Research interests
[Most articles are listed in MathSciNet]
Published and accepted papers (refereed)
[xx]
G. Dai, U.U. Müller and R.J. Carroll (2024+).
Penalized regression with multiple loss functions and variable selection by voting.
To appear in:
Statist. Sinica.
[50]
U.U. Müller, A. Schick and W. Wefelmeyer (2024).
Estimation for Markov chains with periodically missing observations.
J. Time Ser. Anal., 45, 1006-1019.
[49]
G. Dai, U.U. Müller and R.J. Carroll (2023).
Data integration in high dimension with multiple quantiles.
Statist. Sinica, 33, 169-192.
[48]
G. Dai and U.U. Müller (2019).
Efficient estimators for expectations in nonlinear parametric regression models
with responses missing at random.
Electron. J. Stat., 13, 3985-4014.
[47]
U.U. Müller and I. Van Keilegom (2019).
Goodness-of-fit tests for the cure rate in a mixture cure model.
Biometrika, 106, 211-227.
[46]
U.U. Müller, H. Peng and A. Schick (2019).
Inference about the slope in linear regression: an empirical likelihood
approach.
Ann. Inst. Statist. Math., 71, 181-211.
[45]
J. Chown and U.U. Müller (2018).
Detecting heteroskedasticity in nonparametric regression
using weighted empirical processes.
J. R. Stat. Soc. Ser. B., 80, 951-974.
[44]
U.U. Müller and A. Schick (2018).
Efficiency for heteroscedastic regression with responses missing at random.
J. Statist. Plann. Inference, 196, 132-143.
[43]
H.L. Koul, U.U. Müller and A. Schick (2017).
Estimating the error distribution in a single-index model.
From Statistics to Mathematical Finance,
Festschrift in Honour of Winfried Stute
(D. Ferger, W. González Manteiga, T. Schmidt, J.-L. Wang, eds.),
Springer, 209-234.
[42]
U.U. Müller and A. Schick (2017).
Efficiency transfer for regression models with responses missing at random.
Bernoulli, 23, 2693-2719.
[41]
U.U. Müller, A. Schick and W. Wefelmeyer (2016).
Density estimators for the convolution of discrete and continuous random
variables.
Ann. I.S.U.P., 60, 55-65.
[40]
U.U. Müller, A. Schick and W. Wefelmeyer (2015).
Estimators in step regression models.
Statist. Probab. Lett., 100, 124-129.
[39]
U.U. Müller and W. Wefelmeyer (2014).
Estimating a density under pointwise constraints on the derivatives.
Math. Meth. Statist., 23, 201-209.
[38]
U.U. Müller, A. Schick and W. Wefelmeyer (2014).
Testing for additivity in partially linear regression with possibly missing
responses.
J. Multivariate Anal., 128, 51-61.
[37]
U.U. Müller and I. Van Keilegom (2014).
Efficient quantile regression with auxiliary information.
Contemporary Developments in Statistical Theory,
Springer Proceedings in Mathematics & Statistics,
68, 365-374.
[36] U.U. Müller, A. Schick and W. Wefelmeyer (2014).
Efficient estimators for alternating quasi-likelihood models.
J. Indian Statist. Assoc., 52, 1-17.
[35] J. Chown and U.U. Müller (2013).
Efficiently estimating the error distribution in nonparametric
regression with responses missing at random.
J. Nonparametr. Statist., 25, 3, 665-677.
[34] U.U. Müller, A. Schick and W. Wefelmeyer (2013).
Non-standard behavior of density estimators for functions of independent
observations. In: Stochastic Modeling Techniques and Data Analysis
International Conference,
Comm. Statist. Theory Methods,
42, 2291-2300.
[33] U.U. Müller, A. Schick and W. Wefelmeyer (2013).
Variance bounds for estimators in autoregressive models with
constraints.
Statistics, 47, 3, 477-493.
[32]
J. Wei, R.J. Carroll, U.U. Müller, I. Van Keilegom and N. Chatterjee
(2013).
Robust Estimation for Homoscedastic Regression in the Secondary Analysis
of Case-Control Data.
J. R. Stat. Soc. Ser. B, 75, 185-206.
[31] H.L. Koul, U.U. Müller and A. Schick (2012).
The transfer principle: a tool for complete case analysis.
Ann. Statist.,
40, 3031-3049.
[30] U.U. Müller and I. Van Keilegom (2012).
Efficient parameter estimation in regression with missing responses.
Electron. J. Stat., 6, 1200-1219.
[29] U.U. Müller (2012).
Estimating the density of a possibly missing response variable
in nonlinear regression.
J. Statist. Plann. Inference, 142, 1198-1214.
[28] U.U. Müller, A. Schick and W. Wefelmeyer (2012).
Estimating the error distribution function in semiparametric additive
regression models.
J. Statist. Plann. Inference, 142, 552-566.
[27] U.U. Müller, A. Schick and W. Wefelmeyer (2011).
Optimal plug-in estimators for multivariate distributions
with conditionally independent components.
J. Nonparametr. Statist., 23, 1031-1050.
[26] U.U. Müller and W. Wefelmeyer (2010).
Estimation in nonparametric regression with nonregular errors.
In: Recent Advances in Statistical Inference. In Honor of Professor
Masafumi Akahira
(M. Aoshima, ed.),
Comm. Statist. Theory Methods,
39,
1619-1629.
[25] U.U. Müller (2009).
Estimating linear functionals in nonlinear regression with responses
missing at random.
Ann. Statist.,
37, 2245-2277.
[24] U.U. Müller, A. Schick and W. Wefelmeyer (2009).
Estimating the error distribution function in nonparametric regression
with multivariate covariates.
Statist. Probab. Lett.,
79, 957-964.
[23] U.U. Müller, A. Schick and W. Wefelmeyer
(2009).
Estimating the innovation distribution in nonparametric autoregression.
Probab. Theory Related Fields, 144, 53-77.
[22] U.U. Müller, A. Schick and W. Wefelmeyer
(2009).
Estimators for alternating nonlinear autoregression.
J. Multivariate Anal., 100, 266-277.
[21] U.U. Müller, A. Schick and W. Wefelmeyer (2008).
Estimators for partially observed Markov chains.
Statistical
Models and Methods for Biomedical and Technical
Systems (F. Vonta, M. Nikulin, N. Limnios and C. Huber,
eds.), Birkhäuser, Boston, 423-438. [20] U.U. Müller, A. Schick and W. Wefelmeyer (2008).
Optimality of estimators for misspecified semi-Markov models.
Stochastics, 80, 2, 181-196.
[17] U.U. Müller, A. Schick and W. Wefelmeyer (2006).
Efficient prediction for linear and nonlinear autoregressive models. Ann. Statist.,
34, 5,
2496-2533.
[16] U.U. Müller, A. Schick and
W. Wefelmeyer (2006). Imputing responses that are not missing. Probability, Statistics and Modelling
in Public Health, Symposium in Honor of Marvin Zelen
(M. Nikulin, D. Commenges and C. Huber, eds.), 350-363, Springer. [15] U.U. Müller, A. Schick and W. Wefelmeyer
(2005). Weighted residual-based density estimators for nonlinear
autoregressive models.
Statist. Sinica, 15,
177-195. [14] P.E. Greenwood, U.U. Müller and L.M. Ward
(2004). Soft threshold stochastic resonance. Phys. Rev. E.,
70, 051110. [13] P.E. Greenwood, U.U. Müller and W.
Wefelmeyer
(2004). An introduction to efficient estimation for semiparametric time
series. Parametric
and Semiparametric Models with Applications to Reliability, Survival
Analysis, and Quality of Life (M. S. Nikulin, N. Balakrishnan,
M. Mesbah and N. Limnios, eds.), 253-272, Statistics for Industry and
Technology, Birkhäuser, Basel. [12] U.U. Müller, A. Schick and W. Wefelmeyer
(2004). Estimating functionals of the error distribution in parametric
and nonparametric regression.
J. Nonparametr. Stat., 16, 525-548.
[11] P.E. Greenwood, U.U. Müller and W. Wefelmeyer
(2004). Efficient estimation for semiparametric semi-Markov processes.
In:
Semi-Markov Processes and Their Applications (N. Limnios, ed.),
Comm. Statist. Theory Meth., 33, 419-435. [10] U.U. Müller, A. Schick and W. Wefelmeyer
(2004). Estimating linear functionals of the error distribution in
nonparametric regression.
J. Statist. Plann. Inference, 119, 75-93. [9] U.U. Müller, A. Schick and W. Wefelmeyer
(2003). Estimating the error variance in nonparametric regression by a
covariate-matched U-statistic. Statistics,
37, 3, 179-188. [8] U.U. Müller and G. Osius (2003). Asymptotic
normality of goodness-of-fit statistics for sparse Poisson data. Statistics,
37, 2, 119-143. [7] P.E. Greenwood, U.U. Müller, L.M. Ward and
W. Wefelmeyer
(2003). Statistical analysis of stochastic resonance in a thresholded
detector.
Austrian J. Stat., 32, 1 & 2, 49 - 70. [6] U.U. Müller and W. Wefelmeyer (2002).
Autoregression, estimating functions, and optimality criteria. In: Advances
in Statistics, Combinatorics and Related Areas (C. Gulati,
Y.-X. Lin, J. Rayner and S. Mishra, eds.), 180-195, World Scientific
Publishing, Singapore. [5] U.U. Müller and W. Wefelmeyer (2002).
Estimators for models with constraints involving unknown parameters. Math. Meth.
Stat., 11, 2, 221-235. [4] U.U. Müller, A. Schick and W. Wefelmeyer
(2001). Plug-in estimators in semiparametric stochastic process models.
In: Selected Proceedings of the Symposium on Inference for
Stochastic Processes (I. V. Basawa, C. C. Heyde and R. L. Taylor,
eds.),
213-234,
IMS Lecture
Notes-Monograph Series, 37, Institute of Mathematical
Statistics, Beachwood, Ohio. [3] U.U. Müller, A. Schick and W. Wefelmeyer
(2001). Improved estimators for constrained Markov chain models.
Statist. Probab. Lett., 54, 4, 427-435. [2] U.U. Müller (2000). Nonparametric regression
for threshold data.
Can. J. Stat., 28, 2, 301-310.
[1] U.U. Müller and L.M. Ward (2000). Stochastic
resonance in a statistical model of a time-integrating detector. Phys. Rev. E, 61, 4, 4286-4294.
Theses
U. Müller (1997). Asymptotic Normality of
Goodness-of-Fit Statistics for Sparse Poisson and Case-Control Data.
Doctoral thesis, Universität Bremen. U. Müller (1993). Experimente zum Auffinden relevanter
Einflussfaktoren. Diploma thesis, Freie Universität Berlin.
Other papers and reports (not refereed) U.U. Müller, A. Schick and W. Wefelmeyer (2007).
Inference for alternating time series. In: Recent Advances in Stochastic Modeling and
Data Analysis (C.H. Skiadas, ed.), 589-596, World Scientific,
Singapore. U.U. Müller, A. Schick and W. Wefelmeyer (2004).
Estimating the error distribution function in nonparametric regression.
Technical report. Available in
arXiv:1810.01645.
U.U. Müller (2000). Goodness-of-fit statistics for
large
numbers of cells. In: Second
International Conference on Mathematical
Models
in Reliability, Bordeaux, Universite Victor Sengalen, Bordeaux,
France,
July
4-7, 2000. Abstracts Book, Vol. 2, pp. 792-795. U.U. Müller (1999). Nonparametric regression for
threshold data. Universität Bremen, Mathematik-Arbeitspapiere A,
52. U. Müller and G. Osius (1998). Asymptotic normality of
goodness-of-fit statistics for sparse Poisson data. Universität
Bremen, Mathematik-Arbeitspapiere A, 51.
41 pp.
doi
14 pp. .pdf
doi
24 pp.
doi
30 pp. .pdf
doi
17 pp. .pdf
supplement (7 pp.)
doi
29 pp. .pdf
doi
article (25 pp.)
doi
supplement (3 pp.)
corrigendum (2 pp.)
doi
18 pp. .pdf
doi
21 pp. .pdf
27 pp. .pdf
doi
11 pp. .pdf
10 pp. .pdf
doi
11 pp. .pdf
doi
18 pp. .pdf
doi
10 pp. .pdf
doi
17 pp. .pdf
15 pp. .pdf
doi
10 pp. .pdf
doi
21 pp. .pdf
doi
22 pp. .pdf
doi
19 pp. .pdf
doi
20 pp. .pdf
doi
28 pp. .pdf
doi
22 pp. .pdf
doi
23 pp. .pdf
doi
13 pp. .pdf
doi
33 pp. .pdf
doi
11 pp. .pdf
doi
25 pp. .pdf
doi
19 pp. .pdf
doi
15 pp. .pdf
doi
13 pp. .pdf
doi
[19] U.U. Müller, A. Schick and W. Wefelmeyer
(2007).
Estimating the error distribution function in semiparametric
regression.
Statist. Decisions,
25, 1, 1-18.
21 pp. .pdf
doi
[18] U.U. Müller (2007). Weighted
least squares estimators in possibly misspecified nonlinear regression.
Metrika, 66, 39-59.
22 pp. .pdf
doi
38 pp. .pdf
doi
14 pp. .pdf
link
20 pp. .pdf
link
20 pp. .pdf
doi
16 pp. .pdf
25 pp. .pdf
doi
17 pp. .pdf
doi
20 pp. .pdf
doi
11 pp. .pdf
doi
27 pp. .pdf
doi
22 pp. .pdf
16 pp. .pdf
17 pp. .pdf
22 pp. .pdf
9 pp. .pdf
doi
12 pp. .pdf
doi
9 pp. .pdf
doi
150 pp. .pdf.
8 pp. .pdf
20 pp. .pdf
18 pp. .pdf
15 pp.
©UU Müller,
last update: October 2024