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ESTIMATING LINEAR FUNCTIONALS IN NONLINEAR
REGRESSION WITH RESPONSES MISSING AT RANDOM

BY URSULA U. MÜLLER

Texas A&M University

We consider regression models with parametric (linear or nonlinear) re-
gression function and allow responses to be “missing at random.” We assume
that the errors have mean zero and are independent of the covariates. In or-
der to estimate expectations of functions of covariate and response we use a
fully imputed estimator, namely an empirical estimator based on estimators of
conditional expectations given the covariate. We exploit the independence of
covariates and errors by writing the conditional expectations as unconditional
expectations, which can now be estimated by empirical plug-in estimators.
The mean zero constraint on the error distribution is exploited by adding suit-
able residual-based weights. We prove that the estimator is efficient (in the
sense of Hájek and Le Cam) if an efficient estimator of the parameter is used.
Our results give rise to new efficient estimators of smooth transformations
of expectations. Estimation of the mean response is discussed as a special
(degenerate) case.

1. Introduction. Consider a regression model Y = rϑ(X) + ε with linear or
nonlinear regression function rϑ depending on a finite-dimensional parameter ϑ

in some open set. Assume that the covariate vector X and the error variable ε

are independent and that Eε = 0. Note that we do not make any further model
assumptions on the distributions of the variables. We are interested in the situation
where the response Y is missing at random, in other words, we always observe
X but only observe Y in those cases where some indicator Z equals one, and the
indicator Z is conditionally independent of Y given X.

We want to estimate the expectation Eh(X,Y ) of some known square-
integrable function h from a sample (Xi,ZiYi,Zi), i = 1, . . . , n, for example,
the mean response, higher moments of Y or X or mixed moments. If all indica-
tors Zi were 1, a simple consistent estimator would be the empirical estimator
n−1 ∑n

i=1 h(Xi, Yi). A related estimator for the missing data situation considered
here would be

1

n

n∑
i=1

Zi

π̂(Xi)
h(Xi, Yi)
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with π̂(X) denoting an estimator of the conditional probability π(X) = P(Z =
1|X) = E(Z|X). Another estimator is the partially imputed estimator

1

n

n∑
i=1

{Zih(Xi, Yi) + (1 − Zi)χ̂(Xi)},

where χ̂ (X) is a (semiparametric) estimator of the conditional expectation χ(X) =
E{h(X,Y )|X}. An alternative to this estimator is the fully imputed estimator
n−1 ∑n

i=1 χ̂ (Xi).
If a nonparametric estimator χ̂ is used, we expect all three estimators to be

asymptotically equivalent. For h(X,Y ) = Y and the last two estimators, this is
sketched in Cheng (1994). Here we assume a specific form of the conditional
distribution of Y given X, and we can construct better estimators than the non-
parametric ones. We then expect the fully imputed estimator n−1 ∑n

i=1 χ̂ (Xi) to
be better than the partially imputed one, which in turn should be better than the
first estimator. For parametric models this is shown for h(X,Y ) = Y by Tamhane
(1978) and Matloff (1981). Müller, Schick and Wefelmeyer (2006) show for sev-
eral regression models (not including the present one) and arbitrary h that the fully
imputed estimator is usually better than the partially imputed estimator. That the
same holds for the nonlinear regression model considered here is intuitively clear:
our model E(Y |X) = rϑ(X) constitutes a structural constraint. The fully imputed
estimator, based on estimators χ̂ (X) that use the structure, will therefore be bet-
ter than the partially imputed estimator, which uses this information only at data
points where responses are missing.

In this article we study the fully imputed estimator based on suitable estima-
tors for χ(X) and show that it is efficient. The construction is as follows: in a
first step we exploit the independence of covariates and errors and the structure of
the regression model and write the conditional expectation χ(x) = χ(x,ϑ) as an
unconditional expectation of the error distribution,

χ(x,ϑ) = E{h(X,Y )|X = x}
= Eh{x, rϑ(x) + ε} = Eh{x, rϑ(x) + Y − rϑ(X)}.

This representation suggests an empirical plug-in estimator based on the observed
data, namely

χ̂ (x, ϑ̂) =
n∑

j=1

Zjh{x, r
ϑ̂
(x) + Yj − r

ϑ̂
(Xj )}

/ n∑
j=1

Zj ,

where ϑ̂ is an estimator of ϑ . The corresponding fully imputed estimator is

1

n

n∑
i=1

χ̂(Xi, ϑ̂) = 1

n

n∑
i=1

∑n
j=1 Zjh{Xi, rϑ̂ (Xi) + Yj − r

ϑ̂
(Xj )}∑n

j=1 Zj

.(1.1)
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It is straightforward to check that χ̂ (x,ϑ) is consistent for Eh{x, rϑ(x)+ε} [which
yields consistency of n−1 ∑n

i=1 χ̂(Xi, ϑ̂), with ϑ̂ consistent]; note that χ̂ (x,ϑ)

tends in probability to E[Zh{x, rϑ(x) + ε}]/EZ with EZ = E{E(Z|X)} =
Eπ(X). Now use the missing at random assumption and the independence of X

and ε to rewrite the numerator,

E
(
E[Zh{x, rϑ(x) + ε}|X]) = E

(
E(Z|X)E[h{x, rϑ(x) + ε}|X])

= E[π(X)Eh{x, rϑ(x) + ε}]
= Eπ(X)Eh{x, rϑ(x) + ε}.

The limit of χ̂ (x,ϑ) is therefore χ(x,ϑ) = Eh{x, rϑ(x) + ε}.
The estimator (1.1) is well thought out and consistent. However, it is not yet

efficient, even if an efficient estimator for ϑ is used (which is relatively elaborate
in the model considered here; see Section 5): we focus on the common situation
where the errors have mean zero; this information must also be incorporated in
order to obtain efficiency.

Motivated by Owen’s empirical likelihood approach, we improve the above es-
timator by introducing weights which use the mean zero constraint on the error
distribution. However, and in contrast to the original approach, we cannot observe
the errors and must use residuals. This clearly complicates the situation: since we
have missing responses the residuals are partially incomplete and, moreover, they
involve parameter estimates ϑ̂ . Formally, we choose weights ŵj based on residuals
ε̂j = Yj − r

ϑ̂
(Xj ) such that

∑n
j=1 ŵjZj ε̂j = 0. (See Section 3 for more details.)

Our final estimator now is a weighted version of the above fully imputed esti-
mator, namely

1

n

n∑
i=1

χ̂w(Xi, ϑ̂) = 1

n

n∑
i=1

∑n
j=1 ŵjZjh{Xi, rϑ̂ (Xi) + Yj − r

ϑ̂
(Xj )}∑n

j=1 Zj

.(1.2)

The combination of full imputation methods (involving estimators of uncondi-
tional expectations of the error distribution) with empirical likelihood ideas pro-
vides a new methodology which has not appeared in the literature before. We show
in this article that n−1 ∑n

i=1 χ̂w(Xi, ϑ̂) is efficient if an efficient estimator ϑ̂ for ϑ

is used. The partially imputed estimator will in general not be efficient, even if ϑ̂

is efficient for ϑ .
For estimation of the mean response, that is, if h(X,Y ) = Y , which is of particu-

lar interest and typically considered in the literature, the estimator simplifies to the
straightforward estimator n−1 ∑n

i=1 r
ϑ̂
(Xi). That the unweighted estimator (1.1)

for EY cannot be efficient is immediately apparent: consider the case where all
responses are observed. Here (1.1) reduces to the empirical estimator n−1 ∑n

i=1 Yi

which does not use the regression structure at all. It will be seen that its influence
function is not the efficient one. (See Section 6 for details.)

Our efficiency results are based on the Hájek–Le Cam theory for locally as-
ymptotically normal families. As a consequence, our proposed estimators have a
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limiting normal distribution with the asymptotic variance determined by the influ-
ence function. It is therefore straightforward to construct asymptotic confidence
interval for Eh(X,Y ) (see Section 6.3).

In addition, estimators for smooth (continuously differentiable) transformations
of expectations Eh(X,Y ) are also now available, with the variance of the response,
VarY = EY 2 − E2Y , as an important example. Since efficiency is preserved by
smooth transformations, plugging in efficient estimators yields an efficient estima-
tor of the transformation. The transformation for VarY in terms of the first two
moments is (EY,EY 2) �→ EY 2 − (EY )2. Plugging in n−1 ∑n

i=1 r
ϑ̂
(Xi) for EY

and the weighted fully imputed estimator for EY 2 (which is straightforward to
compute and is also given in Section 6) gives an efficient estimator of the variance.

To our knowledge, our estimator (1.2) is the first efficient estimator for arbitrary
linear functionals Eh(X,Y ) (including the mean functional EY ) in the nonlinear
regression model (including the linear regression model Y = ϑ�X + ε) with in-
dependent centered errors when responses are missing at random. Matloff (1981)
considers estimation of the mean EY in a model related to ours, the (parametric)
conditional mean model, E(Y |X) = rϑ(X), which can (but need not) also be writ-
ten in the form Y = rϑ(X) + ε with conditionally centered errors, E(ε|X) = 0.
He shows that the average of the estimated regression function values (with his
estimator ϑ̂ of ϑ) improves upon the partially imputed estimator. Wang and Rao
(2001) consider linearly constrained covariates and develop an empirical likeli-
hood approach for inference about the mean in linear regression (with independent
errors) based on partial linear regression imputation. In Wang and Rao (2002) they
present an empirical likelihood approach for inference about the mean response
in nonparametric regression, based on partial kernel regression imputation as sug-
gested by Cheng (1994). A different empirical likelihood method for this setting
is proposed by Qin and Zhang (2007). Wang (2004) assumes a parametric model
for the conditional density of Y given X, with constraints on the covariate distri-
bution, and introduces a weighted partial imputation estimator for the mean, uti-
lizing empirical likelihood techniques. Wang, Linton and Härdle (2004) consider
a partially linear regression model for the conditional mean function and derive
inference tools for the mean response based on a class of asymptotically equiv-
alent (partially and fully imputed) estimators. A related article is Liang, Wang
and Carroll (2007) who additionally assume that covariates are measured with er-
ror. Chen, Fan, Li and Zhou (2006) consider partially imputed estimators for the
mean response in a quasi-likelihood setting. Maity, Ma and Carroll (2007) estimate
expectations in semi-parametric regression models, with and without missing re-
sponses. They consider a general regression function involving a parametric and
a nonparametric part, thus covering the partly linear model, and assume that the
likelihood function given the covariates is known.

For estimating expectations, little attention has been given to the fully imputed
estimator. We anticipate that in many situations, in particular in models with struc-
tural assumptions, improved estimators can be obtained by using appropriate full
imputation instead of partial imputation estimates.
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Inference for missing data has been studied by many authors, also recently.
Chen and Wang (2009) study estimation of parameters which are defined by model
constraints. They introduce an empirical likelihood approach involving estimating
equations, where missing variables are replaced using a nonparametric imputation
approach. Chen, Hong and Tarozzi (2008) consider parameter estimation as well.
They introduce efficient estimators for parameters in GMM models with missing
data, and assume that the missingness can be explained by auxiliary variables.
More references to recent literature can be found, for example, in Wang, Linton
and Härdle (2004) and in the monograph by Tsiatis (2006). For an introduction,
see Tsiatis (2006) and the books by Little and Rubin (2002) and Gelman et al.
(1995).

This paper is organized as follows. In Section 2 we derive a stochastic expan-
sion of the unweighted estimator. The expansion of the weighted estimator is given
in Section 3, utilizing the results of Section 2. Section 4 characterizes efficient es-
timators of arbitrary functionals of the joint distribution and gives the efficient
influence function of the functional Eh(X,Y ) in the nonlinear regression model.
In Section 5 we characterize efficient estimators for the parameter vector ϑ and
briefly sketch the construction of such an estimator. In this section we also show
our main result, that the weighted estimator with an efficient estimator ϑ̂ for ϑ

plugged in is efficient for Eh(X,Y ). Section 6 contains a short discussion of spe-
cial cases such as estimation of the mean response. We also compare, using com-
puter simulations, the efficient (weighted fully imputed) estimator with the other
approaches, with convincing results. For these studies we considered a linear and
a nonlinear regression function and estimation of two simple functionals, namely
of the response mean and second moment, for which the efficient (weighted fully
imputed) estimator simplifies, and estimation of a more complicated expectation.
We also briefly sketch the construction of confidence intervals.

2. Expansion of the unweighted estimator. In this section we derive an ex-
pansion of the unweighted estimator n−1 ∑n

i=1 χ̂ (Xi, ϑ̂), which is a special case of
the weighted estimator n−1 ∑n

i=1 χ̂w(Xi, ϑ̂) with all weights being equal to one,
wj = 1. This can be regarded as a result of independent interest since the estimator
(with an appropriate estimator ϑ̂ ) would be relevant for regression models where
the errors cannot be assumed to have mean zero. Also, we will see in the next
section that the weighted estimator can be written as the sum of the unweighted
estimator and an additional correction term. Hence we can utilize the results later
when we derive an expansion of the weighted estimator.

Throughout this paper we will assume that Y is square integrable and that the
error variance Eε2 = σ 2 is nonzero and finite. We also suppose that the error dis-
tribution has a Lebesgue density f and finite Fisher information, E�2(ε) < ∞,
where � denotes the score function for location, �(ε) = −f ′(ε)/f (ε). The degen-
erate case that we (almost surely) never observe a response Y will be excluded by
assuming P(Z = 1) = EZ > 0. The following assumptions will also be required.
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ASSUMPTION 1. The regression function τ �→ rτ (x) is differentiable at τ = ϑ

with a p-dimensional square integrable gradient ṙϑ (x) which satisfies the Lipschitz
condition

|ṙτ (x) − ṙϑ (x)| ≤ |τ − ϑ |a(x), a(X) square integrable.

Later we will also need that the covariance matrix of an efficient parameter
estimator ϑ̂ [which involves the covariance matrix of ṙϑ (X) and the Fisher infor-
mation] is invertible.

Now use a Taylor expansion to see that

n∑
i=1

{rτ (Xi) − rϑ(Xi) − ṙϑ (Xi)
�(τ − ϑ)}2

=
n∑

i=1

[∫ 1

0

{
ṙϑ+u(τ−ϑ)(Xi) − ṙϑ (Xi)

}�
(τ − ϑ)du

]2

≤ |τ − ϑ |2
n∑

i=1

∫ 1

0

∣∣ṙϑ+u(τ−ϑ)(Xi) − ṙϑ (Xi)
∣∣2 du

≤ |τ − ϑ |4
n∑

i=1

a2(Xi).

Assumption 1 therefore guarantees that the function τ �→ rτ (X) is stochastically
differentiable, that is, for each constant C,

sup
|τ−ϑ |≤Cn−1/2

n∑
i=1

{rτ (Xi) − rϑ(Xi) − ṙϑ (Xi)
�(τ − ϑ)}2 = op(1).(2.1)

We will not need the first partial derivative of h(x, y), ∂/∂xh(x, y). There-
fore we will write h′ for the second partial derivative, h′(x, y) = ∂2h(x, y) =
∂/∂yh(x, y).

ASSUMPTION 2. The function h(x, y) is differentiable in y with a square
integrable partial derivative h′(x, y) = ∂/∂yh(x, y) which satisfies the Lipschitz
condition

|h′(x, z) − h′(x, y)| ≤ |z − y|b(x, y), b(X,Y ) square integrable.

In the following Z̄ will denote the average of the indicators Zi , Z̄ =
n−1 ∑n

i=1 Zi . The next lemma gives the expansion of the estimator around the
true parameter ϑ .
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LEMMA 2.1. Assume that Assumptions 1 and 2 hold and that ϑ̂ is a
√

n con-
sistent estimator of ϑ . Then the unweighted estimator has the expansion

1

n

n∑
i=1

χ̂ (Xi, ϑ̂) = 1

n

n∑
i=1

χ̂(Xi,ϑ) + D�(ϑ̂ − ϑ) + op(n−1/2)(2.2)

with D = E(h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)).

PROOF. For reasons of clarity we introduce the notation

fij (ϑ) = h{Xi, rϑ(Xi) + Yj − rϑ(Xj )}
and write ḟij for the gradient. Then

1

n

n∑
i=1

χ̂ (Xi, ϑ̂)

= 1

n2

n∑
i=1

n∑
j=1

Zj

Z̄
h{Xi, rϑ̂ (Xi) + Yj − r

ϑ̂
(Xj )}

= 1

Z̄

1

n2

n∑
i=1

[
n∑

j=1
j 	=i

Zjh{Xi, rϑ̂ (Xi) + Yj − r
ϑ̂
(Xj )} + Zih(Xi, Yi)

]
(2.3)

= 1

Z̄

1

n2

n∑
i=1

{
n∑

j=1
j 	=i

Zjfij (ϑ) + Zih(Xi, Yi)

}

+ 1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

Zj {fij (ϑ̂) − fij (ϑ)}

= 1

n

n∑
i=1

χ̂ (Xi,ϑ) + 1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

Zj {fij (ϑ̂) − fij (ϑ)}.

Below we will show that

1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

Zj {fij (ϑ̂) − fij (ϑ)} = D�(ϑ̂ − ϑ) + op(n−1/2)(2.4)

with D = (EZ)−1E[Z2h
′{X1, rϑ(X1) + Y2 − rϑ(X2)}{ṙϑ (X1) − ṙϑ (X2)}]. That

this D is indeed of the form given in the lemma can be seen as follows. Consider

D = E[h′{X1, rϑ(X1) + ε2}ṙϑ (X1)]
− 1

EZ
E[h′{X1, rϑ(X1) + ε2}1(Z2 = 1)ṙϑ (X2)].
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The first term can be written E(E[h′{X1, rϑ(X1)+ε2}|X1]ṙϑ (X1)). Integration by
parts of the inner integral gives E[h′{X1, rϑ(X1) + ε2}|X1] = E[h{X1, rϑ(X1) +
ε2}�(ε2)|X1]. The second term is E[h′{X1, rϑ(X1) + ε2}]E{ṙϑ (X)|Z = 1}. We
proceed analogously and, in conclusion, obtain

D = E
(
h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)).(2.5)

The result now follows from (2.3), (2.4) and (2.5). It remains to verify (2.4). The
proof consists of two parts,

1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

Zj {fij (ϑ̂) − fij (ϑ) − ḟij (ϑ)�(ϑ̂ − ϑ)} = op(n−1/2),(2.6)

1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

Zj ḟij (ϑ)�(ϑ̂ − ϑ) = D�(ϑ̂ − ϑ) + op(n−1/2).(2.7)

Statement (2.7) can be quickly proved: since ϑ̂ is
√

n consistent we can replace
the gradient by its expectation,

1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

Zj ḟij (ϑ)�(ϑ̂ − ϑ)

= 1

Z̄

1

n2

n∑
i=1

n∑
j=1
j 	=i

E{Zj ḟij (ϑ)}�(ϑ̂ − ϑ) + op(n−1/2)

= 1

EZ
E{Z2ḟ12(ϑ)}�(ϑ̂ − ϑ) + op(n−1/2)

with (EZ)−1E{Z2ḟ12(ϑ)} = D� as given in (2.4). For the proof of (2.6) it suffices
to show that

n∑
i=1

[
1√
n

n∑
j=1
j 	=i

Zj {fij (ϑ̂) − fij (ϑ) − ḟij (ϑ)�(ϑ̂ − ϑ)}
]2

= Op(1).

This holds by the following arguments. Rewrite the above expression and apply
the Cauchy–Schwarz inequality to obtain

n∑
i=1

(
1√
n

n∑
j=1
j 	=i

Zj

∫ 1

0
[ḟij {ϑ + u(ϑ̂ − ϑ)} − ḟij (ϑ)]�(ϑ̂ − ϑ)du

)2

≤
n∑

i=1

n∑
j=1
j 	=i

Zj |ϑ̂ − ϑ |2
∫ 1

0
|ḟij {ϑ + u(ϑ̂ − ϑ)} − ḟij (ϑ)|2 du.
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The difference |ḟij {ϑ + u(ϑ̂ − ϑ)} − ḟij (ϑ)|2 is bounded by |ϑ̂ − ϑ |2 times
a square integrable function Aij . This holds due to Assumptions 1 and 2,
namely the Lipschitz conditions on ṙϑ and h′ and since a(X), b(X,Y ), ṙϑ (X)

and h′(X,Y ) are square integrable. Summing up, the expression is bounded by
|ϑ̂ − ϑ |4 ∑n

i=1
∑n

j=1,j 	=i Aij which is stochastically bounded since ϑ̂ is
√

n con-
sistent. �

We will now replace the estimated conditional expectation χ̂ in the right-hand
side of (2.2) by the true one. Set

S = 1

n(n − 1)

n∑
i=1

n∑
j=1
j 	=i

Zj

EZ
h{Xi, rϑ(Xi) + Yj − rϑ(Xj )}.

We have

1

n

n∑
i=1

χ̂(Xi,ϑ) = EZ

Z̄
S + Op(n−1) = S − Z̄ − EZ

EZ
ES + op(n−1/2)

and, by the Hoeffding decomposition,

S = ES + 1

n

n∑
i=1

{χ(Xi,ϑ) − ES} + 1

n

n∑
i=1

{
Zih̄(εi)

EZ
− ES

}
+ op(n−1/2)

with h̄(ε) = E{h(X,Y )|ε}, ES = Eh(X,Y ) = Eh̄(ε). Combining the above yields

1

n

n∑
i=1

χ̂ (Xi,ϑ) = 1

n

n∑
i=1

χ(Xi,ϑ) + 1

n

n∑
i=1

Zi

EZ
{h̄(εi) − Eh̄(ε)} + op(n−1/2).

This and Lemma 2.1 give our expansion for the unweighted estimator which we
formulate as a corollary.

COROLLARY 2.2. Assume that Assumptions 1 and 2 hold and that ϑ̂ is a√
n consistent estimator of ϑ . Then, with D = E(h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z =

1}]�(ε)) and h̄(ε) = E{h(X,Y )|ε}, the unweighted estimator has the expansion

1

n

n∑
i=1

χ̂ (Xi, ϑ̂)

= 1

n

n∑
i=1

[
χ(Xi,ϑ) + Zi

EZ
{h̄(εi) − Eh̄(εi)}

]
+ D�(ϑ̂ − ϑ) + op(n−1/2).
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3. Expansion of the weighted estimator. In this section we study the
weighted estimator which uses residual-based weights, ŵj , that are constructed by
adapting empirical likelihood techniques. The approach is to maximize

∏n
j=1 ŵj

subject to the mean zero constraint on the error distribution,
∑n

j=1 ŵjZj ε̂j = 0,
with ŵj ≥ 0 and

∑n
j=1 ŵj = n. The weights solving this optimization problem are

given by ŵj = 1/(1+ λ̂Zj ε̂j ), where λ̂ denotes the Lagrange multiplier—provided
λ̂ exists. As shown by Owen (1988, 2001), this is the case if not all residuals have
the same sign, that is, on the event min1≤j≤n ε̂j < 0 < max1≤j≤n ε̂j , which has
probability tending to one since the residuals ε̂j are uniformly close to the cen-
tered errors εj [see (A.1) in the Appendix]. If λ̂ does not exist, we set λ̂ = 0. Note
that the weights equal one if Zj = 0 or λ̂ = 0. For computational issues we refer
to Section 2.9 of Owen’s book (2001).

The formula for the weights can be written as an identity, ŵj = 1 − λ̂ŵjZj ε̂j .
This enables us to decompose the estimator into the unweighted estimator and an
additional correction term,

1

n

n∑
i=1

χ̂w(Xi, ϑ̂) = 1

n

n∑
i=1

χ̂ (Xi, ϑ̂)

(3.1)

− λ̂

n2

n∑
i=1

n∑
j=1

ŵj ε̂j

Zj

Z̄
h{Xi, rϑ̂ (Xi) + ε̂j }.

Since we have already derived an expansion of the unweighted estimator (see
Corollary 2.2) we only need to study the second term on the right-hand side. In
Lemma 3.1 we will derive an expansion of the estimated Lagrange multiplier λ̂

and use this result in Lemma 3.2, where we determine an approximation of the
extra term. For the proof of Lemma 3.1 we proceed analogously to Owen (2001),
pages 219–221 [compare also Müller, Schick and Wefelmeyer (2005)]. This re-
quires some auxiliary results which are proved in the Appendix, namely

max
1≤i≤n

|Ziε̂i | = op(n1/2),(3.2)

1

n

n∑
i=1

Ziε̂i = 1

n

n∑
i=1

Ziεi − EZE{ṙϑ (X)|Z = 1}�(ϑ̂ − ϑ) + op(n−1/2)

(3.3)
= Op(n−1/2),

1

n

n∑
i=1

Ziε̂
2
i = 1

n

n∑
i=1

Ziε
2
i + op(1) = EZσ 2 + op(1),(3.4)

where ϑ̂ is a
√

n consistent estimator of ϑ and σ 2 > 0 the error variance.
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LEMMA 3.1. Suppose that Assumption 1 is satisfied and let ϑ̂ be a
√

n con-
sistent estimator of ϑ . Then max1≤j≤n |ŵj − 1| = op(1) and

λ̂ = 1

σ 2

1

n

n∑
j=1

Zj

EZ
εj − 1

σ 2 E{ṙϑ (X)|Z = 1}�(ϑ̂ − ϑ) + op(n−1/2)

(3.5)
= Op(n−1/2).

PROOF. We first derive the order of λ̂. Recall that ŵj = 1/(1 + λ̂Zj ε̂j ), that
ŵj + λ̂ŵjZj ε̂j = 1 and that

∑n
j=1 ŵjZj ε̂j = 0 by construction. Also note that the

Zj ’s are binary and that therefore Zj = Z2
j . This allows us to write

1

n

n∑
j=1

Zj ε̂j = 1

n

n∑
j=1

(ŵj + λ̂ŵjZj ε̂j )Zj ε̂j = λ̂
1

n

n∑
j=1

ŵjZj ε̂
2
j

= λ̂
1

n

n∑
j=1

Zj ε̂
2
j

1 + λ̂Zj ε̂j

.

Note that 1 + λ̂Zj ε̂j > 0 since the weights are positive. Then

|λ̂|1

n

n∑
j=1

Zj ε̂
2
j = |λ̂|1

n

n∑
j=1

Zj ε̂
2
j

1 + λ̂Zj ε̂j

(1 + λ̂Zj ε̂j )

≤ |λ̂|1

n

n∑
j=1

Zj ε̂
2
j

1 + λ̂Zj ε̂j

(
1 + |λ̂| max

1≤j≤n
|Zj ε̂j |

)

= |λ̂|1

λ̂

1

n

n∑
j=1

Zj ε̂j

(
1 + |λ̂| max

1≤j≤n
|Zj ε̂j |

)
.

The last equality holds due to (3.6). Applying (3.2), (3.3) and (3.4) to the first
and last terms of the inequality we obtain |λ̂| · Op(1) = Op(n−1/2) + |λ̂|op(1)

which implies λ̂ = Op(n−1/2). This and (3.2) give max1≤j≤n |λ̂Zj ε̂j | = op(1)

and therefore our first statement,

max
1≤j≤n

|ŵj − 1| = max
1≤j≤n

∣∣∣∣ −λ̂Zj ε̂j

1 + λ̂Zj ε̂j

∣∣∣∣ = op(1).

We now again make use of (3.6) and write

1

n

n∑
j=1

Zj ε̂j = λ̂

{
1

n

n∑
j=1

(ŵj − 1)Zj ε̂
2
j + 1

n

n∑
j=1

Zj ε̂
2
j

}
= λ̂

1

n

n∑
j=1

Zj ε̂
2
j + op(n−1/2).
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For the last statement we utilized (3.4), max1≤j≤n |ŵj − 1| = op(1) and λ̂ =
Op(n−1/2). This and (3.4) give

λ̂ =
∑n

j=1 Zj ε̂j∑n
j=1 Zj ε̂

2
j

+ op(n−1/2)

= 1

EZ

1

σ 2

1

n

n∑
j=1

Zj ε̂j + op(n−1/2).

Inserting approximation (3.3) for n−1 ∑n
j=1 Zj ε̂j finally yields the desired approx-

imation of λ̂. �

LEMMA 3.2. Suppose that Assumptions 1 and 2 are satisfied and let ϑ̂ be a√
n consistent estimator of ϑ . Then, with h̄(ε) = E{h(X,Y )|ε},

λ̂

n2

n∑
i=1

n∑
j=1

ŵj ε̂j

Zj

Z̄
h{Xi, rϑ̂ (Xi) + ε̂j }

= 1

σ 2

1

n

n∑
i=1

Zi

EZ
εiE{εh̄(ε)} − 1

σ 2 E{εh̄(ε)}E{ṙϑ (X)|Z = 1}�(ϑ̂ − ϑ)

+op(n−1/2).

PROOF. Since λ̂ = Op(n−1/2) and max1≤j≤n |ŵj − 1| = op(1) by the previ-
ous lemma, and since max1≤i≤n |Ziε̂i | = op(n1/2) by (3.2), it is clear that the terms
of the sum where j = i, that is, h{Xi, rϑ̂ (Xi) + ε̂i} = h(Xi, Yi), can be ignored. It
therefore suffices to prove the statement for

λ̂

n2

∑
i

∑
j 	=i

ŵj ε̂j

Zj

Z̄
h{Xi, rϑ̂ (Xi) + ε̂j }

= λ̂
EZ

Z̄
ψw(ϑ̂)

with

ψw(ϑ̂) = 1

n2

∑
i

∑
j 	=i

ŵj ε̂j

Zj

EZ
h{Xi, rϑ̂ (Xi) + ε̂j }

= ψ(ϑ̂) + 1

n2

∑
i

∑
j 	=i

(ŵj − 1)ε̂j

Zj

EZ
h{Xi, rϑ̂ (Xi) + ε̂j },

where ψ is ψw with ŵj = 1. The second part involving the difference ŵj − 1
is op(n−1/2), which can be seen as follows: using λ̂ = Op(n−1/2) and
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max1≤j≤n |ŵj − 1| = op(1) we obtain∣∣∣∣∣λ̂EZ

Z̄

1

n2

∑
i

∑
j 	=i

(ŵj − 1)ε̂j

Zj

EZ
h{Xi, rϑ̂ (Xi) + ε̂j }

∣∣∣∣∣
≤ |λ̂| 1

Z̄
max

1≤j≤n
|ŵj − 1| 1

n2

∑
i

∑
j 	=i

|ε̂j h{Xi, rϑ̂ (Xi) + ε̂j }|

= op(n−1/2) · 1

n2

∑
i

∑
j 	=i

|ε̂j h{Xi, rϑ̂ (Xi) + ε̂j }|.

This gives the claimed rate op(n−1/2) since the sum is bounded in probability,
which follows from the

√
n consistency of ϑ̂ and Assumptions 1 and 2 on the

terms of the product (Y2 − rτ (X2))h{X1, rτ (X1) + Y2 − rτ (X2)}.
It remains to consider λ̂EZ/Z̄ψ(ϑ̂). Using λ̂ = Op(n−1/2) we can replace

ψ(ϑ̂) by ψ(ϑ) since ψ(ϑ̂) − ψ(ϑ) = op(1), which again follows from Assump-
tions 1 and 2 and the consistency of ϑ̂ . Further, by the law of large numbers,
EZ/Z̄ = 1 + op(1) and ψ(ϑ) − Eψ(ϑ) = op(1). These arguments yield

λ̂
EZ

Z̄
ψ(ϑ̂) = λ̂Eψ(ϑ) + op(n−1/2).

The expected value of ψ(ϑ) is

n − 1

n
E

[
ε2

Z2

EZ
h{X1, rϑ(X1) + ε2}

]
= n − 1

n
E{εh(X,Y )} = n − 1

n
E{εh̄(ε)}.

Summing up,

λ̂
EZ

Z̄
ψw(ϑ̂) = λ̂Eψ(ϑ) + op(n−1/2) = λ̂E{εh̄(ε)} + op(n−1/2).

Inserting expansion (3.5) for λ̂ into the above completes the proof. �

Combining the previous lemma and the approximation of the weighted estima-
tor from Section 2 gives an expansion for the weighted estimator.

THEOREM 3.3. Suppose that Assumption 1 and 2 are satisfied and that ϑ̂ is a√
n consistent estimator of ϑ . Let h̄(ε) = E{h(X,Y )|ε}. Then

1

n

n∑
i=1

χ̂w(Xi, ϑ̂) = 1

n

n∑
i=1

(
χ(Xi,ϑ) + Zi

EZ

[
h̄(εi) − Eh̄(εi) − E{εh̄(ε)}

σ 2 εi

])
+D�

w(ϑ̂ − ϑ) + op(n−1/2),

where Dw = E(h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)) + σ−2E{εh̄(ε)}×
E{ṙϑ (X)|Z = 1}.
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PROOF. Consider the two terms of representation (3.1) and replace them by
their approximations given in Corollary 2.2 and Lemma 3.2. This yields

1

n

n∑
i=1

χ̂w(Xi, ϑ̂)

= 1

n

n∑
i=1

(
χ(Xi,ϑ) + Zi

EZ

[
h̄(εi) − Eh̄(ε) − E{εh̄(ε)}

σ 2 εi

])

+
[
D� + 1

σ 2 E{εh̄(ε)}E{ṙϑ (X)|Z = 1}�
]
(ϑ̂ − ϑ) + op(n−1/2)

with D + σ−2E{εh̄(ε)}E{ṙϑ (X)|Z = 1} = Dw , by definition of D (see Corol-
lary 2.2). Inserting this into the above gives the desired representation. �

4. Efficiency. We are interested in efficient estimation of Eh(X,Y ) based on
observations (X,ZY,Z). Our estimator requires an efficient estimator of ϑ . In this
section we determine the influence function of an efficient estimator of Eh(X,Y ).
In the next section, where the influence function of an efficient estimator ϑ̂ of ϑ is
determined, this allows us to show that the fully imputed estimator with an efficient
ϑ̂ plugged in is efficient. Throughout we will suppose that the assumptions made
earlier are satisfied.

We first calculate the efficient influence function for estimating an arbitrary
functional κ of the joint distribution P(dx, dy, dz). The joint distribution depends
on the marginal distribution G(dx) of X, the conditional probability π(x) of Z = 1
given X = x, and the conditional distribution Q(x,dy) of Y given X = x,

P(dx, dy, dz) = G(dx)Bπ(x)(dz){zQ(x, dy) + (1 − z)δ0(dy)}.
Here Bp = pδ1 + (1 − p)δ0 denotes the Bernoulli distribution with parameter p

and δt the Dirac measure at t . In a first step we consider a nonparametric model
for P , that is, we allow for arbitrary models for G,Q and π . For this general set-
ting a characterization of efficient estimators of κ(G,Q,π) is in Müller, Schick
and Wefelmeyer (2006), Section 2. In the following we summarize their key ar-
guments and apply them to the special case of nonlinear regression (which is not
considered in that article). We then calculate the efficient influence functions for
estimating Eh(X,Y ) in the nonlinear regression model and, in the next section,
for estimating ϑ .

For the characterization of efficient estimators it is essential to first introduce the
notion of tangent spaces. The tangent space of a model is the set of possible per-
turbations of P within the model. An estimator of a certain functional is, roughly
speaking, efficient if its influence function equals the so-called canonical gradient
of the functional, which is an element of the tangent space. Hence, in order to
characterize the efficient influence function, we first need to determine the tangent
space.
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Consider (Hellinger differentiable) perturbations of G, Q and π ,

Gnu(dx) =̇ G(dx){1 + n−1/2u(x)},
Qnv(x, dy) =̇ Q(x,dy){1 + n−1/2v(x, y)},
Bπnw(x)(dz) =̇ Bπ(x)(dz)[1 + n−1/2{z − π(x)}w(x)].

To guarantee that the perturbed distributions are probability distributions requires
that the (Hellinger) derivative u belongs to

L2,0(G) =
{
u ∈ L2(G) :

∫
udG = 0

}
,

that v belongs to

V0 =
{
v ∈ L2(M) :

∫
v(x, y)Q(x, dy) = 0

}
with M(dx, dy) = Q(x,dy)G(dx), and that w belongs to L2(Gπ), where
Gπ(dx) = π(x){1 −π(x)}G(dx). The perturbed joint distribution Pnuvw then has
derivative tuvw(x, zy, z) = u(x) + zv(x, y) + {z − π(x)}w(x). Note that models
for G,Q and π will result in further restrictions on the perturbations which must
satisfy the model assumptions. Then u, v and π must be restricted to subspaces U

of L2,0(G), V of V0 and W of L2(Gπ).
In this article we make no model assumptions on G and π and thus have

U = L2,0(G) and W = L2(Gπ). Since we are considering nonlinear regression
we do, however, have a model for the conditional distribution, namely Q(x,dy) =
f {y − rϑ(x)}dy with f denoting the (mean zero) density of the error distribution.
Perturbations v of Q must therefore satisfy

∫
v(x, y)f {y − rϑ(x)}dy = 0. In or-

der to derive an explicit form of V , we introduce perturbations s and t of the two
parameters f and ϑ . Write F for the distribution function of f and remember that
we assume that f has finite Fisher information for location, E�2(ε) < ∞, where
� = −f ′/f is the score function. The perturbed distribution Q now depends on s

and t ,

Qnv(x, dy) = Qnst (x, dy) = fns{y − rϑnt (x)}dy

with ϑnt = ϑ + n−1/2t , t ∈ R
p , fns(y) = f (y){1 + n−1/2s(y)} and s ∈ S, where

S =
{
s ∈ L2(F ) :

∫
s(y)f (y) dy = 0,

∫
ys(y)f (y) dy = 0

}
.

Note that the space S is determined by two constraints: the perturbed error den-
sity fns must integrate to 1,

∫
fns(y) dy = 1, and must be centered at zero,∫

yfns(y) dy = 0. As in Schick (1993), Section 3, we have

fns{y − rϑnt (x)}
= f {y − rϑnt (x)}[1 + n−1/2s{y − rϑnt (x)}]



2260 U. U. MÜLLER

=̇ [f {y − rϑ(x)} − n−1/2f ′{y − rϑ(x)}ṙϑ (x)�t][1 + n−1/2s{y − rϑ(x)}]
=̇f {y − rϑ(x)}

(
1 + n−1/2

[
s{y − rϑ(x)} − f ′{y − rϑ(x)}

f {y − rϑ(x)} ṙϑ (x)�t

])
= f {y − rϑ(x)}(1 + n−1/2[s{y − rϑ(x)} + �{y − rϑ(x)}ṙϑ (x)�t]).

Therefore

Qnst (x, dy) =̇ f {y − rϑ(x)}dy

× (
1 + n−1/2[s{y − rϑ(x)} + �{y − rϑ(x)}ṙϑ (x)�t])

and the subspace V of V0 is

V = {
v(x, y) = s{y − rϑ(x)} + �{y − rϑ(x)}ṙϑ (x)�t : s ∈ S, t ∈ R

p}
.(4.1)

We now briefly review some definitions. We will do this for arbitrary subspaces
U,V and W of L2,0(G), V0 and L2(Gπ), and then return to our specific situation.

Let T denote the tangent space consisting of all derivatives tuvw . A functional
κ of G, Q and π is called differentiable with gradient g ∈ L2(P ) if, for all u ∈ U ,
v ∈ V and w ∈ W ,

n1/2{κ(Gnu,Qnv,πnw) − κ(G,Q,π)}
(4.2)

→ E{g(X,ZY,Z)tuvw(X,ZY,Z)}.
The (unique) canonical gradient g∗ = g∗(X,ZY,Z) is the projection of g(X,

ZY,Z) onto the tangent space T . It is easy to check that T can be written as
an orthogonal sum of three subspaces,

T = {u(X) :u ∈ U} ⊕ {Zv(X,Y ) :v ∈ V } ⊕ {{Z − π(X)}w(X) :w ∈ W
}
.

The random variable g∗(X,ZY,Z) is therefore the sum u∗(X)+Zv∗(X,Y )+{Z−
π(X)}w∗(X), where u∗(X), Zv∗(X,Y ) and {Z −π(X)}w∗(X) are the projections
of g(X,ZY,Z) onto these subspaces.

An estimator κ̂ for κ is regular with limit L if L is a random variable such that
for all u ∈ U , v ∈ V and w ∈ W ,

n1/2{κ̂ − κ(Gnu,Qnv,πnw)} ⇒ L under Pnuvw.

The Hájek–Le Cam convolution theorem says that L is distributed as the sum of a
normal random variable N , with mean zero and variance Eg2∗ , and some indepen-
dent random variable. This justifies calling an estimator κ̂ efficient if it is regular
with limit L = N . As a consequence, a regular estimator is efficient if and only if
it is asymptotically linear with influence function g∗, that is,

n1/2{κ̂ − κ(G,Q,π)} = n−1/2
n∑

i=1

g∗(Xi,ZiYi,Zi) + op(1).
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A reference for the convolution theorem and the characterization is Bickel et al.
(1998).

Let us now specify the canonical gradient for the functional Eh(X,Y ). The
canonical gradient is, in particular, a gradient and thus specified by (4.2).
Moreover, it is characterized by g∗(X,ZY,Z) = u∗(X) + Zv∗(X,Y ) + {Z −
π(X)}w∗(X) with the terms of the sum being projections as stated above. The
canonical gradient for arbitrary κ is therefore determined by

E{u∗(X)u(X)} + E{Zv∗(X,Y )v(X,Y )}
+ E[{Z − π(X)}2w∗(X)w(X)](4.3)

= lim
n→∞n1/2{κ(Gnu,Qnv,πnw) − κ(G,Q,π)}.

In the nonlinear regression model we have, as defined earlier, U = L2,0(G),
W = L2(Gπ), Qnv = Qnst with v ∈ V , that is, v(X,Y ) = s(ε) + �(ε)ṙϑ (X)�t

[see (4.1)]. Since Eh(X,Y ) does not depend on π we have Eh(X,Y ) =
κ(G,Q,π) = κ(G,Q) and

Eh(X,Y ) =
∫

hdM =
∫ ∫

h(x, y)Q(x, dy)G(dx)

=
∫ ∫

h(x, y)f {y − rϑ(x)}dy G(dx).

Let Mnuv(dx, dy) = Qnv(x, dy)Gnu(dx) with Qnv = Qnst = fns{y − rϑnt (x)}dy

and perturbations Gnu, fns and ϑnt as defined earlier. Using the previous approxi-
mations we see that the right-hand side of (4.3) is

lim
n→∞n1/2

(∫
hdMnuv −

∫
hdM

)
= E[h(X,Y ){u(X) + v(X,Y )}]

with v(X,Y ) = s(ε) + �(ε)ṙϑ (X)�t . The canonical gradient g∗ of Eh(X,Y ) is
therefore determined by

E{u∗(X)u(X)} + E{Zv∗(X,Y )v(X,Y )}
(4.4)

+ E[{Z − π(X)}2w∗(X)w(X)] = E[h(X,Y ){u(X) + v(X,Y )}]
for all u ∈ U , v ∈ V and w ∈ W with v of the above form.

In order to specify g∗ we set u = 0 and v = 0 in (4.4) and see that w∗ must
be zero. Setting v = 0, we see that u∗(X) is the projection of h(X,Y ) onto U =
L2,0(G), that is, u∗(X) = χ(X,ϑ) − E{χ(X,ϑ)} with χ(X,ϑ) = E{h(X,Y )|X}.
Hence we have

g∗(X,ZY,Z) = χ(X,ϑ) − E{χ(X,ϑ)} + Zv∗(X,Y )(4.5)

and are left to determine v∗. Taking u = 0 in (4.4), we see that the projection of
Zv∗(X,Y ) onto Ṽ = {v(X,Y ) :v ∈ V } must equal the projection of h(X,Y ) onto
Ṽ , that is, onto

Ṽ = {s(ε) + �(ε)ṙϑ (X)�t, s ∈ S, t ∈ R
p}.
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There are two possible ways to obtain v∗. One method would be to make an ed-
ucated guess: in Theorem 3.3 we derived an approximation of an estimator of
Eh(X,Y ) which we expect to be efficient since it uses all information about the
model. The approximation still involves ϑ̂ − ϑ but, combined with the efficient
influence function for estimating ϑ (which is relatively easy to derive; see Sec-
tion 5), it will suggest a candidate for v∗. Whether this candidate is the correct v∗
can be checked with characterization (4.4), that is, with

E[Zv∗(X,Y ){s(ε) + �(ε)ṙϑ (X)�t}]=E[h(X,Y ){s(ε) + �(ε)ṙϑ (X)�t}].(4.6)

The other method uses the structure of the tangent space. The canonical gradient
v∗ is characterized in terms of projections onto Ṽ . Its derivation as a projection
onto Ṽ is simplified by decomposing Ṽ . Let �s denote the projection of � onto S,

�s(ε) = �(ε) − σ−2ε,

and note that �s = 0 is possible, namely when the error density f is normal. We
now introduce the notation

ζ = [ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε) + E{ṙϑ (X)|Z = 1} ε

σ 2

and, for s ∈ S and t ∈ R
p , write

s(ε) + ṙϑ (X)�t�(ε)

= s(ε) + t�[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)
+ t�E{ṙϑ (X)|Z = 1}

{
�(ε) − ε

σ 2

}
+ t�E{ṙϑ (X)|Z = 1} ε

σ 2

= t�ζ + s(ε) + t�E{ṙϑ (X)|Z = 1}�s(ε)

with s(ε)+ t�E{ṙϑ (X)|Z = 1}�s(ε) ∈ S. Any element of Ṽ can therefore be writ-
ten t�ζ + s(ε) for some t ∈ R

p and s ∈ S. Since the canonical gradient v∗ is in Ṽ

by definition, it must be of the form

v∗(X,Y ) = s∗(ε) + t∗�ζ

with s∗ ∈ S and t∗ ∈ R
p to be determined such that (4.6) holds, that is, after our

above considerations,

E[Z{s∗(ε) + t∗�ζ }{s(ε) + t�ζ }] = E[h(X,Y ){s(ε) + t�ζ }]
for all t ∈ R

p and s ∈ S.
We first consider t = 0 and secondly s = 0 and, in both cases, use the fact that

Zζ is orthogonal to S. Then the above characterization of s∗ and t∗ reduces to two
equations, namely

E{Zs∗(ε)s(ε)} = E{h(X,Y )s(ε)} for all s ∈ S,(4.7)

E{Zt∗�ζ t�ζ } = E{h(X,Y )t�ζ } for all t ∈ R
p.(4.8)
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Consider (4.7) and again use the notation h̄(ε) for the conditional expectation
E{h(X,Y )|ε}. Then (4.7) can be written as E{Zs∗(ε)s(ε)} = E{h̄(ε) s(ε)}, that
is, h̄(ε)/EZ is an obvious candidate for s∗. However, it is not (yet) in S: the de-
sired s∗ is obtained as its centered version with a correction term chosen such that
s∗ ∈ S,

s∗(ε) = 1

EZ

[
h̄(ε) − Eh̄(ε) − E{εh̄(ε)}

σ 2 ε

]
.

The vector t∗ is obtained by solving (4.8), t∗�E(Zζζ�)t = E{h(X,Y )ζ�}t for
all t ∈ R

p . Now use the definition of ζ from above and the definition of the vector
Dw from the end of the previous section, Dw = E(h(X,Y )[ṙϑ (X)−E{ṙϑ (X)|Z =
1}]�(ε)) + σ−2E{εh̄(ε)}E{ṙϑ (X)|Z = 1}, and assume that E(Zζζ�) is invertible
to obtain

t∗� = E{h(X,Y )ζ�}E(Zζζ�)−1

= E

{
h(X,Y )

(
[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]��(ε)

+E{ṙϑ (X)|Z = 1}� ε

σ 2

)}
E(Zζζ�)−1

= D�
wE(Zζζ�)−1.

This completes the derivation of v∗(X,Y ) = s∗(ε) + t∗�ζ :

v∗(X,Y ) = 1

EZ

[
h̄(ε) − Eh̄(ε) − E{εh̄(ε)}

σ 2 ε

]
+ D�

wE(Zζζ�)−1ζ.(4.9)

Equations (4.5) and (4.9) together finally yield the canonical gradient g∗, which is
given in the following lemma. Note that we now have the additional assumption
that E(Zζζ�) is invertible, where E(Zζζ�) involves the covariance matrix of
Zṙ(X) and the Fisher information E�2(ε).

LEMMA 4.1. Let h̄(ε) = E{h(X,Y )|ε}, ζ = [ṙϑ (X)−E{ṙϑ (X)|Z = 1}]�(ε)+
σ−2E{ṙϑ (X)|Z = 1}ε and Dw = E(h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)) +
σ−2E{εh̄(ε)}E{ṙϑ (X)|Z = 1} = E{h(X,Y )ζ }. Suppose additionally to the model
assumptions from Section 2 that E(Zζζ�) is invertible. Then the canonical gradi-
ent of the functional Eh(X,Y ) is

χ(X,ϑ) − E{χ(X,ϑ)}
(4.10)

+ Z

EZ

[
h̄(ε) − Eh̄(ε) − E{εh̄(ε)}

σ 2 ε

]
+ D�

wE{Zζζ�}−1Zζ.
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5. Estimation of the parameter and main result. In this section we show
that the weighted estimator for Eh(X,Y ) with an efficient estimator ϑ̂ for
ϑ plugged in is asymptotically linear with influence function equal to the
canonical gradient, that is, it is efficient. Let us compare the expansion of the
weighted estimator from Theorem 3.3 and the efficient influence function which
is given by the canonical gradient (4.10) in Lemma 4.1. The approximation of
n−1/2 ∑n

i=1[χ̂w(Xi, ϑ̂) − E{χ(X,ϑ)}] which we derived in Section 3 is

n−1/2
n∑

i=1

(
χ(Xi,ϑ) − E{χ(X,ϑ)}

+ Zi

EZ

[
h̄(εi) − Eh̄(ε) − E{εh̄(ε)}

σ 2 εi

])
+ D�

wn1/2(ϑ̂ − ϑ),

where Dw = E(h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)) + σ−2E{εh̄(ε)} ×
E{ṙϑ (X)|Z = 1}. The efficient influence function determined by the canonical
gradient is

χ(X,ϑ) − E{χ(X,ϑ)}

+ Z

EZ

[
h̄(ε) − Eh̄(ε) − E{εh̄(ε)}

σ 2 ε

]
+ D�

wE{Zζζ�}−1Zζ

with ζ = [ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε) + σ−2E{ṙϑ (X)|Z = 1}ε. Using an esti-
mator ϑ̂ with influence function E(Zζζ�)−1Zζ would therefore yield an efficient
estimator for Eh(X,Y ). In fact, it is easy to check (this will be done in the follow-
ing lemma) that this influence function is the canonical gradient of the functional
κ(G,Q,π) = ϑ . This means that our estimator of Eh(X,Y ) requires an efficient
estimator ϑ̂ for ϑ to be plugged in in order to be efficient.

LEMMA 5.1. Let ζ = [ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε) + σ−2E{ṙϑ (X)|Z =
1}ε and suppose that E(Zζζ�) is invertible. An asymptotically linear estimator ϑ̂

for ϑ with influence function E(Zζζ�)−1Zζ , that is,

n1/2(ϑ̂ − ϑ)

= n−1/2
n∑

i=1

E(Zζζ�)−1Zi

[
{ṙϑ (Xi) − E[ṙϑ (X)|Z = 1]}�(εi)

+ E{ṙϑ (X)|Z = 1} εi

σ 2

]
+ op(1),

is efficient for ϑ .

PROOF. We have a semiparametric model for the conditional distribution,
namely Q(x,dy) = f (y − rϑ(x)) dy, and nonparametric models for G and π .
The functional ϑ ∈ R

p is therefore a functional of Q, κ(G,Q,π) = κ(Q) = ϑ .
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By the discussion of the previous section we must show that the influence function
of the estimator equals the canonical gradient, which is, for arbitrary functionals
κ , determined by (4.3). For the functional ϑ the right-hand side of (4.3) is simply
n1/2{(ϑ + n−1/2t) − ϑ} = t . From Section 4 we also know that in the nonlinear
regression model any v in Ṽ is of the form v(X,Y ) = s(ε) + t�ζ , where s ∈ S

and t ∈ R. The canonical gradient u∗(X) + Zv∗(X,Y ) + {Z − π(X)}w∗(X) is
therefore characterized by

E{u∗(X)u(X)} + E[Zv∗(X,Y ){s(ε) + ζ�t}]
+ E[{Z − π(X)}2w∗(X)w(X)] = t.

Taking s = 0, t = 0 and w = 0 we see that u∗ = 0. Analogously one obtains that
w∗ must be zero. The canonical gradient thus reduces to Zv∗(X,Y ). Again, since
v∗ ∈ Ṽ , we write Zv∗(X,Y ) = Zs∗(ε) + Zζ�t∗ with s∗ and t∗ to be determined.
Taking t = 0 we see that Zv∗ must be orthogonal to S, that is, s∗ = 0 which yields
Zv∗(X,Y ) = Zζ�t∗. The above characterization therefore reduces to

t = E[Zζ�t∗{s(ε) + ζ�t}] = t∗�E(Zζζ�)t for all t ∈ R.

This gives t∗ = E(Zζζ�)−1 and the proof is complete: the canonical gradient of
the parameter ϑ is Zv∗(X,Y ) = Zt∗�ζ = E(Zζζ�)−1Zζ . �

Note that the asymptotic variance of ϑ̂ is E(Zζζ�)−1. The assumption that
E(Zζζ�) must be invertible is therefore a condition on the covariance matrix of
an efficient estimator of ϑ which we require to have full rank. Lemma 5.1 com-
bined with the previous discussion yields our main result, which is given in the
following theorem. Note that the asymptotic variance of the fully imputed esti-
mator of Eh(X,Y ) is Eg2∗ , where g∗ is the canonical gradient from (4.10). This
variance is also given in the theorem below and is easily verified by taking into
account that the three terms of g∗ are orthogonal.

THEOREM 5.2. Assume that Assumptions 1 and 2 hold and that the co-
variance matrices of ṙϑ (X) and of Zṙϑ(X) are invertible. Let ϑ̂ be an asymp-
totically linear estimator of ϑ with influence function E(Zζζ�)−1Zζ where
ζ = [ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε) + σ−2E{ṙϑ (X)|Z = 1}ε. Then the esti-
mator n−1 ∑n

i=1 χ̂w(Xi, ϑ̂) with χ̂w(Xi, ϑ̂) = ∑n
j=1 ŵjZjh{x, r

ϑ̂
(x) + Yj −

r
ϑ̂
(Xj )}/∑n

j=1 Zj has the expansion

1

n

n∑
i=1

(
χ(Xi,ϑ) + Zi

EZ

[
h̄(εi) − Eh̄(εi) − E{εh̄(ε)}

σ 2 εi

]
+ D�

wE(Zζζ�)−1Zi

× [ṙϑ (Xi) − E{ṙϑ (X)|Z = 1}]�(εi) + E{ṙϑ (X)|Z = 1} εi

σ 2

)
+ op(n−1/2),
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where Dw = E(h(X,Y )[ṙϑ (X) − E{ṙϑ (X)|Z = 1}]�(ε)) + σ−2E{εh̄(ε)} ×
E{ṙϑ (X)|Z = 1} and h̄(ε) = E{h(X,Y )|ε}. In particular, it is an efficient estima-
tor of Eh(X,Y ) and asymptotically normally distributed with asymptotic variance

Eχ2(X,ϑ) + 1

EZ
Eh̄2(ε) −

(
1 + 1

EZ

)
E2h(X,Y ) − E2{εh̄(ε)}

σ 2EZ

+ D�
wE(Zζζ�)−1Dw.

In the linear regression model without missing responses, efficient estimators for
ϑ have been constructed by Bickel (1982), Koul and Susarla (1983) and Schick
(1987, 1993). Schick (1993) considers general regression models with arbitrary
sets of identifiability assumptions and discusses the mean zero constraint on the
error distribution as an important example. His construction of an efficient esti-
mator requires a preliminary estimate of ϑ and a direct estimator of the influence
function. The influence function for the nonlinear regression model with mean
zero errors [see Schick (1993), Section 4.1 and Remark 3.13] is E(ξξ�)−1ξ with
ξ = [ṙϑ (X) − E{ṙϑ (X)}]�(ε) + E[ṙϑ (X)]ε/σ 2 and therefore consistent with our
findings. A further developed efficient estimator, which requires weaker condi-
tions, is in Forrester et al. (2003). In the model with missing responses an efficient
estimator can be constructed analogously, using only the (available) full observa-
tions. Note that the only difference in the construction is that the data are incom-
plete, that is, the presence of indicators Zi . In the following we will briefly sketch
this “one-step improvement” construction of the estimator and refer to Forrester et
al. (2003) for details.

Let ϑ̄ denote a
√

n consistent and discretized estimator of ϑ , that is, with
values on a rectangular grid with side lengths of order n−1/2. Write μ(ϑ) for
E{ṙϑ (X)|Z = 1}, ε(ϑ) for the error variables ε(ϑ) = Y − rϑ(X) and ζϑ {X,ε(ϑ)}
for ζ , that is,

ζ = ζϑ {X,ε(ϑ)} = {ṙϑ (X) − μ(ϑ)}�{ε(ϑ)} + μ(ϑ)ε(ϑ)/σ 2.

In order to estimate the influence function one replaces the unknown quantities by
estimators. The estimator of ϑ is then of the form

ϑ̄ +
[

n∑
j=1

Zj ζ̂ϑ̄ {Xj, εj (ϑ̄)}ζ̂ϑ̄ {Xj, εj (ϑ̄)�}
]−1 n∑

j=1

Zj ζ̂ϑ̄ {Xj, εj (ϑ̄)},

where

ζ̂ϑ̄ (X, ε(ϑ̄)) = [ṙϑ̄ (X) − μ̂(ϑ̄)]�̂{ε(ϑ̄)} + μ̂(ϑ̄)ε(ϑ̄)/σ 2(ϑ̄)

with

μ̂(ϑ̄) =
∑n

j=1 Zj ṙϑ̄ (Xj )∑n
j=1 Zj

, σ̂ 2(ϑ̄) =
∑n

j=1 Zjεj (ϑ̄)2∑n
j=1 Zj
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and an estimator �̂ of the score function. To describe this estimator let k be a kernel
that satisfies the assumptions given in Section 8 of Forrester et al., for example, a
logistic density. For a bandwidth an → 0 we set kn(x) = k(x/an)/an. The estima-
tor of the score function � is a kernel estimator based on the available residuals
ε(ϑ̄),

�̂ϑ̄ (x) = −f̂ ′
n(x)

bn + f̂n(x)

with f̂n(x) = n−1 ∑n
j=1 Zjkn{x − εj (ϑ̄)} and where bn is a sequence of positive

numbers converging to zero. The orders of an → 0 and bn → 0 (which also apply
if only a fixed fraction of the n data pairs is observed) are given in Forrester et al.
(2003).

There are other simple estimators for ϑ available which, however, and in
contrast to the estimators proposed by Schick (1987, 1993) and Forrester et
al. (2003), are not efficient for ϑ and which, if used for plug-in, would yield
inefficient estimators of Eh(X,Y ). One could, for example, estimate ϑ̂ by a
weighted least squares estimator, that is, by the solution t = ϑ̂ of an estimat-
ing equation

∑n
i=1 Ziwt(Xi){Yi − rt (Xi)} = 0. Such an estimator would be ap-

propriate in a regression model where independence of errors and covariates
cannot be assumed. Then one could even obtain efficiency for suitably chosen
weights [see Müller (2007), for nonlinear regression without missing responses].
The estimating equation can be regarded as an empirical version of the equation
E[Zwt(X){Y − rt (X)}] = 0. If a solution t = ϑ of this equation exists, the solu-
tion ϑ̂ of the empirical version will, in general, be consistent for ϑ . If one is not
interested in efficiency, the estimator n−1 ∑n

i=1 χ̂w(Xi, ϑ̂) with a least squares es-
timator ϑ̂ plugged in would yield a consistent estimator for Eh(X,Y ) (but not an
efficient one since the independence structure is not used). Alternatively, the least
squares estimator can be used as a preliminary estimator for the one-step improve-
ment approach sketched above.

6. Special cases, simulations and inference. Sometimes the estimator sim-
plifies considerably, especially if we study simple special cases such as estimation
of expectations Eh(X,Y ) where h has a simple form. The main result from Theo-
rem 5.2 is therefore useful in proving efficiency of existing approaches for specific
applications, or in improving them, and for comparisons of competing methods.
Theorem 5.2 further provides the limiting distribution of the efficient estimator,
which facilitates the construction of confidence intervals. We will address this and
aspects of the construction of estimators in the following, and illustrate the results
with simulations.
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6.1. Special cases. We have shown that the fully imputed weighted estimator
n−1 ∑n

i=1 χ̂w(Xi, ϑ̂) with

χ̂w(x, ϑ̂) =
n∑

j=1

ŵjZjh{x, r
ϑ̂
(x) + Yj − r

ϑ̂
(Xj )}

/ n∑
j=1

Zj

is efficient for Eh(X,Y ) where h(X,Y ) is a known square-integrable func-
tion. The literature usually deals with estimation of the mean response, that is,
h(x, y) = y. Other important examples are estimation of higher moments of the
response variable Y and the estimation of the covariance and of mixed moments
of X and Y . In all these cases h(x, y) is a polynomial in x and y and the estima-
tor often simplifies. This holds for the mean response, and, more generally, when
h is of the form h(x, y) = a(x)y. Then the estimator reduces to an unweighted
empirical estimator, which can be seen as follows. Recall that the weights must
be chosen such that

∑n
j=1 ŵjZj ε̂j = 0 and that ŵj = 1 − λ̂ŵjZj ε̂j which gives∑n

j=1 ŵjZj/
∑n

j=1 Zj = 1. Hence the estimator for E{a(X)Y } is

1

n

n∑
i=1

χ̂w(Xi, ϑ̂) = 1

n

n∑
i=1

∑n
j=1 ŵjZja(Xi){rϑ̂ (Xi) + ε̂j }∑n

j=1 Zj

= 1

n

n∑
i=1

∑n
j=1 ŵjZj∑n

j=1 Zj

a(Xi)rϑ̂ (Xi) +
∑n

j=1 ŵjZj ε̂j∑n
j=1 Zj

= 1

n

n∑
i=1

a(Xi)rϑ̂ (Xi).

In these cases it is therefore not necessary to determine weights: the above intuitive
estimator, with an efficient estimator ϑ̂ for ϑ plugged in, is efficient for E{a(X)Y }.

An interesting special case is estimation of the mean response, a(X) = 1, when
possibly all responses are observed, which we mentioned in the Introduction. Re-
gardless of whether there are missing responses or not, n−1 ∑n

i=1 r
ϑ̂
(Xi) is effi-

cient for EY , provided ϑ̂ is efficient for ϑ . The difference between the two situa-
tions is the construction of ϑ̂ , which will be based on either complete data pairs or
on missing response data. Let us stay with this example and consider, for a compar-
ison, the unweighted estimator (1.1) from the introduction, that is, with all weights
equal to one. It involves the term

∑n
j=1 Zj ε̂j /

∑n
j=1 Zj which is nonzero. If all

responses are observable, the unweighted estimator further simplifies, namely to

1

n

n∑
i=1

r
ϑ̂
(Xi) + 1

n

n∑
i=1

ε̂i = 1

n

n∑
i=1

Yi

[whereas the weighted estimator is n−1 ∑n
i=1 r

ϑ̂
(Xi)]. Its influence function is Y −

EY which is clearly not the efficient one: our efficient estimator for EY (with an
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efficient estimator ϑ̂) has the expansion

1

n

n∑
i=1

r
ϑ̂
(Xi) =̇ 1

n

n∑
i=1

rϑ(Xi) + (ϑ̂ − ϑ)Eṙϑ(X).

We recognize this as the expansion from Theorem 3.3 with Dw = Eṙϑ(X). Even
without inserting the expansion for ϑ̂ −ϑ from the previous section, it is clear that
this is, in general, not the influence function of n−1 ∑n

i=1 Yi , which shows that
it cannot be efficient. Note that n−1 ∑n

i=1 Yi also coincides with the (inefficient)
partially imputed estimator if all responses were observed.

6.2. Simulations. For an illustration with computer simulations we consider
a linear regression function, rϑ(X) = ϑX with ϑ = 2, and a nonlinear regres-
sion function, rϑ(X) = cos(ϑX), also with ϑ = 2. The probabilities π(X) =
P(Z = 1|X) = E(Z|X) are chosen as values of a logistic distribution function,
π(X) = 1/(1 + e−X), so that on average one half of the simulated responses are
missing. We generate covariates X from a uniform distribution on the interval
(−1,1) and error variables ε from a standard normal distribution. If the errors are
in fact normally distributed then �(ε) = ε/σ 2 and the efficient one-step improve-
ment estimator for ϑ from the previous section is asymptotically equivalent to the
ordinary least squares estimator. The following considerations can therefore be
based on this straightforward estimation approach.

In a first example we consider estimation of the mean response EY and compare
the efficient (fully imputed weighted) estimator, which, as seen above, here sim-
plifies to n−1 ∑n

i=1 r
ϑ̂
(Xi), with the partially imputed estimator n−1 ∑n

i=1{ZiYi +
(1 −Zi)rϑ̂ (Xi)). We also study the performance of these estimators if the parame-
ter estimates are replaced by their true values, and if all responses are observed,
π(·) = 1. Further we calculate the first simple estimator from the introduction,
n−1 ∑n

i=1 ZiYi/π̂(Xi), with, for reasons of simplicity, the estimated probabilities
π̂ replaced by the true ones. The values of the simulated mean squared errors are
given in Table 1.

In both the linear and the nonlinear regression models, the fully imputed estima-
tor performs considerably better than the partially imputed estimator. The simple
estimator in the last column is clearly outperformed by the imputation approaches.
Comparing the columns for the fully imputed estimator with and without parame-
ter estimation (and analogously for the partially imputed estimator), we see that
the estimator of the slope ϑ in linear regression rϑ(X) = ϑX is, as a plug-in es-
timator for estimating EY , better than the parameter estimator of the frequency
parameter ϑ in the nonlinear regression model rϑ(X) = cos(ϑX): in the linear
regression model the mean squared errors of the approaches based on ϑ and ϑ̂

are very similar, in contrast to the nonlinear model where the differences are quite
large. Let us also compare the (a) and (b) sections in the linear regression and
the nonlinear regression example, which refer to the situation where (a) responses
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TABLE 1
Simulated mean squared errors of estimators of the mean response EY

π(X) n ̂FI FI ̂PI PI N

Linear regression: rϑ (X) = ϑX (ϑ = 2)
1/(1 + e−X) 50 0.027520 0.026639 0.036231 0.036368 0.104962

100 0.013502 0.013298 0.018074 0.018364 0.052680
1000 0.001328 0.001325 0.001794 0.001835 0.005270

1 50 0.026990 0.026639 0.046322 0.046322 0.046322
100 0.013415 0.013298 0.023479 0.023479 0.023479

1000 0.001327 0.001325 0.002345 0.002345 0.002345

Nonlinear regression: rϑ (X) = cos(ϑX) (ϑ = 2)
1/(1 + e−X) 50 0.027858 0.003957 0.031163 0.013272 0.053038

100 0.015462 0.002001 0.017147 0.007020 0.028154
1000 0.001492 0.000199 0.001671 0.000696 0.002810

1 50 0.016512 0.003957 0.023369 0.023369 0.023369
100 0.008581 0.002001 0.012043 0.012043 0.012043

1000 0.000852 0.000199 0.001207 0.001207 0.001207

Notes. The table entries are the simulated mean squared errors of estimators of EY = Erϑ(X) with
partially missing responses, π(X) = 1/(1 + e−X) and completely observed data pairs, π(X) = 1. In
the first two columns we study the efficient fully imputed weighted estimator with the ordinary least
squares estimator ϑ̂ plugged in (F̂I) and its corresponding version using the true parameter, ϑ = 2
(FI). The next two columns refer to the partially imputed estimator using ϑ̂ (P̂I) and the version
based on ϑ = 2 (PI). The last column considers the simple estimator n−1 ∑n

i=1 ZiYi/π(Xi) (N),
which does not use imputation. Note that in the sections with π(X) = 1 the columns for P̂I, PI and
N are identical: since all the indicators are 1, these estimators coincide with the empirical estimator
n−1 ∑n

i=1 Yi .

are missing at random and (b) all responses are available. For the fully imputed
estimator n−1 ∑n

i=1 r
ϑ̂
(Xi) we observe the expected improved performance when

more (response) data for the estimation of ϑ are available. The situation is different
for the partially imputed estimator. Indeed we expect that, similarly, performance
will improve as the proportion of observed responses increases. In this case ϑ̂ im-
proves as an estimator of ϑ but, at the same time, the partially imputed estimator
will discard more and more information about the structure of the regression func-
tion. [In the extreme case π(·) = 1 it equals the empirical estimator n−1 ∑n

i=1 Yi .]
Our example demonstrates that both scenarios are possible: for the linear regres-
sion model the estimator of ϑ performs well and the simulated mean squared error
of the partially imputed estimator in (a) is smaller than in (b). In the nonlinear re-
gression model the estimator of ϑ is not as good and the mean squared error in (a)
is larger than the mean squared error of the empirical estimator in (b). Note that
this observation about the performance of the partially imputed estimator is only
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of secondary interest since, in any case, the fully imputed estimator has the smaller
mean squared error.

The situation is slightly more complicated when h is of the form h(x, y) =
a(x)b(y) with a nonlinear function b, for example, when higher mixed moments
of X and Y or just higher moments of Y are estimated. Simplified estimators are
available when b has a simple form. For an illustration we consider, in a second ex-
ample, estimation of the second moment EY 2 = Erϑ(X)2 +σ 2. The fully imputed
estimator is

1

n

n∑
i=1

∑n
j=1 ŵjZj {rϑ̂ (Xi) + ε̂j }2∑n

j=1 Zj

= 1

n

n∑
i=1

r
ϑ̂
(Xi)

2 +
∑n

j=1 ŵjZj ε̂
2
j∑n

j=1 Zj

.

The mean square errors for the fully imputed and the partially imputed estimator
(with and without parameter estimation) are given in Table 2.

Consider the lower section on nonlinear regression first. We see that, as ex-
pected, the fully imputed estimator outperforms the partially imputed estima-
tor, and that, in part (a) with missing responses, both estimators are far better
than the simple estimator in the last column. Using an estimator ϑ̂ for ϑ , or
the true value ϑ = 2, does not have much impact on the mean squared error
here. The upper half of Table 2 on linear regression, however, shows a differ-

TABLE 2
Simulated mean squared errors of estimators of EY 2

π(X) n ̂FI FI ̂PI PI N

Linear regression: rϑ (X) = ϑX (ϑ = 2)
1/(1 + e−X) 50 0.312670 0.116360 0.310263 0.161374 0.528146

100 0.158512 0.055343 0.157402 0.079863 0.267601
1000 0.016215 0.005470 0.016189 0.008113 0.027298

1 50 0.174683 0.070048 0.173817 0.173817 0.173817
100 0.088960 0.034685 0.088455 0.088455 0.088455

1000 0.008630 0.003359 0.008623 0.008623 0.008623

Nonlinear regression: rϑ (X) = cos(ϑX) (ϑ = 2)
1/(1 + e−X) 50 0.086350 0.087286 0.092361 0.093401 0.176124

100 0.042671 0.042747 0.047054 0.047219 0.092478
1000 0.004260 0.004179 0.005032 0.004961 0.010153

1 50 0.043774 0.043873 0.066100 0.066100 0.066100
100 0.021578 0.021574 0.035573 0.035573 0.035573

1000 0.002159 0.002116 0.003713 0.003713 0.003713

Notes. Here we study estimation of EY 2. The first two columns refer to the fully imputed estimator
with the ordinary least squares estimator ϑ̂ plugged in (F̂I) and to its version using ϑ = 2 (FI). In the
next two columns we consider the partially imputed estimator based on ϑ̂ (P̂I) and ϑ = 2 (PI). In the
last column the mean squared errors of n−1 ∑n

i=1 ZiYi/π(Xi) (N) are listed.
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ent picture: although the mean squared error of the fully imputed and the par-
tially imputed based on the true ϑ are considerably different (which is what we
would expect) the values of the estimators based on the ordinary least squares
parameter estimator ϑ̂ suggest that the two approaches are asymptotically equiv-
alent. For the extreme case (b) where π(·) = 1 this would mean that the fully
imputed estimator n−1 ∑n

i=1 r
ϑ̂
(Xi)

2 + n−1 ∑n
i=1 ŵi ε̂

2
i and the empirical esti-

mator n−1 ∑n
i=1 Y 2

i are asymptotically equivalent. This may be surprising but,
in fact, it is easy to see that this is exactly what is happening: we consider
the special example of linear regression with normal errors and the ordinary
least squares estimator ϑ̂ = ∑n

i=1 XiYi/
∑n

i=1 X2
i . Rewriting the empirical estima-

tor gives n−1 ∑n
i=1 Y 2

i = n−1 ∑n
i=1 r

ϑ̂
(Xi)

2 + n−1 ∑n
i=1 ε̂2

i + n−12ϑ̂
∑n

i=1 ε̂iXi .

The last term cancels for the least squares estimator ϑ̂ so that n−1 ∑n
i=1 Y 2

i =
n−1 ∑n

i=1 r
ϑ̂
(Xi)

2 + n−1 ∑n
i=1 ε̂2

i . Finally, by our results from Section 3, the esti-
mators n−1 ∑n

i=1 ŵi ε̂
2
i and n−1 ∑n

i=1 ε̂2
i of the error variance σ 2 are asymptotically

equivalent.
In the next example we restrict our attention to linear regression, rϑ(X) = ϑX,

ϑ = 2, and consider estimation of a more complicated expectation, namely of
Eh(X,Y ) = E(XeXY ). In contrast to the previous examples the (weighted) fully
imputed estimator cannot be reduced. The mean squared errors of this estimator
and of the partially imputed estimator are given in Table 3. For each estimator we
study the two cases with and without parameter estimation. Again we observe that
the performance of the estimators is not much affected by the plug-in parameter
estimator. Comparing the fully and the partially imputed estimators we see that
the fully imputed estimator clearly outperforms the partially imputed estimator. In

TABLE 3
Simulated mean squared errors of estimators of E{X exp(XY)} in linear regression

π(X) n ̂FI FI ̂U ̂PI PI

1/(1 + e−X) 50 0.32563 0.29024 0.36187 0.48164 0.47769
100 0.15017 0.14085 0.18147 0.24192 0.24698

1000 0.01384 0.0137 0.01992 0.02577 0.02703

1 50 0.28988 0.27262 0.32220 0.58566 0.58566
100 0.13804 0.13413 0.16520 0.29948 0.29948

1000 0.01332 0.01329 0.01663 0.02997 0.02997

Notes. We consider estimation of Eh(X,Y ) = E(XeXY ) in the linear regression model rϑ (X) = ϑX,
ϑ = 2. The first two columns give the mean squared errors of the fully imputed estimator with the
least squares estimator ϑ̂ plugged in (F̂I), and its version using ϑ = 2 (FI). The third column contains
the mean squared errors of the unweighted version Û of F̂I. The last two columns refer to the partially
imputed estimator using ϑ̂ (P̂I) and ϑ = 2 (PI). Note that if π(X) = 1 then the partially imputed
estimator again equals the empirical estimator, PI = P̂I = n−1 ∑n

i=1 Xi exp(XiYi).
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TABLE 4
Simulated mean squared errors of estimators of E{X exp(XY)} with ϑ ∈ R

p (p = 2,3)

rϑ (X) ̂FI FI ̂U ̂PI PI

ϑ1X + ϑ2U 0.2465 0.2272 0.2855 0.3965 0.4018
ϑ0 + ϑ1X + ϑ2U 0.3048 0.2272 0.3048 0.4259 0.4018
ϑ1X + ϑ2U + ϑ3V 2 0.4367 0.3750 0.4434 0.5696 0.5760

Notes. The three rows refer to two regression functions with different parametrizations. We have
ϑ0 = 0, ϑ1 = 2, ϑ2 = −1 and ϑ3 = 0.5, n = 100, π(X) = 1/(1 + e−X). The covariates X,U and
V are independent from a uniform distribution on (−1,1). The parameters are estimated using least
squares. The notation is explained in Table 3.

addition we also calculate the simulated mean squared error of the unweighted (in-
efficient) version of our fully imputed estimator. The performance of this estimator
turns out to lie between the fully and the partially imputed one. In particular, the
simulations in section (b), where all data are observed and where the partially im-
puted estimator equals the empirical estimator, confirm our theoretical observation
that incorporating the information about the location of the errors, for example in
the form of weights as done in this article, is important.

In order to study the behavior of the fully imputed estimator for multi-
dimensional ϑ we again studied estimation of E(XeXY ). For our simulations we
restricted our attention to missing data and on samples of size n = 100, and con-
sidered three different regression models which are given in Table 4. Note that the
second regression function, ϑ0 + ϑ1X + ϑ2U with ϑ0 = 0, ϑ1 = 2 and ϑ2 = −1,
equals the first one, namely 2X−U , but it involves a three-dimensional parameter.
As expected, the increase of dimension impairs the performance of the fully im-
puted (weighted and unweighted) and of the partially imputed estimator. Note that
the weighted and unweighted fully imputed estimator (F̂I and Û) in the second
regression model are the same: we consider the least squares estimator in a regres-
sion model with an intercept term ϑ0. In this model the least squares estimator
solves, by construction,

∑n
j=1 Zj ε̂j = 0 (which implies that all weights ŵj equal

one). Again we observe that the fully imputed estimator consistently outperforms
the partially imputed estimator.

We conclude this section with a small simulation study to examine the behav-
ior of the fully imputed estimator when ϑ̂ is inefficient. The simplest setting is to
choose the ordinary least squares estimator, as we did before, but in a model with
non-normal errors. In Table 5 we consider estimation of the mean response and of
E(XeXY ) for linear and nonlinear regression, and for errors from a t-distribution.
The results are similar to the previous ones: again the fully imputed estimator per-
forms best, though not as well as if the errors are, in fact, from a normal distribu-
tion (cf. Tables 1–3). Simulations with a logistic error density turned out similarly,
confirming the better performance of the imputation method. At least in these ex-
amples, with moderate sample sizes n = 50 and n = 100, the construction of ϑ
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TABLE 5
Simulated mean squared errors of estimators of Eh(X,Y ) with ϑ̂ inefficient

EY EY E(XeXY )

rϑ (X) = cos(ϑX) rϑ (X) = ϑX rϑ(X) = ϑX

π(X) n ̂FI ̂PI ̂FI ̂PI ̂FI ̂PI

1/(1 + e−X) 50 0.03124 0.03545 0.02742 0.03868 0.50275 0.72944
100 0.01841 0.02057 0.01375 0.01938 0.24148 0.48759

1 50 0.02000 0.02864 0.02689 0.05181 0.41476 0.79949
100 0.01016 0.01448 0.01359 0.02589 0.25796 0.63103

Notes. We compare fully and the partially imputed estimators of EY and E(XeXY ), keeping the
previous notation. Again, ϑ̂ is the least squares estimator, but now the errors are from a t-distribution
with 10 degrees of freedom.

does not seem to be as important as the choice between the full and the partial
imputation approaches.

6.3. Confidence intervals. By Theorem 5.2 the fully imputed weighted esti-
mator n−1 ∑n

i=1 χ̂w(Xi, ϑ̂) is asymptotically normally distributed, with asymp-
totic variance σ 2

FI = Eχ2(X,ϑ) + (EZ)−1Eh̄2(ε) − {1 + (EZ)−1}E2h(X,Y ) −
E2{εh̄(ε)}/(σ 2EZ) + D�

wE(Zζζ�)−1Dw (see Theorem 5.2 for the notation). An
asymptotic confidence interval for Eh(X,Y ) with confidence level 1 − α is(

1

n

n∑
i=1

χ̂w(Xi, ϑ̂) − zα/2

√
σ̂ 2

FI

n
,

1

n

n∑
i=1

χ̂w(Xi, ϑ̂) + zα/2

√
σ̂ 2

FI

n

)
,

where zα/2 denotes the upper α/2-quantile of the standard normal distribution, and
where σ̂ 2

FI is a consistent estimator of σ 2
FI. Consider, for example, estimation of EY

with rϑ(X) depending on a scalar parameter ϑ , which covers our previous sim-
ple examples rϑ(X) = ϑX and rϑ(X) = cos(ϑX). Here the confidence interval is
n−1 ∑n

i=1 r
ϑ̂
(Xi) ± zα/2(σ̂

2
FI/n)1/2. The asymptotic variance of n−1 ∑n

i=1 r
ϑ̂
(Xi)

is

σ 2
FI = Var rϑ(X) + E2{ṙϑ (X)}

EZ Var{rϑ(X)|Z = 1}E{�2(ε)} .
The expectations in the formula can be estimated by empirical methods, with a
consistent estimator ϑ̂ for the parameter ϑ plugged in. Consider, for example,
Var{rϑ(X)|Z = 1} = E{rϑ(X)2|Z = 1} − E2{rϑ(X)|Z = 1}. The first expectation
is estimated by (

∑n
i=1 Zi)

−1 ∑n
i=1 Zi{rϑ̂ (Xi)}2, and analogously the second one.

In order to confirm the theoretical results we also performed some simulation
studies, generating confidence intervals for the above examples with the described
estimation method. As expected, for α = 0.05 we obtained the desired coverage
probability 0.95.
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APPENDIX

LEMMA A.1. Suppose that Assumption 1 is satisfied. Then, for a
√

n consis-
tent estimator ϑ̂ of ϑ , the statements (3.2)–(3.4) hold.

PROOF. In order to prove (3.2)–(3.4) we first show

max
1≤i≤n

|Ziε̂i − Ziεi | = op(1),(A.1)

n∑
i=1

Zi(ε̂i − ε∗
i )

2 = op(1) with ε∗
i = εi − ṙϑ (Xi)

�(ϑ̂ − ϑ).(A.2)

Result (A.2) immediately follows from the
√

n consistency of ϑ̂ and the stochastic
differentiability of rϑ [implication (2.1) of Assumption 1]:

n∑
i=1

Zi(ε̂i − ε∗
i )

2 =
n∑

i=1

Zi[ε̂i − {εi − ṙϑ (Xi)
�(ϑ̂ − ϑ)}]2

≤
n∑

i=1

{r
ϑ̂
(Xi) − rϑ(Xi) − ṙϑ (Xi)

�(ϑ̂ − ϑ)}2 = op(1).

This gives max1≤i≤n |Zi(ε̂i − ε∗
i )| = op(1). In order to establish (A.1) it therefore

suffices to show max1≤i≤n |Zi(ε
∗
i − εi)| = op(1). We have

max
1≤i≤n

|Zi(ε
∗
i − εi)| ≤ max

1≤i≤n
|ε∗

i − εi | ≤ |ϑ̂ − ϑ | · max
1≤i≤n

|ṙϑ (Xi)|.

Since ϑ̂ is
√

n consistent we only need n−1/2 max1≤i≤n |ṙϑ (Xi)| = op(1). But
this holds by Owen (2001), Lemma 11.2, since the variables |ṙϑ (Xi)|, i =
1, . . . , n, are i.i.d. and, by Assumption 1, have finite second moments. This shows
max1≤i≤n |Zi(ε

∗
i − εi)| = op(1).

Equation (3.2), max1≤i≤n |Ziε̂i | = op(n1/2), can be seen as follows: we can
bound max1≤i≤n |Ziε̂i | by max1≤i≤n |Ziε̂i − Ziεi | + max1≤i≤n |Ziεi |. The first
term is op(1) by (A.1) and the second term is op(n1/2) by Owen’s Lemma 11.2
since the Ziεi are i.i.d. with finite variance. We now show (3.3), that is,

1

n

n∑
i=1

Ziε̂i = 1

n

n∑
i=1

Ziεi − EZE{ṙϑ (X)|Z = 1}�(ϑ̂ − ϑ) + op(n−1/2).

In view of (A.2), n−1 ∑n
i=1 Ziε̂i = n−1 ∑n

i=1 Ziε
∗
i + op(n−1/2). By the law of

large numbers we obtain

1

n

n∑
i=1

Ziε
∗
i = 1

n

n∑
i=1

Ziεi − 1

n

n∑
i=1

Ziṙϑ(Xi)
�(ϑ̂ − ϑ)

= 1

n

n∑
i=1

Ziεi − E{Zṙϑ(X)}�(ϑ̂ − ϑ) + op(n−1/2).
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Since E{Zṙϑ(X)} = EZE{ṙϑ (X)|Z = 1} we have established (3.3).
Our last auxiliary result to prove is (3.4),

1

n

n∑
i=1

Ziε̂
2
i = 1

n

n∑
i=1

Ziε
2
i + op(1) = EZσ 2 + op(1).

The second equality is just a consequence of the law of large numbers. To see that
the first equation holds consider

1

n

n∑
i=1

Ziε̂
2
i − 1

n

n∑
i=1

Ziε
2
i = 1

n

n∑
i=1

Zi(ε̂i − εi)
2 + 2

1

n

n∑
i=1

Zi(ε̂i − εi)εi .

The second term on the right-hand side is op(1) by (A.1). To show that the first
expression is op(1) it suffices, in view of (A.2), to consider

1

n

n∑
i=1

Zi(ε
∗
i − εi)

2 = 1

n

n∑
i=1

Zi{ṙϑ (Xi)
�(ϑ̂ − ϑ)}2.

This term is op(1) since ϑ̂ is
√

n consistent and since ṙϑ (X) is in L2(P ). �
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