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When we observe a stationary time series with observations missing at periodic time points, we can still estimate its marginal
distribution well, but the dependence structure of the time series may not be recoverable at all, or the usual estimators may
have much larger variance than in the fully observed case. We show how non-parametric estimators can often be improved by
adding unbiased estimators. We focus on a simple setting, first-order Markov chains on a finite state space, and an observation
pattern in which a fixed number of consecutive observations is followed by an observation gap of fixed length, say workdays
and weekends. The new estimators perform astonishingly well in some cases, as illustrated with simulations. The approach
extends to continuous state space and to higher-order Markov chains.
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1. INTRODUCTION

The distribution of a (first-order) stationary Markov chain X0,X1, … on some state space S is determined by
the (1-step) transition distribution Q(x, dy) and the corresponding (one-dimensional) marginal distribution 𝜋(dx).
These are in turn determined by the joint distribution of (X0,X1). Our aim is to estimate this joint distribution from
non-consecutive realizations of the Markov chain. We treat continuous and discrete state spaces in generality and
elaborate details for the case when the state space is finite.

If the state space S is the real line and the transition distribution has a (Lebesgue) density q(x, y), then the marginal
distribution has a density, say p(x), and both are determined by the joint density p(x)q(x, y) of (X0,X1), which is in
turn determined by expectations E

[
f
(
X0,X1

)]
for sufficiently many (bounded) functions f (x, y). On the other hand,

if the state space is finite, say S = {1, … ,m}, then the transition distribution is a matrix Q = (Qij)i,j=1,… ,m, and the
marginal distribution is a vector, say 𝜋 = (𝜋1, … , 𝜋m)⊤, and both are determined by the matrix of joint probabilities
(𝜋iQij)i,j=1,… ,m. These are again determined by expectations E

[
f
(
X0,X1

)]
for sufficiently many functions f (x, y).

Of course, for a discrete state space it would suffice to consider indicator functions f = 1{(x,y)} to identify the joint
distribution of the chain. Even then, functions other than indicator functions are of interest in applications, for
example covariances and joint moments.

Let f (x, y) be a bounded function. The expectation 𝜃 = E[f (X0,X1)] of two consecutive observations can be
estimated from observations X0,X1, … ,Xn by the empirical estimator

̂
𝜃 = 1

n

n∑

j=1

f (Xj−1,Xj).
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Under appropriate ergodicity and moment conditions, ̂𝜃 is asymptotically normal. If the underlying model is
non-parametric, ̂𝜃 is also asymptotically efficient in the sense of a non-parametric version of the Hájek–Le Cam
convolution theorem; see Penev (1991), Bickel (1993), and Greenwood and Wefelmeyer (1995).

We are interested in the case that observations are missing periodically. There is a large literature on regres-
sion models and time series with missing data. The emphasis is on interpolating plausible values for those that are
missing, on calculating the loss of information through missing data, and on constructing consistent estimators;
see, for example, Miller and Ferreiro (1984), Lu and Hui (2003), Bondon (2005), Pasanisi et al. (2012) and Efro-
movich (2014). Here we have a different goal, namely to obtain estimators that improve on the empirical estimator
based on the observed pairs of consecutive realizations of the Markov chain.

Müller et al. (2008) discuss various missingness patterns without going into theoretical details, including a
scenario with periodically observed data. An extreme case would be to have every other observation missing.
Then we can estimate the 2-step transition distribution but we cannot identify the 1-step transition distribution.
Here we focus on the most common periodic scenario in which the 1-step transition distribution is identifiable.
We observe an initial value X0. Then a gap of length a is followed by a block of b + 1 consecutive realizations
Xa, … ,Xa+b, i.e. by b consecutive overlapping pairs (Xa,Xa+1), (Xa+1,Xa+2), … , (Xa+b−1,Xa+b). Then the pattern
repeats itself,

X0;Xa,Xa+1, … ,Xa+b; X2a+b, … ,X2a+2b; … ; X(n−1)(a+b)+a, … ,Xn(a+b).

Note that we consider n periods of length a + b rather than n single realizations.
Our approach carries over immediately to more complicated periodic missingness patterns, as long as part of

the observations are adjacent. It also carries over to random missingness patterns, as long as adjacent observations
occur with positive probability.

Examples for such observation patterns are present and absent times during the day, and regular visits to remote
places for data collection during the year. An obvious scenario with periodically missing observations are daily
data that are only available on weekdays but not on weekends. Consider, for example, daily closing values of the
stock market (of some index or some individual stock). The market is open only 5 days a week. Let us categorize
a change in the closing value from one day to the next as positive, neutral or negative, where positive refers to an
increase of at least p percent, negative to to a decrease of at least p percent, and neutral refers to the remaining case
of no clear change. Here p is a small fixed number, say 0.2. We have four consecutive observations per week, the
change from Monday to Tuesday, from Tuesday to Wednesday, from Wednesday to Thursday, and from Thursday
to Friday. As markets are closed over the weekend, we treat the changes from Friday to Saturday, Saturday to
Sunday, and Sunday to Monday as missing. In this scenario we have three states, gaps of length a = 4 and blocks
with b+ 1 = 4 observations. To estimate the probability of positive change on two consecutive days, we take f to
be f (x, y) = 1[x = y = positive].

The empirical estimator for 𝜃 = E[f (X0,X1)] based on the nb observed adjacent pairs is

̂
𝜃0 =

1
nb

n∑

j=1

∑

c∈B+(j−1)(a+b)
f (Xc−1,Xc),

with B = {a + 1, … , a + b}. The estimator ̂𝜃0 has expectation 𝜃, i.e. it is unbiased. We will suggest an unbiased
modification with smaller asymptotic variance.

To motivate the modification, suppose first that we have i.i.d. observations X1, … ,Xn. The empirical estimator
of the expectation E[f (X1)] of a (bounded) function f is the average (1∕n)

∑n
j=1f (Xj). Assume that the observations

are known to fulfill a linear constraint E[h(X1)] = 0 for a known (bounded) function h. Then we get new unbiased
estimators Hf (c) = (1∕n)

∑n
j=1

(
f (Xj) − ch(Xj)

)
for E[f (X1)] and can determine the constant c = c∗ that minimizes

the asymptotic variance of these estimators. This constant depends on the distribution of the observations but can be
estimated consistently by an empirical estimator ĉ∗. The resulting plug-in estimator Hf (ĉ∗) is then asymptotically
equivalent to Hf (c∗) and an asymptotically efficient estimator of E[f (X1)].

J. Time Ser. Anal. 45: 1006–1019 (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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Suppose now that we have consecutive observations X0, … ,Xn from a stationary Markov chain. We have
the obvious linear constraint that the expectations E[h(Xj)] for (bounded) functions h are equal for all j, so
E[h(Xj−1) − h(Xj)] = 0. We can modify the empirical estimator (1∕n)

∑n
j=1f (Xj−1,Xj) as in the i.i.d. case, but this

will not improve it asymptotically because the modification telescopes to something negligible,

1
n

n∑

j=1

(
f
(
Xj−1,Xj

)
− h

(
Xj−1

)
+ h

(
Xj

))
= 1

n

n∑

j=1

f
(
Xj−1,Xj

)
+ 1

n

(
h
(
Xn

)
− h

(
X0

))
.

Let us return to the pattern of periodic observations with gaps of length a and blocks of length b + 1. The
empirical estimator ̂𝜃0 of 𝜃 based on the observed adjacent pairs can be modified as

̂
𝜃(h) = 1

nb

n∑

j=1

∑

c∈B+(j−1)(a+b)

(
f
(
Xc−1,Xc

)
− h

(
Xc−1

)
+ h

(
Xc

))
.

The modification telescopes to something non-negligible now,

̂
𝜃(h) = ̂

𝜃0 −
1
n

n∑

j=1

(
h
(
X(j−1)(a+b)+a

)
− h

(
Xj(a+b)

))
.

Since E
[
h
(
Xc−1

)
− h

(
Xc

)]
= 0, we can and will assume in the following that E[h(X0)] = 0.

In Section 2 we calculate the asymptotic variance of ̂𝜃(h). For finite state space S we determine the function
h = h∗ that minimizes the asymptotic variance. Since h∗ depends on the unknown distribution of the Markov chain,
it must be replaced by an estimator ̂h∗, resulting in the estimator ̂𝜃( ̂h∗). The variance reduction of ̂𝜃( ̂h∗) over ̂𝜃0 can
be considerable. We illustrate this in Section 3 with simulations for gaps a = 2 and blocks b + 1 = 2. Section 4
contains auxiliary results needed in the proofs of Section 2.

2. RESULTS

We need to calculate the asymptotic variances of ̂𝜃0 and ̂
𝜃( ̂h∗). We begin by recalling a martingale approximation

for the empirical estimator ̂𝜃 = (1∕n)
∑n

j=1f
(
Xi−1,Xi

)
of the expectation 𝜃 = E

[
f
(
X0,X1

)]
of a bounded function

f ∶ S × S → R from consecutive observations X0, … ,Xn of a stationary Markov chain on an arbitrary state space
S. We assume that the Markov chain is positive Harris recurrent and geometrically ergodic with respect to the
sup-norm. From Lemma 1 in Greenwood and Wefelmeyer (1995) we obtain the martingale approximation

̂
𝜃 − 𝜃 = 1

n

n∑

j=1

(Af )(Xj−1,Xj) + OP

(
log n

n

)
,

where A is a bounded linear operator mapping a function f (x, y) into a function

(Af )(x, y) = f (x, y) − g1(x) +
∞∑

k=1

(
gk(y) − gk+1(x)

)
.

Here gk(X0) = E(f (Xk−1,Xk)|X0) is the k-step conditional expectation of f (Xk−1,Xk) given X0. We calculate
g1(X0) = E(f (X0,X1)|X0) and

gk+1(X0) = E(f (Xk,Xk+1)|X0) = E(E(f (Xk,Xk+1)|X1)|X0) = E(gk(X1)|X0), k > 1.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. 45: 1006–1019 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12747

 14679892, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12747, W

iley O
nline L

ibrary on [23/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fjtsa.12747&mode=


ESTIMATION FOR MARKOV CHAINS WITH MISSING OBSERVATIONS 1009

This implies E((Af )(X0,X1)|X0) = 0. Thus (Af )(X0,X1) is a martingale increment, and the asymptotic variance of
n1∕2( ̂𝜃 − 𝜃) is

E
[(

Af
)2(

X0,X1

)]
= E

[
f 2
(
X0,X1

)]
− 𝜃2 + 2

∞∑

k=1

(
E
[
f
(
X0,X1

)
f
(
Xk,Xk+1

)]
− 𝜃2

)
.

The martingale approximation was first proved by Gordin (1969). It was discovered independently by several other
authors; see the references in section 1 of Greenwood et al. (2001).

We apply the martingale approximation to the pattern in the Introduction, with n periods of gaps of length a
followed by b + 1 consecutive observations. Denote the jth block of consecutive observations by

Zj =
(
X(j−1)(a+b)+a, … ,X(j−1)(a+b)+a+b

)
, j = 1, … , n,

and set

Yj = Xj(a+b), j = 0, … , n.

Now consider a bounded function g from Sb+1 into R. Then we have the identity

1
n

n∑

j=1

g(Zj) =
1
n

n∑

j=1

(
g(Zj) − g0(Yj−1)

)
+ 1

n

n∑

j=1

g0(Yj) +
1
n

(
g0(Y0) − g0(Yn)

)
,

with

g0

(
Yj−1

)
= E

(
g(Zj)|Yj−1

)
.

Since Y0,Y1, … ,Yn is a Markov chain with transition distribution Qa+b, the (a + b)-step transition distribution of
the original chain, we have the martingale representation

1
n

n∑

j=1

g0(Yj) = E[g0(Y0)] +
1
n

n∑

j=1

∞∑

k=0

(
gk(Yj) − gk+1(Yj−1)

)
+ OP

(
log n

n

)
,

with

gk+1(Yj−1) = E
(
gk(Yj)|Yj−1

)
, k = 0, 1, … .

We compute

gk(y) = ∫ Qk(a+b)(y, dx)g0(x), k = 1, 2, … .

The above shows that the expansion

1
n

n∑

j=1

g(Zj) = E[g(Z1)] +
1
n

n∑

j=1

Bj(g) + OP

(
log n

n

)
,

holds with

Bj(g) = g(Zj) − g0

(
Yj−1

)
+

∞∑

k=0

(
gk(Yj) − gk+1

(
Yj−1

))
, j = 1, … , n.

J. Time Ser. Anal. 45: 1006–1019 (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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Note that B1(g), … ,Bn(g) form a martingale difference array for the filtration ℱj, j = 0, … , n, where

ℱ0 = 𝜎(Y0), ℱ1 = 𝜎(Y0,Z1), ℱ2 = 𝜎
(
Y0,Z1,Z2

)
, … ,ℱn = 𝜎

(
Y0,Z1, … ,Zn

)
.

Indeed, Bj(g) is ℱj-measurable and E
(
Bj(g)|ℱj−1

)
= E

(
Bj(g)|Yj−1

)
= 0.

Let us now look at two special cases. Note that the estimator ̂𝜃0 can be expressed as

̂
𝜃0 =

1
n

n∑

j=1

𝜙(Zj),

with

𝜙(z) = 1
b

b∑

i=1

f (zi−1, zi), z = (z0, … , zb) ∈ Sb+1
.

Then we obtain

̂
𝜃0 − 𝜃 =

1
n

n∑

j=1

Bj(𝜙) + OP

(
log n

n

)
.

Here the role of the gk is played by 𝜙k which is calculated as

𝜙k(y) = ∫ Mk(y, dx)f∗(x),

with

Mk(y, dx) = 1
b

a+b−1∑

j=a

Qk(a+b)+j(y, dx) and f∗(x) = ∫ Q(x, dy)f (x, y).

Next, we look at the case g = Δh, where

Δh(z) = h(zb) − h(z0), z = (z0, … , zb) ∈ Sb+1
,

and h is a bounded function from S to R. Then we obtain

1
n

n∑

j=1

(
h
(
Xj(a+b)

)
− h

(
Xj(a+b)−b

))
= 1

n

n∑

j=1

Bj(Δh) + OP

(
log n

n

)
.

For the choice g = Δh, the role of gk is played by

(Δh)k(x) = ∫ Q(k+1)(a+b)(x, dy)h(y) − ∫ Qk(a+b)+a(x, dy)h(y), k = 0, 1, … .

From this we derive

̂
𝜃(h) − 𝜃 = 1

n

n∑

j=1

(
Bj(𝜙) − Bj(Δh)

)
+ OP

(
log n

n

)
.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. 45: 1006–1019 (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12747
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ESTIMATION FOR MARKOV CHAINS WITH MISSING OBSERVATIONS 1011

The asymptotic variance of ̂𝜃(h) is then

E
[(

B1(𝜙) − B1(Δh)
)2]
.

We use the minimizer h∗ of the asymptotic variance with respect to h with E[h(X0)] = 0. This optimal choice
depends on the distribution of the Markov chain. Thus we will replace h∗ by an estimator.

From now on we work with a finite state space S = {1, … ,m}. Then a function h with mean zero can be written
as a step function

h =
m∑

i=1

hi1{i} = h11{1} + · · · + hm1{m},

with coefficients h1, … , hm satisfying
∑m

i=1hi𝜋i = 0 and with 1{i} denoting the indicator of the singleton set {i},
i = 1, … ,m. For such h, we have B1(Δh) =

∑n
i=1hiB1(Δ1{i}). This shows that the optimal h∗ is obtained by

minimizing

E
⎡
⎢
⎢
⎣

(

B1(𝜙) −
m∑

i=1

hiB1

(
Δ1{i}

)
)2⎤

⎥
⎥
⎦
,

subject to the constraint
∑m

j=1hi𝜋i = 0. With the optimal h∗ we associate the estimator

̂
𝜃(h∗) =

1
n

n∑

j=1

(

𝜙(Zj) −
m∑

i=1

h∗,iBj

(
Δ1{i}

)
)

.

Since h∗ is unknown, we must work with an estimator ̂h∗ of h∗ and use

̂
𝜃( ̂h∗) =

1
n

n∑

j=1

(

𝜙(Zj) −
m∑

i=1

̂h∗,iBj

(
Δ1{i}

)
)

.

Suppose that ̂h∗ is a consistent estimator of h∗ in the sense that ̂h∗,i converges to h∗,i in probability for i = 1, … ,m.
Then the following rates

1
n

n∑

j=1

Bj

(
Δ1{i}

)
= OP

(
n−1∕2

)
, i = 1, … ,m,

imply the asymptotic equivalence of the plug-in estimator ̂𝜃( ̂h∗) and the estimator ̂𝜃(h∗), i.e.

̂
𝜃( ̂h∗) = ̂

𝜃(h∗) + oP

(
n−1∕2

)
.

Let us now address how to construct a consistent estimator of h∗. We shall take ̂h∗ to be the minimizer of

1
n

n∑

j=1

(
̂Bj(𝜙) −

m∑

i=1

hi
̂Bj

(
Δ1{i}

)
)2

,

J. Time Ser. Anal. 45: 1006–1019 (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12747 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12747, W

iley O
nline L

ibrary on [23/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fjtsa.12747&mode=


1012 U. MÜLLER, A. SCHICK AND W. WEFELMEYER

subject to the constraint
∑m

i=1hi𝜋̂i = 0. Here

𝜋̂i =
1

1 + n(b + 1)
∑

𝓁∈O

1[X𝓁 = i],

is the empirical estimator of 𝜋i, i = 1, … ,m, with O = {0, a, … , a+ b, … , n(a+ b)} denoting the indices of the
observations X0,Xa, … ,Xa+b, … ,Xn(a+b), and

̂Bj(g) = g(Zj) − ĝ0

(
Yj−1

)
+

rn∑

k=1

(
ĝk

(
Yj

)
− ĝk+1

(
Yj−1

))
,

is an estimator of Bj(g). Here rn is a positive integer allowed to grow to infinity slowly, and

ĝ0(y) =
∑

(z0 ,… ,zb)∈Sb+1

̂Q(y, z0) ̂Q(z0, z1) · · · ̂Q(zb−1, zb)g(z0, … , zb),

and

ĝk(y) =
∑

s∈S

̂Q
k(y, s)ĝ0(s), k = 1, 2, … , rn + 1,

are plug-in estimators of g0(y), … , grn+1(y) obtained be replacing the unknown transition matrix Q by the empirical

transition matrix ̂Q defined by

̂Q(x, y) =
∑

𝓁∶{𝓁−1.𝓁}∈O 1[X𝓁−1 = x,X𝓁 = y]
∑m

y′=1

∑
𝓁∶{𝓁−1,𝓁}∈O 1[X𝓁−1 = x,X𝓁 = y′]

.

To state our theorem we also introduce the functions

𝜓i = 1{i} −
𝜋i

𝜋m

1{m}, i = 1, … ,m − 1.

Theorem 1. Suppose rn → ∞ and n−1∕4rn → 0 and the (m − 1) × (m − 1) matrix D with entries

Dik = E[B1(Δ𝜓i)B1(Δ𝜓k)], i, k = 1, … ,m − 1,

is invertible. Then ̂h∗ is a consistent estimator of h∗.

Proof. The constraint
∑m

i=1hi𝜋i = 0 gives hm = −
∑m−1

i=1 𝜋ihi∕𝜋m. This lets us write a function h with mean
E[h(Y0)] = 0 as h = h1𝜓1 + · · · + hm−1𝜓m−1. Thus the optimal h∗ can be expressed as

h∗ =
m−1∑

i=1

𝛽

∗
i 𝜓i =

m−1∑

i=1

𝛽

∗
i 1{i} −

m−1∑

i=1

𝛽

∗
i 𝜋i

𝜋m

1{m},

where 𝛽∗1 , … , 𝛽

∗
m−1 are the minimizers of

E
⎡
⎢
⎢
⎣

(

B1(𝜙) −
m−1∑

i=1

𝛽iB1(Δ𝜓i)

)2⎤
⎥
⎥
⎦
.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. 45: 1006–1019 (2024)
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ESTIMATION FOR MARKOV CHAINS WITH MISSING OBSERVATIONS 1013

The minimizing vector is given by

𝛽

∗ =
⎡
⎢
⎢
⎢
⎣

𝛽

∗
1

⋮

𝛽

∗
m−1

⎤
⎥
⎥
⎥
⎦

= D−1R with R =
⎡
⎢
⎢
⎢
⎣

E[B1(Δ𝜓1)B1(𝜙)]
⋮

E[B1(Δ𝜓m−1)B1(𝜙)]

⎤
⎥
⎥
⎥
⎦

.

In a similar fashion we can show that

̂h∗ =
m−1∑

i=1

̂
𝛽 i𝜓̂ i =

m−1∑

i=1

̂
𝛽 i1{i} −

m−1∑

i=1

̂
𝛽 i𝜋̂i

𝜋̂m

1{m},

where

𝜓̂ i = 1{i} −
𝜋̂i

𝜋̂m

1{m}, i = 1, … ,m − 1,

and ̂
𝛽

∗
1, … ,

̂
𝛽

∗
m−1 are minimizers of

1
n

n∑

j=1

(
̂Bj(𝜙) −

m−1∑

i=1

𝛽i
̂B1(Δ𝜓̂ i)

)2

.

The minimizing vector satisfies

̂
𝛽

∗ =
⎡
⎢
⎢
⎢
⎣

̂
𝛽

∗
1

⋮
̂
𝛽

∗
m−1

⎤
⎥
⎥
⎥
⎦

= ̂D
−1
̂R with ̂R = 1

n

n∑

j=1

⎡
⎢
⎢
⎢
⎣

̂Bj(Δ𝜓̂1) ̂Bj(𝜙)]
⋮

̂Bj(Δ𝜓̂m−1) ̂Bj(𝜙)

⎤
⎥
⎥
⎥
⎦

,

on the event where the matrix ̂D with entries

̂Di,k =
1
n

n∑

j=1

̂Bj(Δ𝜓̂ i) ̂Bj(Δ𝜓̂ k), i, k = 1, … ,m − 1,

is invertible.
We shall show in Lemma 2 of Section 4 that

max
1≤j≤n

| ̂Bj(g) − Bj(g)| = oP(1),

for every function g from Sb+1 into R. Using this with g = 𝜙 and g = Δ1{i}, i = 1, … ,m, and the fact that 𝜋̂i is a
consistent estimator of 𝜋i for i = 1, … ,m, one derives

1
n

n∑

j=1

̂Bj(Δ𝜓̂ i) ̂Bj(𝜙) =
1
n

n∑

j=1

̂Bj(Δ1{i}) ̂Bj(𝜙) −
𝜋̂i

𝜋̂m

1
n

n∑

j=1

̂Bj(Δ1{m}) ̂Bj(𝜙)

= 1
n

n∑

j=1

Bj(Δ1{i})Bj(𝜙) −
𝜋i

𝜋m

1
n

n∑

j=1

Bj(Δ1{m})Bj(𝜙) + oP(1)

= 1
n

n∑

j=1

Bj(Δ𝜓i)Bj(𝜙) + oP(1),

J. Time Ser. Anal. 45: 1006–1019 (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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1014 U. MÜLLER, A. SCHICK AND W. WEFELMEYER

and thus

1
n

n∑

j=1

̂Bj(Δ𝜓̂ i) ̂Bj(𝜙) = E[B1(Δ𝜓i)B1(𝜙)] + oP(1),

for i = 1, … ,m − 1. Similarly, one obtains

1
n

n∑

j=1

̂Bj(Δ𝜓̂ i) ̂Bj(Δ𝜓̂ k) = E[B1(Δ𝜓i)B1(Δ𝜓k)] + oP(1),

for i, k = 1, … ,m − 1. We conclude that ̂R is a consistent estimator of R and ̂D is a consistent estimator of D.
Since D is invertible, we conclude that ̂𝛽

∗
is a consistent estimator of 𝛽∗, and this implies that ̂h∗ is a consistent

estimator of h∗. ◾

3. SIMULATIONS

We study the behavior of our estimator with simulations for a simple scenario with state space S = {1, 2, 3, 4},
and with a = 2 and b = 1, so a gap of length a = 2 is followed by a block of b + 1 = 2 observations, and we
observe X0,X2,X3,X5,X6, … ,X3n. We compare our estimator ̂𝜃( ̂h∗) with the empirical estimator ̂𝜃0, for various
functions f (x, y), transition matrices M, and n = 50,100, 150,200. The simulations are based on 4000 iterations.
The tables contain n times the simulated mean square errors (MSE) of the estimators and the relative efficiency
RE = MSE( ̂𝜃0)∕MSE( ̂𝜃(h∗)). The values were computed with R and are rounded to five and three decimal places
respectively. A value RE > 1 indicates the superiority of our approach.

We begin with the three transition matrices M1, M2 and M3 given below. The stationary distribution for each
matrix is the uniform distribution, 𝜋 = (1∕4, 1∕4, 1∕4, 1∕4).

M1 M2 M3
⎡
⎢
⎢
⎢
⎢
⎣

1∕8 1∕8 1∕4 1∕2
1∕8 1∕4 1∕2 1∕8
1∕4 1∕2 1∕8 1∕8
1∕2 1∕8 1∕8 1∕4

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1∕2 1∕6 1∕6 1∕6
1∕6 1∕2 1∕6 1∕6
1∕6 1∕6 1∕2 1∕6
1∕6 1∕6 1∕6 1∕2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1∕4 1∕4 1∕4 1∕4
1∕2 0 1∕2 0

0 1∕2 0 1∕2
1∕4 1∕4 1∕4 1∕4

⎤
⎥
⎥
⎥
⎥
⎦

The MSEs of our estimator and the empirical estimator as well as the relative efficiency are given
in Table I.

We now examine the behavior of our estimator if the stationary distribution of the chain is not the uniform
distribution. We consider the transition matrices M4, M5 and M6 given below, with stationary distributions
𝜋 = (0.2, 0.2, 0.266 … , 0.33 … ), (0.2, 0.2, 0.3, 0.3) and (0.1, 0.2, 0.3, 0.4) respectively. The last matrix, M6,
corresponds to the special case that the data are i.i.d.

M4 M5 M6
⎡
⎢
⎢
⎢
⎢
⎣

0.2 0.2 0.2 0.4
0.2 0.2 0.2 0.4
0.2 0.2 0.2 0.4
0.2 0.2 0.4 0.2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0.2 0.2 0.2 0.4
0.2 0.2 0.4 0.2
0.2 0.2 0.2 0.4
0.2 0.2 0.4 0.2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4

⎤
⎥
⎥
⎥
⎥
⎦

The simulation results for these matrices are provided in Table II.
Why are the relative efficiencies so different for different functions f ? For observations X0, … ,Xn from a fully

observed non-parametric Markov chain, the empirical estimator (1∕n)
∑n

j=1f (Xj−1,Xj) is asymptotically efficient for
𝜃 = E[f (X0,X1)]. For observations X0,X2,X3,X5,X6, … ,X3n considered here, with every third realization of the
Markov chain missing, the estimator ̂𝜃0 = (1∕n)

∑n
j=1f (X3j−1,X3j) uses only half the available pairs of observations,

ignoring the pairs (X3(j−1),X3j−1) that are separated by a gap. One might conjecture that the asymptotic variance of

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. 45: 1006–1019 (2024)
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ESTIMATION FOR MARKOV CHAINS WITH MISSING OBSERVATIONS 1015

Table I. The table entries are n times the mean squared errors for the empirical estimator ̂𝜃0 and for our estimator ̂𝜃( ̂h∗) for
various functions f and transition matrices M when n = 50

nMSE RE

M f (x, y) ̂
𝜃0

̂
𝜃( ̂h∗) n = 50 100 150 200

M1 1[x > y] 0.20856 0.07046 2.960 3.144 3.080 3.455
x∕y 1.21480 0.26822 4.865 4.865 4.705 5.217

4x∕(x + y) 0.48158 0.0080 602.621 605.333 636.142 665.854
log(x∕(1 + y)) 0.43177 0.01329 32.490 35.773 36.774 36.059

max(x, y) 0.67036 0.77102 0.869 0.934 0.962 0.975
xy∕4 0.89172 1.00182 0.890 0.943 0.960 0.975

M2 1[x > y] 0.18680 0.11233 1.663 1.812 1.982 1.940
x∕y 0.63671 0.15127 4.209 4.649 4.986 4.872

4x∕(x + y) 0.28913 0.00069 416.483 418.912 440.513 437.387
log(x∕(1 + y)) 0.26070 0.02970 8.777 9.675 9.475 9.750

max(x, y) 1.18596 1.49045 0.796 0.912 0.933 0.960
xy∕4 1.64064 1.94167 0.845 0.934 0.953 0.970

M3 1[x > y] 0.26130 0.08334 3.135 3.471 3.579 3.489
x∕y 0.88804 0.15536 5.716 6.345 6.497 6.611

4x∕(x + y) 0.45836 0.00128 358.570 384.219 387.795 417.381
log(x∕(1 + y)) 0.39884 0.01840 21.680 23.287 24.864 24.081

max(x, y) 0.84995 0.92632 0.918 1.026 1.042 1.047
xy∕4 1.12398 1.19860 0.938 1.038 1.066 1.085

Note: The last four columns provide the relative efficiencies for samples sizes n = 50,100, 150 and 200.

Table II. The table entries are n times the mean squared errors (n = 50) and the relative efficiency as in Table I, now with
transition matrices M4, M5 and M6

nMSE RE

M f (x, y) ̂
𝜃0

̂
𝜃( ̂h∗) n = 50 100 150 200

M4 1[x > y] 0.24842 0.08772 2.832 3.126 3.139 2.983
x∕y 0.96055 0.18451 5.206 5.624 5.959 5.755

4x∕(x + y) 0.43647 0.00098 444.776 475.583 450.609 470.466
log(x∕(1 + y)) 0.37619 0.01790 21.020 25.812 25.138 24.734

max(x, y) 0.72452 0.83773 0.865 0.935 0.963 0.976
xy∕4 1.16930 1.37596 0.850 0.926 0.939 0.961

M5 1[x > y] 0.23344 0.08370 2.789 3.052 3.069 2.997
x∕y 0.89833 0.18706 4.802 5.437 5.828 6.093

4x∕(x + y) 0.41521 0.00099 419.700 464.1001 471.879 459.925
log(x∕(1 + y)) 0.36790 0.01765 20.839 24.349 24.002 26.072

max(x, y) 0.73561 0.85871 0.856 0.939 0.949 0.970
xy∕4 1.06267 1.26272 0.842 0.917 0.955 0.962

M6 1[x > y] 0.23204 0.09357 2.480 2.755 2.806 2.743
x∕y 0.66162 0.14203 4.658 5.405 5.398 5.854

4x∕(x + y) 0.31495 0.00964 32.671 285.273 589.983 546.436
log(x∕(1 + y)) 0.26491 0.01332 19.895 23.901 25.144 23.842

max(x, y) 0.46617 0.54032 0.863 0.940 0.954 0.970
xy∕4 1.17293 1.49311 0.786 0.882 0.920 0.939

J. Time Ser. Anal. 45: 1006–1019 (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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1016 U. MÜLLER, A. SCHICK AND W. WEFELMEYER

̂
𝜃0 is therefore approximately twice the variance of an efficient estimator that exploits the information provided by
both types of pairs, with and without gap, and that a modified estimator

̂
𝜃(h) = 1

n

n∑

j=1

(
f (X3j−1,X3j) − h(X3j−1) + h(X3j)

)
,

will have about half the variance of ̂𝜃0 at best.
This conjecture is false. Indeed, our simulations show that the improvement of ̂𝜃(h) over ̂𝜃0 can be considerably

greater, especially for functions f that are close to antisymmetric, and in particular, close to an antisymmetric
function of the form f (x, y) = g(x)−g(y). If f has exactly this form, for the Markov chain without gaps, the empirical
estimator is a telescoping function (1∕n)

∑n
j=1(g(Xj−1)−g(Xj)) = (1∕n)(g(X0)−g(Xn)), and the asymptotic variance

of the standardized empirical estimator is zero. The variance will be close to zero if f is close to this form. On the
other hand, for the Markov chain with gaps, ̂𝜃0 is close to (1∕n)

∑n
j=1(g(X3j−1) − g(X3j)), which does not telescope.

However the improved estimator ̂𝜃(h) with h = g is close to

1
n

n∑

i=1

(
g(X3j−1) − g(X3j) − g(X3j−1) + g(X3j)

)
= 0,

an extreme variance reduction over ̂𝜃0.
Suppose now that f is close to symmetric rather than antisymmetric, so f (x, y) = f (y, x). Suppose also that the

Markov chain is close to reversible, so the joint distributions of (X1,Xm) and (Xm,X1) are close for m = 2, 3, … .
Then ̂

𝜃(h) will not improve much over ̂𝜃0, whatever h: Subtracting h(x) − h(y) from f (x, y) will change f (x, y)
by roughly the same amount, but with the opposite sign, when (x, y) is replaced by the reflected point (y, x).
Also, P[(X1,Xm) = (x, y)] is about P[(X1,Xm) = (y, x)]. Hence ̂

𝜃(h) and therefore ̂
𝜃( ̂h∗) will have about the same

asymptotic variance as ̂𝜃0. This is illustrated by the simulations for approximately symmetric f .

The additional randomness introduced by estimating a small optimal correction h(x) − h(y) with ̂h(x) = ̂
𝛽

⊤

1
[x = ⋅] leads occasionally to a slight variance increase of ̂𝜃( ̂h∗) over ̂𝜃0.

4. TECHNICAL DETAILS

Let S be a finite set with at least two elements. For a positive integer k, we let 𝒢k denote the vector space of all
functions from Sk to R and set

||g||∞ = max
x∈Sk

|g(x)|, g ∈ 𝒢k.

We abbreviate 𝒢1 by 𝒢 and 𝒢2 by ℳ. On ℳ we also introduce the norm

||M|| = max
s∈S

∑

t∈S

|M(s, t)|, M ∈ℳ.

We let ℳ1 = {M ∈ℳ ∶ ||M|| ≤ 1} denote the unit ball in ℳ for this norm. For M1, … ,Mk in ℳ, we define a
linear operator M1 ⊗ · · ·⊗Mk from 𝒢k into 𝒢 which maps g ∈ 𝒢k to the function (M1 ⊗ · · ·⊗Mk)g defined by

(M1 ⊗ · · ·⊗Mk)g(s0) =
∑

s1,… ,sk∈S

M1(s0, s1)M2(s1, s2) · · ·Mk(sk−1, sk)g(s1, … , sk), s0 ∈ S.

If M1 = · · · = Mk, we abbreviate M1 ⊗ · · ·⊗Mk by M⊗k. It is easy to verify the inequality

||(M1 ⊗ · · ·⊗Mk)g||∞ ≤
k∏

j=1

||Mk||||g||∞, g ∈ 𝒢k.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. 45: 1006–1019 (2024)
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ESTIMATION FOR MARKOV CHAINS WITH MISSING OBSERVATIONS 1017

For N1, … ,Nk,M1, … ,Mk in ℳ1, we have the inequality

||(N1 ⊗ · · ·⊗ Nk)g − (M1 ⊗ · · ·⊗Mk)g||∞ ≤
k∑

j=1

||Nj −Mj||||g||∞, g ∈ 𝒢k. (4.1)

This is verified by successively replacing the factors Ni by Mi in the product N1 ⊗ · · ·⊗Nk and using the triangle
inequality.

For M1 and M2 in ℳ, we let M1 ⊙M2 denote the matrix product of M1 and M2 defined by

(M1 ⊙M2)(s, t) =
∑

u∈S

M1(s, u)M2(u, t), s, t ∈ R.

We write Mk for the k-fold matrix product M ⊙ · · ·⊙M of M. We have

||M ⊙ N|| ≤ ||M||||N||, M,N ∈ℳ (4.2)

and thus

||Mk|| ≤ ||M||k.

Lemma 1. Consider M, N in ℳ and a positive integer k. Then we have the following inequalities:

||(M + N)k|| ≤
k∑

j=0

(
k
j

)
||M||j||N||k−j

, (4.3)

||Nk −Mk|| ≤
k−1∑

j=0

(
k
j

)
||M||j||N −M||k−j (4.4)

and, if M in ℳ1,

||Nk −Mk|| ≤ k||N −M|| exp(k||N −M||). (4.5)

Proof. For a subset I of {1, … , k}, set

T(j, I) = M1(j ∈ I) + N1(j ∉ I), j = 1, … , k.

Inequality (4.3) is a consequence of the identity

(M + N)k =
∑

I⊂{1,… ,k}
T(1, I)⊙ · · ·⊙ T(k, I)

and the inequality (4.2), while inequality (4.4) follows from the identity with the role of N played by N −M and
(4.2).

To prove (4.5) we use (4.4) with ||M|| ≤ 1 and the inequality

(
k
j

)
≤ kj

j!
≤ kj

(j − 1)!
, 1 ≤ j ≤ k.

J. Time Ser. Anal. 45: 1006–1019 (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12747 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12747, W

iley O
nline L

ibrary on [23/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fjtsa.12747&mode=


1018 U. MÜLLER, A. SCHICK AND W. WEFELMEYER

This and the substitution j = k − i give

||Nk −Mk|| ≤
k−1∑

i=0

(k
i

)
||N −M||k−i =

k∑

j=1

(
k
j

)
||N −M||j ≤

k∑

j=1

kj

(j − 1)!
||N −M||j.

Factoring out one term k||N − M||, extending the summation to infinity and using the Taylor expansion of the
exponential function yields the desired result (4.5). ◾

Lemma 2. Suppose rn →∞ and rn = o(n1∕4). Then we have

max
1≤j≤n

| ̂Bj(g) − Bj(g)| = oP(1),

for every g in 𝒢b+1.

Proof. Fix g ∈ 𝒢b+1. The difference ̂Bj(g) − Bj(g) equals Tj − Uj + Vj, where

Tj =
rn∑

k=0

(
ĝk(Yj) − gk(Yj)

)
=

rn∑

k=0

(
( ̂Qk(a+b)

⊗
̂Q

a
⊗
̂Q
⊗b)g − (Qk(a+b)

⊗ Qa
⊗ Q⊗b)g

) (
Yj

)
,

Uj =
rn+1∑

k=0

(
ĝk

(
Yj−1

)
− gk

(
Yj−1

))
=

rn+1∑

k=0

(
̂Q

k(a+b)
⊗
̂Q

a
⊗
̂Q
⊗b

g − Qk(a+b)
⊗ Qa

⊗ Q⊗bg
) (

Yj−1

)
,

and

Vj =
∞∑

k=rn+1

(
Qk(a+b)g0

(
Yj

)
− Q(k+1)(a+b)g0

(
Yj−1

))
.

Here we used the identities g0 =
(
Qa

⊗ Q⊗b
)
g and ĝ0 =

(
̂Q

a
⊗
̂Q
⊗b)

g.
Note the identities ||Q|| = 1 and || ̂Q|| = 1. With the help of (4.1) and (4.5) we derive

max
1≤j≤n

|Tj| ≤
rn∑

k=0

|| ̂Q
k(a+b)

⊗
̂Q

a
⊗
̂Q
⊗b

g − Qk(a+b)
⊗ Qa

⊗ Q⊗bg||∞

≤ ||g||∞

rn∑

k=0

(
|| ̂Q

k(a+b) − Qk(a+b)|| + || ̂Q
a − Qa|| + b|| ̂Q − Q||

)

≤ ||g||∞

rn∑

k=0

(k + 1)(a + b)|| ̂Q − Q|| exp
(
rn(a + b)|| ̂Q − Q||

)

≤ ||g||∞(rn + 1)2(a + b)|| ̂Q − Q|| exp
(
rn(a + b)|| ̂Q − Q||

)
,

and similarly

max
1≤j≤n

|Uj| ≤ (rn + 2)2(a + b)|| ̂Q − Q|| exp
(
(rn + 1)(a + b)|| ̂Q − Q||

)
.

As rn = o(n1∕4) and || ̂Q − Q|| = OP(n−1∕2), these maxima converge in probability to zero.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. 45: 1006–1019 (2024)
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Finally, using inequality (2.1) in Greenwood and Wefelmeyer (1995), for some 0 < 𝛼 < 1,

max
1≤j≤n

|Vj| ≤
∞∑

k=rn+1

||Qk(a+b)g0 − Q(k+1)(a+b)g0||∞

≤
∞∑

k=rn+1

(
||Qk(a+b)g0 − E[g0(Y0)]||∞ + ||Q(k+1)(a+b)g0 − E[g0(Y0)]||∞

)

≤ 2||g||∞
∞∑

k=rn+1

(
𝛼

(a+b)k + 𝛼(a+b)(k+1)) = oP(1).

In the last step we used the fact that the L1 distance of two probability measures P1 and P2 equals twice their total
variation distance,

sup
t

||||∫ t dP1 − ∫ t dP2

||||
= 2 sup

A
|P1(A) − P2(A)|.

Here the first supremum is over all measurable functions t satisfying |t| ≤ 1 and the second supremum over all
sets A in the common domain of the measures. ◾
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