in the model with
responses missing at random [12]. Koul et al. prove efficiency of the parameter estimator by di-
rect means. That proof is now obsolete: since the regression parameter is a functional of the con-
ditional distribution, it is simply a consequence of the general result to be presented in this article.

The efficiency transfer applies to all regression models. We focus on the homoscedastic semi-
parametric regression model with unknown error distribution to illustrate its usefulness. This
model assumes that the conditional expectation of Y given X depends on a finite-dimensional
parameter ϑ and an infinite-dimensional parameter ξ ,

Y = r(X,ϑ, ξ) + ε, (1.1)

and that the centered error variable ε is independent of the covariate X. Model (1.1) includes the
basic regression models, that is, linear, nonlinear and nonparametric regression, and also more
elaborate models, for example, the partially linear model, the single index model, and models
with random coefficients. Here the efficiency transfer applies to the estimation of functionals of
the regression parameters ϑ , ξ and the error distribution F . Our results are valid for any model
of the covariate distribution G, as long as the model does not link the covariate distribution to
the regression parameters or the error distribution. It should be noted that the efficiency transfer
does not apply to functionals of the joint distribution that also involve the marginal distribution
of X. Consider, for example, estimation of Eh(X,Y ), where h is a given function. The complete
case version of the empirical estimator is

∑n
j=1 δjh(Xj ,Yj )/N with N = ∑n

j=1 δj the number
of complete cases. It cannot be recommended because it estimates the conditional expectation
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E[h(X,Y )|δ = 1]. In those cases other methods should be used. An established approach to cor-
rect the bias is to add estimated inverse probability weights π̂(Xj )

−1; see, for example, [26] and
other papers by these authors and their collaborators. Müller [15] provides an efficient imputa-
tion estimator for Eh(X,Y ) in nonlinear regression, which does not require an estimator of the
function π .

Most of the literature on regression with MAR responses studies estimation of the mean re-
sponse E[Y ]; for example, [3]. Articles that study functionals of the conditional distribution typ-
ically treat the regression function. Complete case analysis has only recently received increased
attention. Efromovich [5] proposes a nonparametric complete case estimator of a nonparametric
regression function and demonstrates an asymptotic minimax property. Müller [15] shows ef-
ficiency of a complete case estimator of the regression parameter in nonlinear regression with
independent errors and covariates. Müller and Van Keilegom [23] do not require independent
error variables: they consider regression models defined by constraints on the conditional distri-
bution, and prove that complete case estimators are efficient in this large class of models. This is
related to [26], who also consider a conditionally constrained model. They estimate the regres-
sion parameters by solving an inverse probability weighted estimating equation. This requires
a parametric model for π(X), which makes the setting conceptually different. There are also
articles on estimating parameters where the efficiency transfer does not apply. Wang and Chen
[32], for example, study estimation of parameters that are defined by unconditional constraints,
which form a model for the joint distribution. They suggest an empirical likelihood approach
where missing variables are imputed using nonparametric methods. Chown and Mstudy efficient
estimation of the error distribution function in homoscedastic nonparametric regression using
complete cases. González-Manteiga and Pérez-González [7] and Li [13] propose imputation to
derive lack-of-fit tests based on suitable estimators of the error distribution function.

This article is organized as follows. In Section 2, we discuss estimating a functional of the
conditional distribution Q of Y given X in the MAR model and characterize efficient estimators
by deriving their influence function. This result is of independent interest. In Section 3, it is
combined with the transfer principle of asymptotically linear estimators by [12] to yield our main
result, the efficiency transfer, which states that the complete case version of an efficient estimator
for the full model is efficient in the MAR model under a mild assumption. In our application,
this assumption is typically implied by the requirement that π is bounded away from zero. The
efficiency transfer is formulated for independent copies of a base observation (δ,X, δY ), with Y

missing at random, but without assuming a specific regression model. Doing so would impose
additional structure and therefore limit the generality of our statement. In Sections 4 and 5, we
focus on the semiparametric regression model (1.1), with independent covariates and errors, and
consider several important special cases and applications. In Theorem 4.1 in Section 4.1, we
present the efficient influence function for a general functional of the conditional distribution
for this family of models. In the same section, we study four types of functionals, the finite-
dimensional regression parameter, linear functionals of the regression function, functionals of the
infinite-dimensional regression parameter, and linear functionals of the error distribution such as
the error variance and the error distribution function (see Examples 1–4). In Sections 4.2 and 4.3,
we discuss the model class where the regression function only depends on ϑ and the model class
where it only depends on ξ , that is, the special cases where the regression function is parametric
or nonparametric. In Section 5, we illustrate our results in three specific regression models: the



2696 U.U. Müller and A. Schick

linear regression model as a special parametric regression model, the classical nonparametric
regression models which only assumes a smooth regression function, and the partially linear
random coefficient model (as an example of a more complex semiparametric regression model).
The paper concludes (in Section 6) with a proof of Theorem 4.1.

2. Efficient influence functions

In this section, we derive the efficient influence function for estimating a general functional τ

of the conditional distribution Q of Y given X in the MAR model and in the full model; see
equations (2.4) and (2.6) below. We follow the approach outlined on page 58 in [2] as it is most
suitable for estimating general functionals. It consists of two steps. First, one derives the tangent
space of the model and then obtains the efficient influence function of a differentiable functional
as the orthogonal projection of any gradient of the functional onto the tangent space. When esti-
mating the finite-dimensional parameter in a semiparametric model, this approach reduces to the
more familiar approach of projecting the score function of this parameter onto the tangent space
of the nuisance parameter. The efficient influence function is then obtained as the inverse of the
dispersion matrix of the efficient score function times the efficient score function, which is the
difference of the score function and its projection. These approaches are illustrated in examples
2 and 3 of [2], pages 144–147, for estimating regression coefficients when covariates are missing
completely at random; see also [31], who uses the familiar second approach to construct esti-
mators for finite-dimensional parameters in semiparametric models with fully observed, missing
and coarsened data.

We follow the calculations in [19] and consider a general missing data problem, with base
observation (δ,X, δY ), where Y is missing at random, and where X and Y do not have to follow
a regression model. Müller et al. expressed the joint distribution P of (X, δY, δ) via

P(dx, dy, dz) = G(dx)Bπ(x)(dz)
(
zQ(x, dy) + (1 − z)	0(dy)

)
in terms of the distribution G of X, the conditional probability π(x) of δ = 1 given X = x (which
comes in through the MAR assumption), and the conditional distribution Q(x,dy) of Y given
X = x. Here Bp denotes the Bernoulli distribution with parameter p and 	t the Dirac measure
at t . We exclude the degenerate case that no responses are observed by assuming E[δ] > 0.

The parameter for the above model is (G,π,Q). As parameter set we take the product G ×
P × Q, where G is a model for the distribution G, P is a model for the propensity π , and Q is
a model for the conditional distribution Q. This means that the parameters are not linked. The
case that responses are missing completely at random can be modeled by taking the propensity
to be constant and setting P to be the interval (0,1]. The full model, that is, when responses are
not missing, is also captured by taking π = 1 and P = {1}.

The tangent space is the set of all perturbations of P . As in [19], we write this set as the sum
of the orthogonal spaces

T1 = {
u(X) : u ∈ U

}
,

T2 = {
δv(X,Y ) : v ∈ V(G1)

}
,

T3 = {(
δ − π(X)

)
w(X) : w ∈ W

}
.
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The set U consists of all real-valued functions u satisfying
∫

udG = 0,
∫

u2 dG < ∞ and for
which there is a sequence Gnu in G satisfying∫ (

n1/2(dG
1/2
nu − dG1/2) − 1

2
udG1/2

)2

→ 0.

The set W consists of real-valued functions w with the property
∫

w2π(1 − π)dG < ∞ for
which there is a sequence πnw in P such that

∫ 1∑
z=0

(
n1/2(dB

1/2
πnw(x)(z) − dB

1/2
π(x)(z)

) − 1

2

(
z − π(x)

)
w(x)dB

1/2
π(x)(z)

)2

G(dx) → 0.

Finally, the set V(G1) consists of functions v with the properties
∫

v(x, y)Q(x, dy) = 0 and∫
v2(x, y)G1(dx)Q(x, dy) < ∞, and for which there is a sequence Qnv in Q such that

∫ ∫ (
n1/2(dQ

1/2
nv (x, ·) − dQ1/2(x, ·)) − 1

2
v(x, ·) dQ1/2(x, ·)

)2

G1(dx) → 0. (2.1)

Here G1 is the conditional distribution of X given δ = 1. It has density π/
∫

π dG with respect
to G. If π is bounded away from 0, then our formulation is equivalent to that in [19], who worked
with G instead of G1 in (2.1). Since we do not yet want to assume that π is bounded away from
zero, we work with G1 instead of G. Note that V(G1) is the tangent set of the model M(G1) of
distributions G1 ⊗ Q(dx,dy) = G1(dx)Q(x, dy) with G1 held fixed. Think of G1 ⊗ Q as the
distribution of a pair (X̃, Ỹ ) where X̃ has distribution G1 and the conditional distribution of Ỹ

given X̃ is Q.
We assume from now on that V(G1) is a closed linear subspace of L2(G1 ⊗ Q). We are inter-

ested in estimating a characteristic of the conditional distribution Q, more formally a functional
of the form

κ(G,π,Q) = τ(Q).

For this, we assume that τ is differentiable with gradient γ (·;G1) in L2(G1 ⊗ Q). This means
that

n1/2(τ(Qnv) − τ(Q)
) →

∫
γ (x, y;G1)v(x, y)G1(dx)Q(x, dy) (2.2)

holds for all v ∈ V(G1) and with Qnv as above. Let γ∗(·;G1) denote the canonical gradient, i.e.,
the projection of γ (·;G1) onto V(G1) in L2(G1 ⊗ Q). Then γ∗(·;G1) is the efficient influence
function for estimating τ(Q) in the model M(G1). Now set

ψ(δ,X, δY ) = δ

E[δ]γ∗(X,Y ;G1). (2.3)

Then ψ(δ,X, δY ) belongs to T2. Thus by the orthogonality of the spaces T1, T2 and T3, we have

E
[
ψ(δ,X, δY )u(X)

] = 0, u ∈ U,

E
[
ψ(δ,X, δY )

(
δ − π(X)

)
w(X)

] = 0, w ∈ W .
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We calculate

E
[
ψ(δ,X, δY )δv(X,Y )

] =
∫

γ∗(x, y;G1)v(x, y)G1(dx)Q(x, dy), v ∈ V(G1).

This shows that ψ is the canonical gradient for estimating κ(G,π,Q) = τ(Q) in our general
missing data problem and hence the efficient influence function. This means an efficient estimator
τ̂MAR of κ(G,π,Q) = τ(Q) must satisfy the expansion

τ̂MAR = τ(Q) + 1

n

n∑
j=1

δj

E[δ]γ∗(Xj ,Yj ;G1) + oP

(
n−1/2). (2.4)

We have just seen that the efficient influence function for our MAR model is the product of
the influence function in the model M(G1) and the factor δ/E[δ]. So in order to determine
the efficient influence function ψ for a specific application, we only need to find the canonical
gradient in the corresponding model M(G1). In some cases, these canonical gradients are already
available in the literature.

To derive the efficient influence function in the full model, consider the above with δ = 1 (i.e.,
π = 1). Then T2 becomes {v(X,Y ) : v ∈ V(G)} and T3 becomes {0}. The differentiability (2.2)
of τ now needs to hold with G1 replaced by G, i.e.,

n1/2(τ(Qnv) − τ(Q)
) →

∫
γ (x, y;G)v(x, y)G(dx)Q(x, dy). (2.5)

The canonical gradient γ∗(·;G) is now the projection of γ (·;G) onto V(G) in L2(G ⊗ Q) and
the role of ψ(δ,X, δY ) is now played by γ∗(X,Y ;G). Thus, an efficient estimator τ̂FULL of τ

must satisfy

τ̂FULL = τ(Q) + 1

n

n∑
j=1

γ∗(Xj ,Yj ;G) + oP

(
n−1/2). (2.6)

Note that (2.2) implies (2.5) with γ (X,Y ;G) = γ (X,Y ;G1)π(X)/
∫

π dG. If π is bounded
away from zero, then (2.5) implies (2.2) with

γ (X,Y ;G1) = γ (X,Y ;G)

∫
π dG/π(X).

3. Preservation of efficiency

In the previous section, we derived the efficient influence function for the full model and the
MAR model. We now use this information to show that complete case versions of efficient es-
timators for the full model are efficient in the MAR model. For this, we rely on the transfer
principle by [12] for asymptotically linear statistics. We state this principle first.

Let (δ1,X1, Y1), . . . , (δn,Xn,Yn) be independent copies of (δ,X,Y ). Consider a statistic

Tn = tn(X1, Y1, . . . ,Xn,Yn)
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and its complete case version

Tn,c = tN (Xi1, Yi1 , . . . ,XiN ,YiN ),

where N = ∑n
j=1 δj denotes the number of complete observations and i1, . . . , iN denote the

indices of the complete observations. Let M denote a model of joint distributions of (X,Y )

and T denote a function from M to R. We assume that the original statistic has an influence
function φ. More precisely, the following holds for each M in M. If (X,Y ) has distribution M ,
then the expansion

Tn = T (M) + 1

n

n∑
j=1

φ(Xj ,Yj ;M) + oP

(
n−1/2)

holds with E[φ(X,Y ;M)] = 0 and E[φ2(X,Y ;M)] finite. The transfer principle for asymp-
totically linear estimators then gives the following result for the complete case version. If the
conditional distribution M1 of (X,Y ) given δ = 1 belongs to the model M, then the complete
case version obeys the expansion

Tn,c = T (M1) + 1

n

n∑
j=1

δj

E[δ]φ(Xj ,Yj ;M1) + oP

(
n−1/2).

This shows that the complete case version of Tn is an estimator of T (M1) rather than T (M). Note
that this does not require the MAR assumption. Under our MAR assumption, if M = G ⊗ Q,
then M1 = G1 ⊗ M with G1 the conditional distribution of X given δ = 1. Thus, for estimating
a functional τ(Q) of the conditional distribution Q, we have

T (M) = T (G ⊗ Q) = τ(Q) = T (G1 ⊗ Q) = T (M1),

that is, in this case the original statistic and its complete case version are both consistent estima-
tors of τ(Q). In particular, a complete case version of an efficient statistic will in general also be
efficient in the MAR model, which we now present as the key result of this article.

Efficiency transfer

If the original statistic is efficient in the full model, then the function φ(X,Y ;G ⊗ Q) equals the
efficient influence function γ∗(X,Y ;G) from the previous section, and we have

Tn = τ(Q) + 1

n

n∑
j=1

γ∗(Xj ,Yj ;G) + oP

(
n−1/2)

and

Tn,c = τ(Q) + 1

n

n∑
j=1

δj

E[δ]γ∗(Xj ,Yj ;G1) + oP

(
n−1/2),
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provided G1 ⊗ Q belongs to M. This shows that the complete case version of an efficient esti-
mator is efficient in the model with missing data under the mild assumption that G1 ⊗Q belongs
also to the model. We refer to this result as efficiency transfer.

Let us illustrate our findings with a simple example. Suppose we have a parametric model
for the conditional distribution Q of Y given X and want to estimate a linear functional of the
parameter. More precisely, we assume that Q = Qϑ for some m-dimensional parameter ϑ and
that∫ ∫ (

dQ
1/2
ϑ+t (x, dy) − dQ

1/2
ϑ (x, dy) − (1/2)t�vϑ(x, y) dQ

1/2
ϑ (x, dy)

)2
dG(x) = o

(‖t‖2)
holds with

∫
vϑ(x, y) dQϑ(x, dy) = 0 and

∫ ‖vϑ(x, y)‖2G(dx)dQϑ(x, dy) < ∞. Thus the set
V(G) equals the linear span {t�vϑ : t ∈ R

m} of vϑ . We assume that the matrix

W(ϑ,G) =
∫

vϑ(x, y)vϑ(x, y)�G(dx)dQϑ(x, dy)

is positive definite so that V(G) has dimension m. Then an efficient estimator in the full model
for a linear functional τ(Qϑ) = a�ϑ of ϑ has efficient influence function a�γ (X,Y ;G) where
γ (X,Y ;G) = W(ϑ,G)−1vϑ(X,Y ). Indeed, we have

n1/2(a�(
ϑ + n1/2t

) − a�ϑ
) → a�t = a�

∫ ∫
γ (x, y;G)

(
t�vϑ(x, y)

)
G(dx)Qϑ(x, dy).

It is easy to see that G1 satisfies the same assumptions as G as long as W(ϑ,G1) is positive
definite. The complete case version of an efficient estimator of τ(Qϑ) is therefore efficient in
the MAR model if this condition is met. Its influence function is (δ/E[δ])a�γ (X,Y ;G1) =
(δ/E[δ])a�W(ϑ,G1)

−1vϑ(X,Y ).
The above shows that an efficient estimator of ϑ in the full model has influence function

γ (X,Y ;G). Typically, the maximum likelihood estimator is efficient in the full model, and its
complete case version is then efficient in the MAR model.

Remark 3.1. Consider the case where, in addition to Y , X is also missing with indicator γ . Here
the base observation is the quadruple (γ, δ, γX, δY ). Suppose now that an analogue to the MAR
condition holds:

P(γ = i, δ = j |X,Y) = P(γ = i, δ = j |X), i = 0,1, j = 0,1.

In this case, a complete case analysis is still valid in the sense of leading to (asymptotically)
unbiased estimation of characteristics of the conditional distribution Q. In particular, complete
case versions of n1/2-consistent estimators will preserve this property. The efficiency transfer,
however, typically does not carry over to this more general setting, that is, complete case versions
of estimators efficient in the full model will no longer be automatically efficient. This follows
from the fact that on the event {(γ, δ) = (0,1)} one still observes Y , but omits it from the analysis.
The conditional distribution of Y given (γ, δ) = (0,1), however, depends on Q and thus carries
information about Q, which typically cannot be ignored for efficiency purposes.
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4. Application to regression

In this section, we specialize the previous results to the large class of homoscedastic regression
models that have the form (1.1), that is,

Y = r(X,ϑ, ξ) + ε.

We assume that the mean zero error ε is independent of the covariate X, with finite variance
σ 2 > 0, distribution function F , and a density f with finite Fisher information for location. The
latter means that f is absolutely continuous and that the score function �f = −f ′/f has a finite
second moment Jf = ∫

�2
f dF . The regression function r is assumed to depend (smoothly) on

a p-dimensional parameter ϑ and some infinite-dimensional parameter ξ . We begin with the
general semiparametric regression model and then discuss special cases where the regression
function does not depend on ξ or ϑ .

4.1. Semiparametric regression function

In the general homoscedastic semiparametric regression model, we have

Q(x,dy) = Qϑ,ξ,f (x, dy) = f
(
y − r(x,ϑ, ξ)

)
dy.

To find the efficient influence function for functionals of Q with missing data, we derive the
efficient influence function for model M(G1), which is the regression model

Ỹ = r(X̃,ϑ, ξ) + ε̃,

where the error ε̃ is independent of the covariate X̃, X̃ has distribution G1 and ε̃ has the same
distribution as ε. The results of Section 2 immediately provide the efficient influence function
for the MAR model; see (2.3). The efficient influence functions for model M(G1) and the MAR
model are given later in this section in Theorem 4.1.

As shown in [30], the tangent set V(G1) consists of the functions

v(X̃, Ỹ ) = {
a�h(X̃) + b(X̃)

}
�f (ε̃) + c(ε̃), (4.1)

where a belongs to R
p , h to L

p

2 (G1), b to some closed linear subspace B of L2(G1), and c is a
member of C, where

C =
{
c ∈ L2(F ) :

∫
c(y)f (y) dy =

∫
yc(y)f (y) dy = 0

}
.

This requires that for each b in B there is a sequence ξnb such that∫ (
n1/2(r(x,ϑ + n−1/2a, ξnb

) − r(x,ϑ, ξ)
) − a�h(X) − b(x)

)2
dG1(x) = o(1) (4.2)
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for all a ∈ R
p . Here h is the L2(G1)-derivative of t 
→ r(·, t, ξ) at ϑ . Note that C is the tangent

space for the error densities with zero mean, finite variance and finite Fisher information for
location. For each c ∈ C, there is a sequence fnc of such densities such that∫ (

n1/2(f 1/2
nc (y) − f 1/2(y)

) − (1/2)c(y)f 1/2(y)
)2

dy = o(1). (4.3)

We then have (2.1) if we take Qnv = Qϑ+n−1/2a,ξnb,fnc
and v(X̃, Ỹ ) as in (4.1).

We are interested in estimating a functional

τ(Qϑ,ξ,f ) = τ0(ϑ, ξ, f )

of the regression parameters ϑ and ξ and the error density f . We assume that the sequences ξnb

and fnc can be chosen such that, in addition to (4.2) and (4.3),

n1/2(τ0
(
ϑ + n−1/2a, ξnb, fnc

) − τ0(ϑ, ξ, f )
) → a�∗ a +

∫
b∗b dG1 +

∫
c∗c dF (4.4)

holds for all a ∈R
p , b ∈ B and c ∈ C and for some a∗ ∈R

p , b∗ ∈ B and c∗ ∈ C. To describe the
efficient influence function we need to introduce some additional notation.

For a closed linear subspace L of L2(G1), let �L denote the projection operator onto L in
L2(G1), and let dL = �L(1) denote the projection of 1 onto L. We introduce the constants

	 = Jf − 1/σ 2

Jf

= 1 − 1

Jf σ 2
and ρL = 1

1 − 	
∫

dL dG1
.

Now set

h∗ = (
h1 − �B(h1), . . . , hp − �B(hp)

)�

and introduce the matrix

H∗ =
∫

h∗h�∗ dG1.

Note that the space K = {a�h + b : a ∈ R
p, b ∈ B} can be expressed as the sum A + B of the

orthogonal spaces A = {a�h∗ : a ∈R
p} and B . This implies

dK = dA + dB.

Finally, for χ in Lm
2 (G1) and a closed linear subspace L of L2(G1), we write

χ̄ =
∫

χ dG1, Mχ = χ − 	χ̄, ΓLχ = χ + 	ρLdLχ̄,

and

Dχ(X̃, Ỹ ) = (
χ(X̃) − χ̄

)
�f (ε̃) + χ̄

ε̃

σ 2
.
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Using the identity 1 + 	d̄LρL = ρL, we obtain

M(ΓLχ) = χ − 	ρL(1 − dL)χ̄ and ΓLdL = ρLdL.

Theorem 4.1. Suppose the differentiability conditions (4.2)–(4.4) hold and the matrix H∗ is
positive definite. Then the efficient influence function for estimating τ0(ϑ, ξ, f ) in model M(G1)

is

γ∗(X̃, Ỹ ;G1) = c∗(ε̃) + 1

Jf

D
[
(a∗ − α)�H−1∗ ΓKh∗ + ΓBb∗ − c̃∗ΓKdK

]
(X̃, Ỹ )

with a∗ ∈ R
p , b∗ ∈ B and c∗ ∈ C as in (4.4),

α =
∫

M(ΓBb∗)hdG1 and c̃∗ =
∫

c∗�f dF.

The efficient influence function in the MAR model is therefore

δ

E[δ]
[
c∗(ε) + 1

Jf

D
[
(a∗ − α)�H−1∗ ΓKh∗ + ΓBb∗ − c̃∗ΓKdK

]
(X,Y )

]
.

The proof of Theorem 4.1 is deferred to Section 6. Straightforward calculations show that the
constant α can be expressed as

α =
∫

b∗hdG1 − 	ρBb̄∗
∫

(1 − dB)hdG1

and simplifies to

α∗ =
∫

b∗hdG1

if dB equals 1. The latter happens if and only if B contains the constant functions.
We now use the theorem to describe efficient influence functions for some important function-

als. We will derive influence functions for efficient estimators of ϑ , of functionals of ξ , and of
the error distribution F .

Example 1 (Estimating the finite-dimensional parameter). For a0 ∈ R
p , the functional

τ0(ϑ, ξ, f ) = a�
0 ϑ satisfies (4.4) with a∗ = a0, b∗ = 0 and c∗ = 0. Hence, using Theorem 4.1, the

corresponding efficient influence function in model M(G1) is given by a�
0 (Jf H∗)−1Dh#(X̃, Ỹ )

with h# = ΓKh∗. This implies that the efficient influence function for the finite dimensional
parameter ϑ is

(Jf H∗)−1Dh#(X̃, Ỹ ) = (Jf H∗)−1[(h#(X̃) − h̄#
)
�f (ε̃) + h̄#ε̃/σ

2].
It simplifies to

(Jf H∗)−1h∗(X̃)�f (ε̃)
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if B contains the constants in which case we have h̄∗ = 0 and h# = h∗. These results can also be
found in [30]; his w corresponds to our H−1∗ h#. The efficient influence function for estimating
ϑ with missing data is

δ

E[δ] (Jf H∗)−1[(h#(X) − h̄#
)
�f (ε) + h̄#ε/σ

2].
It simplifies to

δ

E[δ] (Jf H∗)−1h∗(X)�f (ε)

if B contains the constant functions. For the construction of efficient estimators in the full model
we refer to [30] and [6]. Thus, complete case versions of these estimators will be efficient with
missing data under mild assumptions.

Example 2 (Estimating a linear functional of the regression function). Let us consider the
functional

τ0(ϑ, ξ, f ) = τ1(ϑ, ξ) =
∫

w(x)r(x,ϑ, ξ) dx

for some measurable function w. If w is an indicator of a set, this functional represents the area
under the regression curve over this set. We assume that G1 has a density g1 and that w/g1
belongs to L2(G1). Then we have

n1/2(τ1
(
ϑ + n−1/2a, ξnb

) − τ1(ϑ, ξ)
)

=
∫

w(x)

g1(x)
n1/2(r(x,ϑ + n−1/2a, ξnb

) − r(x,ϑ, ξ)
)
dG1(x)

→
∫

w

g1

(
a�h + b

)
dG1, a ∈R

p, b ∈ B,

which gives us differentiability with c∗ = 0, b∗ = �B(w/g1) and a∗ = ∫
w(x)h(x)dx. Thus the

efficient influence function for estimating τ1(ϑ, ξ) with missing data is

δ

E[δ]
[

1

Jf

D
[
(a∗ − α)�H−1∗ ΓKh∗ + ΓBb∗

]
(X,Y )

]
.

This simplifies to

δ

E[δ]
[

1

Jf

D
[
(a∗ − α∗)�H−1∗ h∗ + ΓBb∗

]
(X,Y )

]

if B contains the constant functions.

Example 3 (Estimating a functional of the infinite-dimensional parameter). Now consider
estimating a functional

τ0(ϑ, ξ, f ) = τ2(ξ)
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of the infinite dimensional parameter ξ only. We assume that there is a b∗ in B such that

n1/2(τ2(ξnb) − τ2(ξ)
) →

∫
b∗b dG1

holds for all b in B . This yields (4.4) with a∗ = 0 and c∗ = 0. The efficient influence function for
estimating τ2(ξ) with missing data is thus

δ

E[δ]Jf

D
[
ΓBb∗ − α�H−1∗ h#

]
(X,Y ),

where h# equals �Kh as in Example 1. This simplifies to

δ

E[δ]
[(

b∗(X) − b̄∗ − α�∗ H−1∗ h∗(X)
)�f (ε)

Jf

+ b̄∗ε
]

if B contains the constant functions.

Example 4 (Estimating functionals of the error distribution). Now we look at estimating a
linear functional of the error distribution,

τ0(ϑ, ξ, f ) = τ3(f ) =
∫

φ(x)f (x) dx,

for some measurable function φ. This includes estimating the error variance σ 2 by taking φ(x) =
x2 and estimating F(y), the error distribution function at a fixed point y, by taking φ(x) = 1[x ≤
y]. We assume that

∫
φ2 dF is finite. For each c ∈ C, we can choose fnc such that (4.3) and

n1/2
∫

φ(x)
(
fnc(x) − f (x)

)
dx →

∫
φc dF

hold. Hence, we have (4.4) with a∗ = 0, b∗ = 0 and c∗ = φ∗, where φ∗ is the projection of φ onto
C. We have

φ∗(ε̃) = φ(ε̃) −
∫

φ dF −
∫

φ(x)xf (x) dx
ε̃

σ 2
.

The efficient influence function for estimating
∫

φ dF with missing data is therefore

δ

E[δ]
[
φ∗(ε) −

∫
φ∗�f dFTK(X,Y )

]
, (4.5)

where

TK(X,Y ) = 1

Jf

DΓK dK(X,Y ) = ρK

Jf

D dK(X,Y )

= ρK

[(
dK(X) − d̄K

)�f (ε)

Jf

+ (1 − 	)d̄Kε

]
.
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If K contains the constant functions, then we have dK = 1 and thus TK(X,Y ) = ε, and the
efficient influence function simplifies to

δ

E[δ]
[
φ(ε) −

∫
φ dF −

∫
φ�f dFε

]
.

This result was derived for classical nonparametric regression without missing data in [17].
Let us mention two special cases. The efficient influence function for estimating the error

variance σ 2 is

δ

E[δ]
[
ε2 − σ 2 − ρε + ρTK(X,Y )

]
with ρ = ∫

x3 dF(x)/σ 2. This requires the error distribution to have a finite fourth moment and
uses the identity

∫
x2�f (x) dF (x) = 0. The efficient influence function for estimating F(y) is

δ

E[δ]
[
1[ε ≤ y] − F(y) − ν(y)ε + (

f (y) + ν(y)
)
TK(X,Y )

]
with ν(y) = ∫ y

−∞ x dF(x)/σ 2. If K contains the constant functions, then the above influence
functions simplify to

δ

E[δ]
(
ε2 − σ 2)

and

δ

E[δ]
[
1[ε ≤ y] − F(y) + f (y)ε

]
.

The latter was derived directly by [4] for classical nonparametric regression with missing data.
Müller, Schick and Wefelmeyer [20] obtained an analogous result for the full partly linear re-
gression model.

In the following two subsections, we discuss modifications to cases when either the role of ξ

or the role of ϑ is void.

4.2. Parametric regression function

Consider the parametric regression model Y = rϑ (X) + ε where ε and X are as before. One
typically assumes that rt (x) is differentiable in t with gradient ṙt (x). We also assume that∫ (

rϑ+a − rϑ − a�ṙϑ
)2

dG1 = o
(|a|2)

and that the matrix

H =
∫

ṙϑ ṙ�
ϑ dG1
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is positive definite. This model does not involve ξ . Hence, we have

Q(x,dy) = Qϑ,f (x, dy) = f
(
y − rϑ (x)

)
dy,

and the functional of interest is

τ(Qϑ,f ) = τ0(ϑ,f ).

We assume τ0 to be differentiable in the sense that

n1/2(τ0
(
ϑ + n−1/2a,fnc

) − τ0(ϑ,f )
) → a�∗ a +

∫
c∗c dF

for all a ∈ R
p , c ∈ C and some a∗ ∈ R

p , c∗ ∈ C. The tangent associated with the perturbed
version Qϑ+n−1/2,fnc

of Qϑ,f is

a�ṙϑ (X̃)�f (ε) + c(ε̃).

Here a belongs to R
p and c to C. So we have h = ṙϑ , B = {0} and b∗ = 0 and have dB = 0,

dK = h̄�H−1h and

H−1�Kh = (
I + 	ρKH−1h̄h̄�)

H−1h

= (
I − 	H−1h̄h̄�)−1

H−1h

= Jf

(
Jf

(
H − h̄h̄�) + (

1/σ 2)h̄h̄�)−1
h.

The efficient influence function for estimating τ0(ϑ,f ) in the MAR model is

δ

E[δ]
[
c∗(ε) + v�∗ Dh(X,Y )

]
with

v∗ = a�∗
(
Jf

(
H − h̄h̄�) + (

1/σ 2)h̄h̄�)−1 − c̃∗
Jf (1 − 	h̄H−1h̄)

h̄�H−1.

The efficient influence function for estimating ϑ is

δ

E[δ]
{
Jf

(
H − h̄h̄�) + (

1/σ 2)h̄h̄�}−1
[{

h(X) − h̄
}
�f (ε) + h̄

ε

σ 2

]
. (4.6)

This was derived directly in [15].
The efficient influence function for estimating

∫
φ dF with

∫
φ2 dF < ∞ is as in (4.5) with

dK = h̄�H−1h. Thus, the formulas for the efficient influence functions for estimating σ 2 and
F(y) given in Example 4 remain valid with the present dK .

Here a natural model for the covariate distribution is the set G of all distributions G such
that

∫
(rϑ+a − rϑ − a�ṙϑ )2 dG = o(|a|2) and the matrix

∫
ṙϑ ṙ�

ϑ dG is positive definite. If π is
bounded away from zero, then G in G implies G1 in G. The efficiency transfer is therefore valid
if π is bounded away from zero.
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4.3. Generalized nonparametric regression function

We now treat the case where there is no finite-dimensional parameter: the model is Y = r(X, ξ)+
ε with ε and X as before. This covers the classical nonparametric model in which r(x, ξ) =
ξ(x) and ξ is a smooth function, additive regression in which r(x, ξ) = ξ1(x1) + · · · + ξp(xp)

with smooth univariate functions ξ1, . . . , ξp , and random coefficient models in which r(x, ξ) =
ξ1(xp)x1 + · · · + ξp−1(xp)xp−1 with smooth univariate functions ξ1, . . . , ξp−1.

In the present setting, the conditional distribution Q is of the form

Q(x,dy) = Qξ,f (x, dy) = f
(
y − r(x, ξ)

)
dy.

The functional of interest is

τ(Qξ,f ) = τ0(ξ, f ).

The analogues of (4.2) and (4.4) are∫ (
n1/2(r(x, ξnb) − r(x, ξ)

) − b(x)
)2

dG1 = o(1)

and

n1/2(τ0(ξnb, fnc) − τ0(ϑ,f )
) →

∫
b∗b dG1 +

∫
c∗c dF.

The tangent generated by the perturbed version Qξnb,fnc is

b(X̃)�f (ε̃) + c(ε̃).

This is essentially the case h = 0 and a∗ = 0. The efficient influence function for estimating
τ0(ϑ,f ) with missing data is therefore

δ

E[δ]
[
c∗(ε) + 1

Jf

D[ΓBb∗ − c̃∗ΓBdB ](X,Y )

]
.

If B contains the constant functions, this simplifies to

δ

E[δ]
[
c∗(ε) − c̃∗ε + (

b∗(X) − b̄∗
)�f (ε)

Jf

+ b∗ε
]
.

Consider estimating

τ0(ξ, f ) = τ1(ξ) =
∫

w(x)r(x, ξ) dx

for some measurable function w. Suppose that G1 has a density g1 and that w/g1 belongs to
L2(G1). Then we have

n1/2(τ1(ξnb) − τ1(ξ)
) →

∫
w

g1
b dG1
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and thus differentiability with c∗ = 0 and b∗ = �B(w/g1). Therefore, the efficient influence
function for estimating τ1(ξ) is

δ

E[δ]
[

1

Jf

D[ΓBb∗](X,Y )

]
.

This simplifies to

δ

E[δ]
[(

b∗(X) − b̄∗
)�f (ε)

Jf

+ b∗ε
]

if B contains the constant functions.
The efficient influence function for estimating

∫
φ dF with

∫
φ2 dF finite is given by

δ

E[δ]
[
φ∗(ε) −

∫
φ∗�f dF

(1 − 	d̄B)Jf

D dB(X,Y )

]
.

Thus, the efficient influence function is as in Example 4 with dK = dB . The efficient influence
function simplifies to

δ

E[δ]
[
φ(ε) −

∫
φ dF −

∫
φ�f dFε

]

if B contains the constants. This holds for the classical nonparametric regression model and for
the additive regression model, but typically not for the random coefficient model.

5. Examples of regression models

In this section, we discuss three specific regression models. We begin with the fundamental linear
regression model as a particular parametric regression model (see Section 4.2). We treat this
model in detail to demonstrate how the results from the previous section translate to a specific
application. The second model is the classical nonparametric regression model with a regression
function that is only assumed to be smooth. This illustrates the results from Section 4.3. Our
third model is the partially linear random coefficient model, as an example with a more complex
semiparametric regression function. This model covers the partially linear model as a special
case.

5.1. Linear regression

A special case of parametric regression is linear regression,

Y = ϑ�h(X) + ε

for some measurable function h. We assume that E[‖h(X)‖2] = ∫ ‖h‖2 dG is finite and that
the matrix HG = ∫

hh� dG is positive definite. For the efficiency transfer to hold, we have to
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assume that these assumptions are met by G1. It is easy to see that this amounts to requiring that
HG1 = ∫

hh� dG1 is positive definite.
Let us set h̄G = ∫

hdG. The influence function of an efficient estimator of ϑ in the full model
is

λ(X,Y ;G) = [(
HG − h̄Gh̄�

G

)
Jf + (

1/σ 2)h̄Gh̄�
G

]−1[(
h(X) − h̄G

)
�f (ε) + h̄Gε/σ 2].

By the efficiency transfer, its complete case version will be efficient with influence function
δλ(X,Y ;G1)/E[δ]. This holds for the efficient estimators given by [30].

Let us briefly look at an important special case. In simple linear regression, X is one-
dimensional and h(X) = (1,X)�. Then the matrix HG is positive definite if and only if
VarG(X) is positive. It is easy to check that the influence function above simplifies to (ε −
μGχ(X,Y ;G),χ(X,Y ;G))�, where

χ(X,Y ;G) = (X − μG)�f (ε)

VarG(X)Jf

is the efficient influence function for the slope. Here μG = ∫
x dG(x) is the mean of G. The

construction of efficient estimators of the slope has been addressed in the literature. The usual
approach is to estimate the score function �f . Bickel [1] uses sample splitting and kernel density
estimators; [29] avoids sample splitting. Jin [8] uses splines to estimate the score function. In
a recent preprint, [16] propose a different approach that does not require estimating the score
function. They show that a maximum empirical likelihood estimator with an increasing number
of random constraints is efficient. The complete case versions of these estimators are therefore
efficient for missing responses provided VarG1(X) is positive. Müller et al. use the transfer prin-
ciple and the characterization of efficient estimators in [15] to obtain this result. The assumption
on VarG1(X) rules out that G1 is concentrated at a single point. For example, if G is discrete,
then π needs to be positive at a minimum of two points in the support of G, but can be zero at
the other support points.

We now return to the general case and address estimation of linear functionals of the error
density, namely the error variance and the error distribution function at a fixed point y. We first
look at the case when a�

h h = 1 for some ah in R
p . This condition is met if the first coordinate of

h is 1 so that the model contains an intercept as in the simple linear regression model. Note that
the vector ah must equal H−1

G h̄G.
A commonly used estimator of ϑ is the least squares estimator

ϑ̂L =
(

1

n

n∑
j=1

h(Xj )h(Xj )
�
)−1

1

n

n∑
j=1

h(Xj )Yj .

This estimator has influence function H−1
G h(X)ε which coincides with the efficient influence

function if and only if �f (ε) equals ε/σ 2, which is the case only if the error density is a centered
normal density. Thus, the least squares estimator is efficient only if the errors happen to be
normal.
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With the least squares estimator, we associate the residuals ε̂L,j = Yj − ϑ̂�
L h(Xj ). This sug-

gests the following estimator of the error variance

σ̂ 2
L = 1

n

n∑
j=1

ε̂2
L,j .

It is easy to confirm that this estimator obeys the expansion

σ̂ 2
L = 1

n

n∑
j=1

ε2
j + Op

(
n−1).

This shows that σ̂ 2
L is efficient if the errors have a finite fourth moment. Indeed, the influence

function of σ̂ 2
L is ε2 − σ 2 and coincides with the efficient influence function in view of a�

h h = 1
(see Example 4 in the previous section).

The residual-based empirical distribution function

F̂L(y) = 1

n

n∑
j=1

1[ε̂L,j ≤ y], y ∈R,

is an estimator of the error distribution function F . Since the error density f is uniformly
continuous we have, for every root-n consistent estimator ϑ̂ of ϑ and corresponding residuals
ε̂j = Yj − ϑ̂�H(Xj ),

sup
y∈R

∣∣∣∣∣1

n

n∑
j=1

1[ε̂j ≤ y] − 1

n

n∑
j=1

1[εj ≤ y] − f (y)h̄�
G(ϑ̂ − ϑ)

∣∣∣∣∣ = op

(
n−1/2); (5.1)

see Müller, Schick and Wefelmeyer ([20,21]) and the earlier work by [11]. Applying this with
ϑ̂ = ϑ̂L and observing that h̄�

Gϑ̂L has influence function h̄�
GH−1

G h(X)ε = a�
h h(X)ε = ε, we

obtain

sup
y∈R

∣∣∣∣∣F̂L(y) − 1

n

n∑
j=1

(
1[εj ≤ y] + f (y)εj

)∣∣∣∣∣ = op

(
n−1/2).

This shows that F̂L(y) is an efficient estimator of F(y) for each y ∈ R.
From now on, we no longer require that there be a vector ah such that a�

h h = 1. In this case,
efficient estimation of σ 2 and F(y) becomes more complicated. By the results in Section 4.2 and
Example 4, the efficient influence function for estimating σ 2 is

ε2 − σ 2 − ρε + ρT (X,Y ;G),

while the efficient influence function for estimating F(y) is

1[ε ≤ y] − F(y) − ν(y)ε + (
f (y) + ν(y)

)
T (X,Y ;G).
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Here ρ and ν(y) are as in Example 4 and T (X,Y ;G) is given by

T (X,Y ;G) = 1

1 − 	E[d(X;G)]
[(

d(X;G) − E
[
d(X;G)

])�f (ε)

Jf

+ (1 − 	)E
[
d(X;G)

]
ε

]

with d(X;G) = h̄GH−1
G h(X). In what follows, we shall need the fact that T (X,Y ;G) is the

influence function of h̄�
Gϑ̂ when ϑ̂ is efficient. This follows using the calculations in Section 4.2.

We now work with the residuals ε̂j = Yj − ϑ̂�h(Xj ), where ϑ̂ for the moment is a root-
n consistent estimator of ϑ . Even for the least squares estimator these residuals are no longer
guaranteed to sum to zero. That property captured the information that the error distribution has
zero in the previous setting. The equivalent here is to use a weighted residual distribution function
where the weights are the maximizers of the empirical likelihood

sup

{
n∏

j=1

nπj : π1 ≥ 0, . . . , πn ≥ 0,

n∑
j=1

πj = 1,

n∑
j=1

πj ε̂j = 0

}
,

which imposes this constraint. It follows from Owen ([24,25]) that the maximizers are of the
form π̂j = 1/(1 + ζ ε̂j ) where the Lagrange multiplier ζ is a random variable such that 1 +
ζ ε̂1, . . . ,1 + ζ ε̂n are positive and

1

n

n∑
j=1

ε̂j

1 + ζ ε̂j

= 0

holds. Such a random variable exists except on an event whose probability tends to zero. This
idea was used by Müller, Schick and Wefelmeyer ([18,19]) in the context of time series models.

We estimate σ 2 by

σ̂ 2
W = 1

n

n∑
j=1

ε̂2
j

1 + ζ ε̂j

.

A standard argument yields

ζ = 1

n

n∑
j=1

ε̂j

σ 2
+ op

(
n−1/2) = 1

n

n∑
j=1

εj

σ 2
− 1

σ 2
h̄�

G(ϑ̂ − ϑ) + op

(
n−1/2); (5.2)

a version of this was used by [18] in an autoregressive setting. If ε has a finite fourth moment,
we obtain the expansion

σ̂ 2
W = 1

n

n∑
j=1

[
ε̂2
j − ε̂3

j ζ
] + op

(
n−1/2)

= 1

n

n∑
j=1

ε2
j − E[ε3]

σ 2

[
1

n

n∑
j=1

εj − h̄�
G(ϑ̂ − ϑ)

]
+ op

(
n−1/2)
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by a standard argument. This shows that σ̂ 2
W is an efficient estimator of σ 2 if ϑ̂ is an efficient

estimator of ϑ which implies that h̄�
Gϑ̂ has influence function T (X,Y ;G).

One can also show that

F̂W(y) = 1

n

n∑
j=1

1[ε̂j ≤ y]
1 + ζ ε̂j

(5.3)

is an efficient estimator of F(y) provided ϑ̂ is efficient for ϑ . Here one verifies

sup
y∈R

∣∣∣∣∣1

n

n∑
j=1

(
1[ε̂j ≤ y]
1 + ζ ε̂j

− 1[ε̂j ≤ y] + ζ ε̂j 1[ε̂j ≤ y]
)∣∣∣∣∣ = op

(
n−1/2),

sup
y∈R

∣∣∣∣∣1

n

n∑
j=1

ε̂j 1[ε̂j ≤ y] − E
[
ε1[ε ≤ y]]

∣∣∣∣∣ = op(1),

and then uses (5.1) and (5.2) to conclude

sup
y∈R

∣∣∣∣∣F̂W(y) − 1

n

n∑
j=1

(
1[εj ≤ y] − ν(y)εj

) − [
f (y) + ν(y)

]
h̄�

G(ϑ̂ − ϑ)

∣∣∣∣∣ = op

(
n−1/2).

Thus, F̂W(y) has the desired influence function if ϑ̂ is efficient.
Recall that the efficiency transfer requires that HG1 is positive definite. Thus, under this as-

sumption, complete case versions of the above estimators of σ 2 and F(y) are efficient in the
MAR model.

5.2. Nonparametric regression

Now consider the conventional nonparametric regression model Y = ξ(X) + ε, where ξ is a
smooth but otherwise unknown function. This model is important for applications where the
functional relationship between response and covariate cannot be predetermined, but can be ap-
proximated using data. Popular methods to carry this out involve kernel estimators, local poly-
nomials, splines and wavelets.

Let ξ be a twice continuously differentiable function. We assume that X is quasi-uniform on
the interval [0,1]. This means that X has a density g that vanishes off [0,1] and is bounded and
bounded away from zero on [0,1]. For the transfer principle to work, the distribution G1 of X̃

has to be quasi-uniform on [0,1] as well. In view of the formula G1(dx) = π(x)dG(x)/E[δ] (cf.
Section 2), it is easy to see that quasi-uniformity of G1 is equivalent to π being bounded away
from zero on the support of X. If this holds true, then B equals L2(G1) as the twice continuously
differentiable functions are dense in L2(H) for each quasi-uniform distribution H on [0,1].

We briefly address estimation of the error distribution function and a linear functional of ξ .
We first look at the case where no responses are missing, which corresponds to δ ≡ 1. Then G1
equals G and B equals L2(G). Let ξ̂ denote a nonparametric estimator of ξ , and ε̂j = Y − ξ̂ (Xj ),
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j = 1, . . . , n the corresponding (nonparametric) residuals. Müller et al. [20] showed that the
uniform expansion

sup
y∈R

∣∣∣∣∣1

n

n∑
j=1

1[ε̂j ≤ y] − 1[εj ≤ y] − f (y)εj

∣∣∣∣∣ = op

(
n−1/2)

holds for an undersmoothed local linear smoother under an additional moment assumption on the
errors. The Hölder condition required in their result is met, as the error density has finite Fisher
information and is therefore Hölder with exponent 1/2. The regression function can alternatively
be estimated by a series estimator; see [22] who estimate an additive regression function by a sum
of series estimators. The same expansion was obtained by [10], who propose a weighted version
that takes additional model information into account using the empirical likelihood method.

From this and Example 4, we conclude that the residual-based empirical distribution function
is an efficient estimator of the error distribution function. This implies that its complete case
version is efficient with missing responses as long as π is bounded away from zero on [0,1].
This was proved by [4].

The assumption on π to be bounded away from zero on [0,1] is crucial here because of our
assumption that X is quasi-uniform on [0,1]. We can, however, relax this assumption and require
that X is quasi-uniform on some compact (unknown) interval of positive length. Then π does
not have to be bounded away from zero on this interval; it suffices to require that π is bounded
away from zero on a compact subinterval of positive length and be zero outside this interval. In
this setting, the choices δ = 1[X ≤ v], δ = 1[X ≥ u] and δ = 1[u ≤ X ≤ v] would be allowed as
long as u is less than the right endpoint and v is greater than the left endpoint of the support of
X. Such choices are of interest in medical applications. A treatment might only be performed if
the covariate falls into a safety zone, for example.

When using local polynomial smoothers, quasi-uniformity is typically essential, but not the
knowledge of the compact interval. Thus, the efficient estimator of [20] will work under the
relaxed assumptions and for the choices of δ mentioned above.

When working with kernel estimators one typically requires for technical reasons, in addition
to quasi-uniformity, smoothness properties for the density g on its support. Then one needs the
same smoothness of πg, and this translates into smoothness assumptions on π .

Next, we look at estimating
∫

w(x)ξ(x) dx for some known bounded measurable function
w that vanishes outside the interval [0,1]. The efficient influence function for this quantity is
(b∗(X) − E[b∗(X)])�f (ε)/Jf + E[b∗(X)]ε with b∗ = w/g. A candidate for an efficient estima-
tor is ∫ 1

0
b̂∗(x)ξ̂ (x) dx + 1

n

n∑
j=1

[(
b̂∗(Xj ) − μ̂

) �̂(ε̂j )

Ĵ
+ μ̂εj

]

with b̂∗ = w/ĝ for a kernel estimator of ĝ of g and μ̂ = 1
n

∑n
j=1 b̂∗(Xj ). This can be verified

using the work of [30] with ξ̂ an undersmoothed local linear smoother of ξ and appropriate se-
lection of bandwidth. Thus the complete case version will be efficient with missing observations
whenever π is bounded away from zero on [0,1]. The assumption that X is quasi-uniform on
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[0,1] can again be relaxed to X being quasi-uniform on an (unknown) compact interval con-
taining [0,1]. The efficiency transfer is then valid as long as π is bounded away from zero on a
compact subinterval containing [0,1] and is zero outside this interval.

5.3. Partially linear random coefficient model

Now we consider a partially linear random coefficient model

Y = ϑ�U + Sξ(T ) + ε,

where ‖U‖ has a finite second moment, T is quasi-uniform on [0,1], E[S2|T = t] is bounded
and bounded away from zero for t ∈ [0,1], and ξ is twice continuously differentiable. For the
real parameter ϑ to be identifiable, we also require that the matrix

HG = E
[(

U − SμG(T )
)(

U − SμG(T )
)�]

is positive definite, where

μG(T ) = E[SU |T ]/E[
S2|T ]

.

Here the covariate vector X equals (S,T ,U�)�. We also require that π is bounded away from
zero. This implies that the efficiency transfer applies. For example, the positive definiteness of
HG1 follows from that of HG in view of the inequality

v�HG1v ≥ ηv�HGv, v ∈R
p,

which is valid for some positive η. We can take η to be a lower bound on the density π/E[δ] of
G1 with respect to G. Indeed, using E[(U − SμG(T ))S|T ] = 0, we calculate

v�HG1v ≥ ηE
(
v�U − Sv�μG1(T )

)2]
= ηE

[(
v�U − Sv�μG(T )

)2] + ηE
[
S2v�(

μG(T ) − μG1(T )
)2]

.

In the full model, we have (4.2) with G1 replaced by G, h(X) = U and b(X) = Sb0(T ) for
each b0 in L2(GT ), where GT is the distribution of T under G. This follows from the fact
that the twice differentiable functions are dense in L2(GT ). The role of B is now played by
B(G) = {b ∈ L2(G) : b(X) = Sa(T ), a ∈ L2(GT )}. The projection operator on this set is given
by

�B(G)k(X) = S
E[Sk(X)|T ]

E[S2|T ] , k ∈ L2(G).

The roles of h∗ and dK are now played by hG and eG where

hG(X) = U − SμG(T )
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and

eG(X) = E
[
hG(X)

]
H−1

G hG(X) + S
E[S|T ]
E[S2|T ] .

The efficient influence function for estimating ϑ without missing responses is thus

(Jf HG)−1
[(

hG(X) − E
[
hG(X)

])
�f (ε) + E

[
hG(X)

] ε

σ 2

+ 	

1 − 	E[eG(X)]E
[
hG(X)

]((
eG(X) − E

[
eG(X)

])
�f (ε) + E

[
eG(X)

] ε

σ 2

)]
.

An efficient estimator can be constructed along the lines outlined in [30]. This requires a root-n
consistent estimator of ϑ and appropriate estimators of μG and ξ .

Next, we look at estimating F(y) for some y. The efficient influence function is

1[ε ≤ y] − F(y) − ν(y)ε

+ ν(y) + f (y)

(1 − 	E[eG(X)])JF

((
eG(X) − E

[
eG(X)

])
�f (ε) + E

[
eG(X)

] ε

σ 2

)
.

We expect that the weighted residual-based empirical distribution function F̂W(y), defined as in
(5.3) but with semiparametric residuals

ε̂j = Yj − ϑ̂�Uj − Sj ξ̂ (Tj ),

is efficient if ϑ̂ is an efficient estimator of ϑ and ξ̂ is an appropriate estimator of ξ .
If S = 1, then the above model reduces to the partially linear model for which efficient estima-

tors of ϑ are available, see [30] and [6], who propose a direct estimator of the influence function.
As pointed out in [12], the complete case versions of these estimators are efficient in the missing
data case as long as π is bounded away from zero. Efficient estimators of the error distribution
function were obtained in [20], who use local linear smoothers to construct a residual-based
empirical distribution function. Again, their complete case versions are efficient with missing
responses as long as π is bounded away from zero.

6. Proof of Theorem 4.1

Using the identity ∫
y�f (y) dF (y) = 1

we see that the function y 
→ �f (y) − y/σ 2 belongs to C. Let χ belong to K . Then Dχ(X̃, Ỹ )

is a tangent and satisfies

E
[
Dχ(X̃, Ỹ )c(ε̃)

] = 0, c ∈ C,
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and

E
[
Dχ(X̃, Ỹ )k(X̃)�f (ε̃)

] = Jf

∫
kMχ dG1, k ∈ K.

Using the formula for MΓL given prior to Theorem 4.1 and the fact that 1 − dL is the projection
of 1 onto the orthocomplement of L, we find

∫
kMΓLg dG1 =

∫
kg dG1 − 	ḡ

1 − 	d̄L

∫
(k − �Lk)dG1, k, g ∈ L2(G1).

Note that the last integral is zero if k belongs to L. For k = a�h + b in K and β in R
p , we find

∫
kMΓK dK dG1 =

∫
kdK dG1 = k̄,

∫
kMΓK

(
β�h∗

)
dG1 =

∫
kβ�h∗ dG1 =

∫ (
a�h∗

)(
β�h∗

)
dG1β = β�H∗a,

∫
kMΓBb∗ dG1 = a�α +

∫
bb∗ dG1.

Here we used the fact that dK is the projection of 1 onto K , a�h∗ is the projection of k onto A,
and the definition of α. Now let us take

χ = [
(a∗ − α)�H−1∗ ΓKh∗ + ΓBb∗ − c̃∗ΓK dK

]
/Jf .

Then we have the identity

γ∗(X̃, Ỹ ;G1) = c∗(ε̃) + Dχ(X̃, Ỹ ).

Since χ belongs to K and c∗ to C, we see that γ∗(X̃, Ỹ ;G1) is a tangent. Thus, it suffices to
show that

E
[
γ∗(X̃, Ỹ ;G1)v(X̃, Ỹ )

] = a�∗ a +
∫

b∗b dG1 +
∫

c∗c dF

holds for all tangents v(X̃, Ỹ ) as in (4.1). By the above, we have

E
[
Dχ(X̃, Ỹ )v(X̃, Ỹ )

] = (a∗ − α)�a + α�a +
∫

b∗b dG1 − c̃∗
[
a�h̄ + b̄

]
and

E
[
c∗(ε̃)v(X̃, Ỹ )

] = c̃∗
[
a�h̄ + b̄

] +
∫

c∗c dF,

and the desired result follows.
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